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Abstract: Water bodies are major areas for methane release. Eutrophic water bodies may promote
methane flux. The sediment-water interface is the major location for methane release, and studies on
sediment-water interactions are necessary to regulate methane release in water. However, relevant
studies on methane flux at the sediment-water interface are limited due to methodological difficulties.
Using an innovative gas trapping device, this study investigated the seasonal characteristics and
diel variation in summer methane flux from eutrophic water bodies and analyzed the correlations
between temperature, dissolved oxygen (DO), different forms of nitrogen and the methane flux at
different time scales. The results showed that methane flux in the eutrophic pond was high and had
distinct seasonal variations and diel variations: the average value was 2.81 ± 0.19 mmol m−2 h−1 in
summer, which was significantly greater than that in spring (0.62 ± 0.14 mmol m−2 h−1), autumn
(0.63 ± 0.10 mmol m−2 h−1) (p < 0.01) and winter (approached zero). The diel characteristics of
methane flux in summer exhibited a unimodal pattern of increase at night and decrease during
the day. The correlation analysis showed that the sediment-water methane flux rate of the water
body was significantly positively correlated with the temperature and NH4

+ concentration and
significantly negatively correlated with DO, NO3

− and NO2
− concentration. Meanwhile, among

different time scales, the correlations between NO3
−/NH4

+ concentration and methane flux were
the highest at the diel scale in summer (R2 = 0.68, 0.87 respectively) when the temperature
and DO vibration was low and the relationship between temperature/DO and methane flux
was poor (R2 = 0.45, 0.87 respectively). This study considered that higher NH4

+-N and lower
NO3

−-N/NO2
−-N content in eutrophic water could have an effect on the high methane flux in

summer as well as the low dissolved oxygen content.

Keywords: different period; influencing factors; methane flux; eutrophic pond

1. Introduction

Methane is an important greenhouse gas [1]. The atmospheric volume fraction of methane in air
has been increasing since the Industrial Revolution [2,3]. Wetlands are important sources of methane
release and have been extensively studied [4,5]. In recent years, especially in China, eutrophication in
water has taken place along with the development of urbanization and agricultural production [6,7].
The eutrophication of a water body, containing higher nutrients and more dissolved organic carbon
than oligotrophic areas, could accelerate the production and release of methane [8–10]. Therefore,
a study of the characteristics of methane flux in eutrophic water bodies is necessary to identify ways to
reduce methane release.
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It is generally known that methane is produced in aquatic systems under anoxic conditions
and is then released to the atmosphere [11,12]. After release from the sediment-water interface,
methane can be consumed through two ways: one is to be oxidized by methanotrophs in the presence
of dissolved oxygen (DO) in water bodies during diffusion [13,14]; and the other is during the
initial state of its production, when it is consumed through the nitrate/nitrite reduction pathway
(denitrification-dependent anaerobic methane oxidation) [15], which is considered to be more likely to
occur than the sulfate reduction pathway, although both NO3/NO2

− and SO4
2− exist in anaerobic

areas of water bodies [16]. The denitrification methane oxidation reaction produces relatively safe N2

and CO2, which reduce the methane release to the atmosphere as well as the excessive nitrogen in water
bodies at the same time, and therefore a good double effect of good water quality and air environment
is achieved [17]. While previous studies paid more attention to the influence of temperature, dissolved
oxygen, concentration of organic carbon, and pH value of water bodies on methane release, the role of
excessive nitrogen in eutrophic water bodies has seldom been considered [11,12]. The relation between
the different forms of nitrogen in eutrophic water bodies and methane release remains unclear.

