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Abstract: Building “disaster-resilient” rather than “disaster-resistant” cities/communities requires
the development of response capabilities to natural disasters and subsequent recovery. This study
devises a new method to measure resilience via recovery capability to validate indicators from social,
economic, infrastructural, and environmental domains. The pollutant discharge data (waste-water
and waste-gas discharge/emission data) of local power plants, sewage treatment plants and main
factories were used to monitor recovery process of both people’s living and local industrial production
as the waste water/gas is released irregularly during the short disaster-hit period. A time series
analysis of such data was employed to detect the disturbance on these infrastructures from disasters
and to assess community recovery capability. A recent record-breaking flash flood in Changzhou,
a city in eastern-central China, was selected as a case study. We used ordinal logistic regression to
identify leading proxies of flood resilience. A combination of six variables related to socioeconomic
factors, infrastructure development and the environment, stood out and explained 61.4% of the
variance in measured recovery capability. These findings substantiate the possibility of using
recovery measurement based on pollutant discharge to validate resilience metrics, and contribute
more solid evidences for policy-makers and urban planners to make corresponding measures for
resilience enhancement.

Keywords: recovery capability; disaster resilience; resilience measurement; pollutant discharge data;
East China

1. Introduction

The increased frequency of record-breaking flash flood hazards has become a widespread problem
in Chinese cities [1]. In addition to building damage, urban flooding depresses property prices,
creates health risks, degrades water quality, and has an ongoing effect on local production and
daily life [2]. Cities prone to flood risks have taken measures to improve disaster resistance and
rescue work [3]. However, due to the global climate change, the increased frequency of flood hazard
followed by a high-intensity rainfall event renders conventional measures with emphasis on flood
resistance and rescue work inadequate, and makes a comprehensive study necessary, particularly on
post-disaster recovery. Recent notions of building “disaster-resilient” rather than “disaster-resistant”
cities/communities in developed countries [4–6] could complement traditional disaster management
approaches. In addition to the preparedness of communities involved in the context of disaster
resistance, the concept of disaster resilience emphasizes the response of communities during a disaster
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and their recovery measures afterwards especially for extreme events communities that cannot
reasonably resist. Compared to disaster resistance measures, the resilience measures developed
for a specific to one type of disasters could benefit other threats and thus reduce the total cost that may
be incurred. Table A1 (in Appendix A) gives the detailed comparisons between disaster resistance and
disaster resilience.

Numerous studies have addressed how to build or enhance disaster resilient communities
efficiently, and the capability of measuring resilience has been recognized as the next necessary
step [7,8]. Based on quantitative measurement of resilience, policy makers could understand dominant
factors that make some communities more resilient than others, or being more resilient over time,
and could help them explore the most effective risk reduction efforts that could move the community
toward disaster resilience. Unfortunately, as there is no agreed definition of disaster resilience, directly
measuring resilience is challenging [9,10]. Most attempts to quantitatively measure disaster resilience
define a set of characteristics or attributes previously identified through practical experience or
research [7,11–15]. The characteristics of resilience usually include a set of attributes representing
various dimensions, such as social, economic, infrastructural, and so on.

While the obvious advantage of this approach is its adaptability to distinct circumstances,
geographical settings, or cultures, the selection of variables representing different characteristics
as a proxy of resilience measurement remains subjective and the contributions of these variables
in developing resilience has to be validated [9]. Using external measurement (e.g., post-disaster
population increase, indicator of building reconstruction, etc.) represents a useful approach to validate
the choice of variables [8,16]. The term recovery is widely used in the conceptualizations of disaster
resilience [17]. Most scholars define the concept of resilience in terms of the speed or how quickly
a community or a society can recover from a disaster [18–22]. This is because evidence has shown
that recovery processes are closely related to antecedent conditions which serve as a baseline for
resilience assessment. The antecedent conditions are determined by multi-dimensional community
characteristics, such as social, economic, infrastructural, environmental components, each of which is
associated with the metrics of resilience measurement [11,23,24]. The higher the resilience, the more
quickly a community recovers to normal functioning [25,26]. It is within the context that recovery
outcomes can serves as a resource and practical lessons to inform communities of the key intrinsic
factors that contribute to disaster resilience [27]. Therefore, some measures tend to focus on response
and recovery outcome after the damaging events for the validation of resilience measurement [8,16,28].
Based on these empirical works, useful recovery indicators and models have proved to be important
decision support tools for increasing disaster resilience and reducing disaster vulnerability.

Since defining the concept of recovery should specify the type and intensity of disaster (e.g., flood
or earthquake, catastrophic disaster or minor event) [17,24,29] and distinguish short-term recovery
from long-term recovery [30–32], selecting proper indicators as a proxy of community recovery
performance should be particularized case by case. For disasters with short-term recovery process,
post-disaster community performance mainly focus on restoration to pre-disaster functions, and at
most cases are evaluated by a set of infrastructure recovery indicators, such as building reconstruction,
refunctions of key utilities and productivity recovery [33,34]. While the indicator used to measure
building reconstruction has been widely documented as a proxy of community recovery performance
in a number of literatures [8,35], few empirical studies have been conducted to build recovery indicators
of key utilities and regional productivity, though scholars concern refunctioning of people’s lives
and livelihoods more than the reconstruction of buildings [30,36,37]. This is mainly due to the data
unavailability for measuring such recovery indicators, especially in developing countries [38], which
incurs an ongoing challenge in building up external-validated metrics of flood resilience [39,40].