To study the methane release of water bodies, a static chamber method and a method based on
dissolved gas are commonly used [18,19]. Using the static chamber method, a closed chamber is placed
upside-down on the water surface, a gas sample inside the chamber is collected every 15 min, and then
the methane fraction in the gas sample is determined to estimate the methane flux rate. This method is
usually used to investigate the net gas emission at the water-atmosphere interface but not the total flux
at the mud-water boundary layer [14]. For the application of the method based on the dissolved gas
determination, the lysimetric tube should be set ahead in the sediment; then, the lysimetric water in the
tube is pumped for the determination of methane concentration. The whole operation should be very
careful, otherwise, the sectional structure of the sediment will be disturbed, and the accuracy of the
gas release determination will be affected [20]. Moreover, when the dissolved gas accumulates in the
lysimetric water and exceeds the saturation point, the gas will burst from the water body in the form of
bubbles [21,22], which cannot be detected by the method. The high concentration of nitrogen in urban
eutrophic water bodies leads to vigorous growth of phytoplankton and algae, which may increase the
dissolved oxygen in water bodies [23] and accelerate methane oxidation; the decomposition of fresh
algae induces strong DO consumption and dissolved organic carbon input into the sediment, which
could cause higher microbiological activity to produce a large methane flux in the form of gas bubbles.
For these reasons, the conventional method involving dissolved gas studies in the upper parts of the
sediment, or the static chamber method at the water surface for methane flux measurement as such
are not applicable for the studies of all biotic or abiotic factors that control of methanogenesis and
methanotrophy at the sediment-water boundary.

Recently, a gas trapping device (GTD) has been constructed and applied in situ to collect gas
released from a water body [24]. The device is mainly composed of a bracing structure floating on
the water surface, connecting to the gas-collecting dome submerged 5 cm above the sediment-water
interface; a gas storage bottle is connected to the peak of the gas-collecting dome through a silicon
tube. The methane released from the sediment-water interface could rise into the collecting dome
through the open mouth at the bottom and temporarily accumulate at the inner top of the dome,
and finally move into the storage bottle through the silicon tube at the peak mouth of the collecting
dome. After the collection campaign, the volume and components of gas samples in the gas storage
bottle were analyzed for further evaluation of gas flux. According to the GTD method, both bubble
and diffusion gas can enter the collecting dome and be collected. The accuracy of the GTD method
for determining diffusive and bubble gas flux at the sediment-water interface has been verified to be
reliable [25,26]. Applying the GTD method, gas release from the sediment-water interface could be
completely collected, and the control factors of methane flux can be assessed.

In this study, using the GTD method, the characteristics of the methane release in an urban
eutrophic water body were in situ investigated, and the influence of different forms of nitrogen on
methane flux was analyzed. In order to avoid damage occurring at the sediment structure, we choose
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water parameters 5 cm above the mud-water interface as the independent variables because they are
in equilibrium with those in the top sediment [20,27]. We hypothesized that methane flux in eutrophic
water could be greater than that in a normal water body, and excessive nitrogen in eutrophic water
could have an effect on the methane flux.

2. Materials and Methods

2.1. Characteristics of the Eutrophic Water Body and Sampling Point Settings

The tested water body was a severely eutrophic pond, which was located in Nanjing, Jiangsu,
China. In Nanjing, a subtropical humid monsoon climate prevails, with high temperatures and rain in
summer, and low temperatures, humidity and less rainy in winter. The annual precipitation of the city
is 1060.4 mm on average. The temperature range is between −5 and 38 ◦C, with an annual average
temperature of 15.6 ◦C. The region where the river channel flows through is shown in Figure 1A,
and the specific pond (1.5–2.0 m depth, 5400 m2 water area) is located in the middle of the channel
(Figure 1B); dry branches and fallen leaves floating in the running water of the Purple Mountain
bring considerable organic matter and abundant nutrients to the pond after flowing through the
business center and the residential living quarters. Affected by the surrounding domestic sewage,
industrial wastewater or pollution from agricultural fertilizers, the pond has always been in a eutrophic
condition, causing a blue-green algal bloom during the spring and summer season. The total nitrogen
(TN) and total phosphorus (TP) contents in water body are higher than 2.0 and 0.2 mg L−1, respectively,
throughout the year.

Eutrophic ponds usually exist in the suburban cities in China and serve as a normal channel
for releasing flood waters and the source of irrigation water for downstream farmland. Therefore,
temporary fluctuation of water levels occurs during the flood season in summer or the irrigation season.
The thickness of the sediment in the pond is deep in the middle and shallow near the inlet and outlet.
Water isobaths of the pond are shown in Figure 1B. In this experiment, the central position a, b and c
(Figure 1B) with a depth of 150 ± 5 cm were chosen to set the gas trapping device in the pond; the
water flow at the three positions was usually stable, and the sediment thickness was homogeneous.
There are three repetitions at each site position. Before this experiment, six top sediment (0–15 cm)
samples were collected at the three positions using the Peterson core sampler. The main parameters of
the sediment are shown in Table 1.

Table 1. Main parameter characteristics of the sediment samples collected from the eutrophic pond.

Parameters NO3
−

(mg kg−1)
NO2

−

(mg kg−1)
NH4

+

(mg kg−1) Total Nitrogen (TN) % Total Phosphorus
(TP) (%) Organic Matter % pH

Content 3.64 ± 1.41 0.95 ± 0.23 169.06 ± 30.42 0.71 ± 0.08 0.46 ± 0.05 3.56 ± 0.71 7.53 ± 0.22

Note: mg kg−1 is milligram nutrient per kilogram dry sediment; % is the nutrient percentage of dry sediment.
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Figure 1. Detailed watershed of the eutrophic pond (A), locations of the sampling sites and the
distribution of water depth (B). Numbers in plot B are the water depths (cm) of different positions in
the pond, and the scale indicates the dimension of the pond.

2.2. Sampling Campaign

The whole sampling campaign, including 30 sample collections in total, was arranged from
June 2013 to May 2014, including summer, i.e., June, July and August; autumn, i.e., September,
October and November; winter, i.e., December, January and February of the next year; and spring,
i.e., March, April and May. Each sample collection was arranged on days without wind and rain or
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water fluctuation. Every sampling included the collection of gas and water samples. Gas sampling
was based on a complete day as a cycle; the total amount of the released gas (diffuse and ebullitive gas)
on different days was collected using the gas trapping device for the daily mean release rate calculation.
The number of days of every sampling process depended on the season. Normally, in summer,
the sampling cycle is the shortest (24 h) and increases in spring and autumn (2~4 days). As detection
of the gas release was difficult because of low gas flux in winter, the flux rate was considered to be
zero [10,24,26]. Water samples at the sediment-water interface were collected using the syringe and
tube set 5 cm above the mud-water interface. To investigate the diel flux of CH4, preliminary tests
were performed, and a similar pattern of diel CH4 flux and other water parameters (such as NH4

+,
NO3

−, NO2
−, and etc.) over several days was observed [28]. In this study, the day with the highest

flux rate was chosen to study the diel characteristics of CH4 flux at the sediment-water interface
and the correlations between CH4 flux and different forms of nitrogen. The investigation of the diel
characteristics of CH4 flux was arranged in summer (10–11 August) when the flux rate reached the
peak of the year, and the sampling interval was four hours. At the end of each sampling cycle, the gas
sampling bottle was carefully taken down; then, the water sample at the sediment-water interface was
sampled at the same time for nutrient and chlorophyll-a concentration analysis. The water temperature,
dissolved oxygen and pH index at the mud-water interface were measured with a portable water
quality monitoring system (YSI Pro Plus, YSI Inc., Yellow Springs, OH, USA). The gas sample was
analyzed by gas chromatography (GC-2010, Shimadzu Corp., Kyoto, Japan) [26]. The methane flux
was calculated as the total volume of gas and methane concentration in the gas sample; the detailed
calculation is shown in Gao et al., (2013) [24]. The concentration of TP, NH4

+-N, NO3
−-N and NO2

−-N
in the water sample was analyzed by a flow analyzer (Skalar Analytical, Breda, Netherlands).
The chlorophyll-a concentration was analyzed by a conventional method (US-EPA, 1983).

2.3. Statistical Analysis

Analysis of variance (ANOVA) and correlation analysis between gas flux and the
main environmental factors were performed using Statistical software (SPSS18.0, Spss Inc.,
NewYork, NY, USA). In order to analyze the main factors that influence the CH4 flux at different
time scales, a simple linear regression analysis was applied for testing the relationships between CH4

flux and other parameters (temperature, DO, NH4
+, NO3

− and NO2
−). The vertical box plot graphs

were created in Sigmaplot12.0 (Systat Software, Inc., San Jose, CA, USA).

3. Results and Analysis

3.1. Annual Variation Characteristics and Diel Variation of Methane Flux

Throughout the whole year, the methane flux rate in the severely eutrophic water body reached
the peak value of 0 − 7.33 ± 2.09 mmol m−2 h−1 in summer, which was significantly higher than that
in other seasons (Table 2). Diel characteristics of the methane flux under stable hydrologic conditions
in summer demonstrated a unimodal pattern as a whole: the CH4 flux rate increased after sunrise
(8:00–12:00), reached the highest rate during the period of 20:00 to 2:00 of the next morning; then
decreased and reached the lowest between 8:00–12:00 of the second day (Table 2).

Table 2. The variation characteristics of methane at different time scales.

Parameters Time CH4 Flux Rate (mmol m−2 h−1)

Seasonal variation

Summer 2.81 ± 0.19
Autumn 0.63 ± 0.10
Winter zero
Spring 0.62 ± 0.14
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Table 2. Cont.

Parameters Time CH4 Flux Rate (mmol m−2 h−1)

Diel variation in Summer

8:00–12:00 2.75 ± 0.14 a
12:00–16:00 3.41 ± 0.89 a
16:00–20:00 6.19 ± 0.44 b
20:00–2:00 11.48 ± 0.84 c
2:00–8:00 6.46 ± 1.35 b
8:00–12:00 2.93 ± 1.55 a

3.2. Environmental Parameter Variation

As shown in Figure 2, the NO3
−-N concentration at the sediment-water interface was highest

in winter, followed by autumn, which was significantly higher than that in both summer and spring
(p < 0.001). The NO2

−-N concentration in summer and spring was significantly higher than that in
winter and autumn (p < 0.001). The NH4

+-N concentration was the highest in winter, followed by
spring, which was significantly higher than that in autumn and summer (p < 0.001). The concentration
variation in different seasons was high for different forms of nitrogen.
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Figure 2. Concentration variation characteristics of different forms of nitrogen. The three plots in
the left column are box plots; they represent concentration values of NH4

+, NO3
− and NO2

− in
different seasons, and the short line in the middle of every small box represents the middle value of the
object data. The three plots in the right column are bar charts with mean concentration values (±SD)
at different times of the diel cycle.



Water 2017, 9, 601 7 of 12

The diel variation of different nitrogen forms at the mud-water interface differed: the NO3
−-N

and NO2
−-N concentration reached the lowest level between 20:00 to 2:00 of the next morning, which

was significantly lower than that from 8:00 to 12:00. By contrast, the NH4
+-N concentration reached

a peak between 20:00 to 2:00 of the next morning, which was significantly higher than that from
8:00 to 12:00.

The temperature, dissolved oxygen, pH value, chlorophyll-a, TN and TP at different time were
shown in Table 3, and distinct seasonal variation was observed. The water temperature in summer
was significantly higher than that in other seasons (p < 0.01). The chlorophyll-a concentration in
spring and summer was significantly higher than that in autumn and winter (p < 0.01). The saturation
percentage of dissolved oxygen was the highest in winter, which is significantly higher than that of
other seasons (p < 0.01); in contrast, lowest in summer, which was under anaerobic condition and
significantly lower than that in other seasons (p < 0.01). pH value was close to neutral in summer
and significantly lower than that of winter. Both TN and TP were significantly higher in winter than
that in other seasons (p < 0.01). Compared to the seasonal variation, the diel variation range of each
parameter was relatively smaller. Specifically, the temperature variation at each time period was less
than 0.1 ◦C and the total nitrogen and total phosphorus have no significant difference for all day long.
Both the dissolved oxygen and pH were at the lowest level from 20:00 to 2:00 of the next morning and
were significantly lower than that of the other times (p < 0.01).

Table 3. The variation characteristics of water parameters during different investigating period.

Parameters Time Temperature ◦C Saturation Percentage
of Dissolved Oxygen % pH Chlorophyll-a µg L−1 TN mg L−1 TP mg L−1

Seasonal variation

Summer 26.46 ± 0.22 12.55 ± 1.14 7.41 ± 0.05 150.56 ± 9.47 5.21 ± 0.15 0.56 ± 0.03
Autumn 19.86 ± 0.53 46.21 ± 1.97 7.95 ± 0.03 75.44 ± 5.38 4.77 ± 0.11 0.45 ± 0.04
Winter 7.25 ± 0.21 92.41 ± 13.03 8.13 ± 0.16 76.22 ± 18.16 8.15 ± 0.65 1.00 ± 0.10
Spring 17.28 ± 0.56 27.27 ± 3.13 8.04 ± 0.03 182.97 ± 18.46 5.43 ± 0.18 0.57 ± 0.02

Diurnal variation
in Summer

8:00–12:00 31.3 ± 0.00 a 17.43 ± 3.50 a 7.56 ± 0.1 a 52.33 ± 4.39 a 2.85 ± 0.04 a 0.66 ± 0.00 a
12:00–16:00 31.2 ± 0.00 b 16.8 ± 2.38 a 7.76 ± 0.08 a 54.6 ± 3.03 a 3.03 ± 0.06 a 0.63 ± 0.01 a
16:00–20:00 31.25 ± 0.07 b 4.7 ± 0.44 b 7.44 ± 0.03 a 94.19 ± 4.95 b 3.25 ± 0.05 a 0.62 ± 0.01 a
20:00–2:00 31.25 ± 0.07 b 1.67 ± 0.20 c 7.33 ± 0.04 b 75.96 ± 3.82 b 3.44 ± 0.02 a 0.60 ± 0.00 a
2:00–8:00 31.35 ± 0 a 13.68 ± 2.01 a 7.59 ± 0.07 a 88.27 ± 5.59 b 3.18 ± 0.02 a 0.60 ± 0.02 a

8:00–12:00 31.15 ± 0.07 a 3.97 ± 1.40 b 7.52 ± 0.05 a 73.48 ± 0.81 b 3.32 ± 0.03 a 0.54 ± 0.03 a

Note: Different letters indicate significant differences between means (p < 0.05).

3.3. Influential Factor Analysis

As shown in Table 4, at a seasonal scale, the CH4 flux was positively correlated with the
temperature and negative correlated with DO (p < 0.01). However, on the whole summer scale
or diel scale, the correlations between the temperature and CH4 flux, and between DO and methane
flux were not significant except for the correlation between temperature and methane flux at the
diel scale.

Table 4. Fitting equations of different environmental factors and methane flux during different seasons
and the correlation coefficient (R2) and probability test value (p-value).

Parameters Time Equation R2 p-Value

NO3
−-N concentration

Different seasons y = −0.33x + 2.23 0.05 0.01
The whole Summer y = −1.21x + 4.33 0.32 <0.0001

Diel variation y = −34.99x + 39.08 0.68 <0.001

NO2
−-N concentration

Different seasons y = 0.68x + 1.37 0.01 0.12
The whole Summer y = −0.92x + 3.37 0.01 0.45

Diel variation y = −41.896x + 24.912 0.36 <0.01

NH4
+-N concentration

Different seasons y = 0.259x + 1.428 0.03 <0.02
The whole Summer y = 0.796x + 0.532 0.19 <0.01

Diel variation y = 5.2067x − 7.4312 0.87 <0.01
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Table 4. Cont.

Parameters Time Equation R2 p-Value

Temperature
Different seasons y = 0.227x − 3.345 0.44 <0.001

The whole Summer y = 0.0376x + 1.753 0 0.73
Diel variation y = 18.680x − 577.962 0.41 <0.02

Dissolved oxygen
Different seasons y = −0.303x + 2.536 0.13 <0.001

The whole Summer y = −0.3172x + 3.2479 0.07 0.08
Diel variation y = −2.5061x + 7.4835 0.25 0.08

NO3
− and NH4

+ concentration at the mud-water interface was significantly negatively and
positively correlated, respectively, with the CH4 flux rate at different time scales (p < 0.02); NO2

−

concentration was significantly negatively correlated with the CH4 flux rate only at the diel scale
(p < 0.01). The correlation coefficients between the three nitrogen forms and methane flux were the
highest at the diel scale (R2 > 0.36), followed by the whole summer scale, and the lowest at the seasonal
scale (R2 < 0.05). In terms of the diel scale, the correlation coefficient between NH4

+ and CH4 flux was
the highest (R2 = 0.87), followed by NO3

− (R2 = 0.68) and NO2
− (R2 = 0.36), which were all higher

than that between temperature/DO and CH4 flux.

4. Discussion

4.1. A Eutrophic Pond Is a Significant Waterbody of Methane Release

Eutrophication has been known to promote CH4 flux [29]. In this study, the CH4 flux from the
eutrophic pond peaked at 7.33 ± 2.09 mmol m−2 h−1, and more than 30% of all monitoring data
were higher than 2 mmol m−2 h−1 (as shown in Table 2), which was much higher than the methane
release rate of low nutrient rivers [30], general reservoirs [18,31–33], a lake [32,34], some eutrophic
lakes [29] and even a paddy field [35]. More than 90% of all released gases in a water body are
ebullition gases [36]; methane flux from the sediment-water boundary in the eutrophic pond probably
was possibly close to the net release flux at the water-gas interface, although the GTD method could
overestimate the net flux of methane gas because it avoids methane oxidation in the emission process
in aerobic water. In this study, the nutrient concentration levels in the eutrophic pond were far above
those in a eutrophic reservoir [31], wetland [34], and paddy soil [35] and were equivalent to those in
some eutrophic urban ponds [8,37]. A higher nutrient load possibly contributed to the higher methane
flux in the eutrophic water.

4.2. Effects of Temperature and DO on Other Parameters

Temperature is an important factor influencing the biological activity [19]. Hydrophytes develop
and biological activity is promoted as temperature increases [28,38]. In this study, temperatures
in summer and spring were higher than in winter and autumn. Accordingly, the chlorophyll-a
concentrations in summer and spring were higher than in winter and autumn, despite higher TN and
TP concentration in winter than in summer and spring. An increase in temperature tended to promote
the development of phytoplankton in water. However, a higher temperature increases the biological
respiration and biodegradation of phytoplankton that tends to exhaust the DO at the sediment-water
interface [30,32,33]. Thus, lower SPDO was observed in summer than in winter in this study. Moreover,
the low SPDO and high temperature facilitate CH4 production in summer [19,20]; we also found
higher CH4 flux in summer than in other seasons. Nitrogen in a eutrophic pond is removed through
biological processes including the processes of nitrification/denitrification, assimilation, and so on.
A low temperature in winter may reduce the biological activity, which decreases the removal rate of
nitrogen from water. Therefore, nitrogen in different forms was higher in winter than in other seasons,
except NO2

− nitrogen. NO2
− is the product of nitrate reductase action under anoxic conditions [39,40],
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which did not readily occur because the SPDO was 92.41% at the sediment-water interface in winter
(Table 3).

Thermal stratification has been found in eutrophic ponds; this causes DO stratification in the
water column of a shallow water body [27,28,38]. It has been demonstrated that DO and temperature
stratifications in the water column of a hyper-eutrophic pond occur after sunrise and are strongest
in the early afternoon and gradually attenuate from the afternoon to early the next morning [28,38].
This study showed that DO at the sediment-water interface decreased after sunrise, reached the
minima early the next morning and then increased, which almost synchronized with the diel
thermal stratification characteristics. The redistribution of DO is persistently affected by thermal
stratification [28]. Accordingly, in this study, distinct diel variations in DO at the sediment-water
interface were shown although the temperature was stable in one day.

DO has been known to be an important factor influencing biological activity. Anoxic conditions at
the sediment-water interface favor the activity of methanogen to produce CH4. Further, the nitrogen
removal pathways such as denitrification, simultaneous nitrification-denitrification and the anaerobic
ammonium oxidation (ANAMMOX) process all require strict anaerobic conditions to consume
NO3

−/NO2
− [36,40]. At the same time, degradation of organic matter is facilitated, but nitrification

is inhibited under anoxic conditions [38]. In addition, stratification seems to hinder the distribution
of NO3

−/NO2
− from the surface water to the bottom water [28]. Consequently, this study found

NO3
−/NO2

− decreased and NH4
+ and CH4 flux increased with DO decrease in one day.

4.3. Factors Correlated with Methane Release

CH4 is produced in the sediments and is released at the air-water interface through the pathway of
ebullition and diffusive gas. Physical factors such as the water level and total static pressure (the sum of
hydrostatic and atmospheric pressure) has been proved to be the controlling factors of CH4 flux [19,41].
CH4 is produced through a biological process [11,14]. The factors correlated with the biological activity
were primarily considered in this study. Therefore, the GTD was placed 5 cm above the mud-water
interface to directly collect all the gas flux from the sediments.

Firstly, temperature and dissolved oxygen are two major determinants affecting bioactivity [19,24].
The increase of temperature corresponded to higher microbial activities and lower methane solubility
in the water body, which both increase the release flux rate of methane [22,29]. By contrast,
higher dissolved oxygen conditions inhibited the activity of methanogen and accelerated methane
oxidation [13], reducing the methane release rate. This study also found that the methane release rate
had a significant positive correlation with temperature (p < 0.01) and a highly significant negative
correlation with the DO (p < 0.01). Interestingly, the correlations were low at the summer and diel
scale when the variations of temperature or DO were low. The influence of temperature on methane
flux tended to decrease in summer, especially during day-night in summer, and methane flux was at
a high level.

Besides temperature and DO, the relationships between nitrogen and CH4 have been studied
under anoxic conditions. NH4

+ can restrain the biological process of methane oxidation, resulting
in an increase in CH4 release [14,15,42]. Similarly, in this study, NH4

+ concentration in water was
significantly positively correlated with CH4 flux during different periods; the correlation was higher at
summer and diel scales (Table 4). NO3

− and NO2
− can participate in anaerobic oxidation of methane

(AOM) as an electron acceptor under oxygen-deficient conditions, which would finally reduce methane
release [15,17,43]. AOM often co-occurs with NO3

−/NO2
− consumption peaks [44,45]. However,

this study found the concentrations of NO3
− and NO2

− were negatively correlated with CH4 flux,
and the peak of CH4 flux was accompanied with the NO3

−/NO2
− consumption peak. There are

possibly two primary reasons for this observation. One was because of the higher NH4
+ concentration

than NO3
−/NO2

− at the water bottom, which could inhibit the methane-oxidizing activity [46];
the other may be because NO3

−/NO2
− was consumed through the denitrification process and could

not be supplied due to the stratification characteristic of the water column and low DO level at the
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sediment-water interface. NO3
− has been identified to be primarily regulated by oxygen [47], which is

the key factor to promote AOM at the anoxic sediment-water interface [43,45]. In this study, according
to correlation analysis, we also found NO3

−, similar to NH4
+, had a higher correlation with CH4

flux (R2 = 0.68) at a summer diel scale. In summary, the promotive effects of NH4
+ on CH4 flux may

have offset the consumption effect of NO3
−/NO2

− on CH4 flux. The higher NH4
+-N and lower

NO3
−-N/NO2

−-N content in eutrophic water possibly had an effect on the high CH4 flux in summer
as well as the low dissolved oxygen content.
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