To narrow this gap, this study proposes a new method to measure short-term recovery capability,
using the recovery measurement as external validation term of flood resilience metrics. We select as
a case study a recent flash flood in Changzhou, a city in eastern-central China. We attempt to address
the following problems: (1) measuring recovery capability after flood hazards within a short term
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based on time analysis of waste-water and waste-gas discharge and emission data; and (2) finding
a set of variables that are validated by recovery measurement and can provide the best assessment
of multi-dimensional characteristics of flood resilience. The paper is organized as follows. Section 2
provides a brief description of the study area, details the procedures of measuring recovery capability
and describes how to link the measured recovery capability to resilience. Sections 3 and 4 examine
the results of the and recovery measurement their influence on the choice of variables for measuring
resilience. The final section concludes with a discussion of the main findings and limitations.

2. Methods

2.1. Study Area

From 26 to 30 June 2015, the worst flood in 600 years affected over 65,000 people in Changzhou
City, resulting in 410 million RMB in property damage. Almost all of the city’s regions were directly
affected, including five districts and two county-level cities (Figure 1). A new national precipitation
record of 247 mm in 24 h was documented. Liyang county and Wujin district were reported as the
worst-hit areas in this flood, but their sub-districts (or towns) had different response performance levels
during and after the disaster [41,42]. It is therefore useful to examine the factors most affecting resilience
enhancement. Many reasons make it possible to conduct an empirical resilience study in Changzhou.
First, records from rain gauges and stream measurement stations can be added to a database and
used for further hazard stress and damage modeling in the ArcGIS software (Environmental Systems
Research Institute, Inc., Redlands, CA, USA). Second, since the Ministry of Environmental Protection
of China requires the selected enterprises (e.g., local power plants, sewage plants and factories) to
monitor the waste-water discharge and waste-gas emission at the drain/chimney outlets or boiler
mouths and disclose the data online every hour, the refunction of these key utilities (power plants and
sewage treatment plants) and factories can help monitor infrastructure recovery process and provide
a reference when assessing community resilience to flood disasters. Third, the latest census was
conducted in 2010 and there has been no significant boundary change between 2010 and 2015, so the
2010 census data will provide much relevant and detailed socio-economic data for further analysis.
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2.2. Measuring Recovery Capability

Recovery is defined here as the process of reconstructing study regions, enabling life and
livelihood to return to pre-disaster states [11]. Recovery capability is therefore represented by
the length of time required to return to the pre-disaster status. In our case, the waste-water and
waste-gas discharge/emission data of key utilities and main factories or their surrounding factories
and residential areas provide a basis to measure such a capacity. This is because the amount of waste
water and gas produced by people’s living and local industrial production retains in a stable level
in normal situations; however, during the flooding period, these factories or their served factories
and residential areas are inundated and therefore the hourly amount of waste-water discharge and
waste-gas emission would be disturbed, resulting in abnormal records (extremely high or low values).
As a corollary, it is reasonable to capitalize on the waste-water and waste-gas discharge/emission data
to assess the recovery capability, given the fact that such data can reflect whether people’s living and
local industrial production are at normal or abnormal status.

To estimate the duration of a recovery process, a new approach is proposed in this study, which
applies a time-series analysis of waste-water and waste-gas discharge/emission data that are disclosed
online by key monitoring enterprises. There are 42 discharge/emission monitoring points from sample
enterprises recording waste-water and waste-gas discharge/emission data every hour (Figure 2). Given
that most of the discharge/emission records showed a disturbance during the flood-time and the
enterprises attributed the disturbance to flood influence, it can be reasonably assumed that there was
a change in the time series of waste-water and waste-gas discharge/emission data if the enterprise had
been affected by flooding. And thus we applied change detection analysis using the R programming
language to extract the beginning and end times of the change, and used the results to estimate the
duration of the recovery process of the sample enterprise. The time taken for the enterprises to recover
is used to represent the recovery duration of regions in the study area. The following section describes
the procedures in detail.
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To minimize the influence of autocorrelation—the cross-correlation of a signal with itself at
different points in time—plots of autocorrelation function (ACFs) and partial autocorrelation functions
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(PACFs) were first examined to detect the autocorrelation degree. The differences of the time series
data of each sample were then calculated, and finally ACF and PACF were rechecked to control the
degree of autocorrelation. The detailed procedures are given in Figure 3.
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tendency of plot series and to finally achieve a stationary series, which usually works after the first
difference. If not, the difference calculation continues (second difference, third difference, etc.) until the
plot series is stationary; (2) This process is used to eliminate the interference from periodicity of the
plot series, which should be carried out after the “tendency” difference, to remove the effect of such a
“tendency.” The aim is to achieve an independent series over time. It usually works after calculating
the first difference with 1-cycle lags (e.g., circadian series: lags = 24 h).

Next, we need to select an optimal model for change detection procedure. The results of
distribution tests show that most samples do not belong to any known distributions, so nonparametric
approaches should be used to detect the change. Additionally, since this study attempts to detect time
points at the beginning and end of changes, at least two change points need to be detected in the final
results. Therefore, optimal models can only be selected from nonparametric alternatives for multiple
change point analysis.

Among a set of nonparametric models for multiple change points detection, models used in the
changepoint, cpm and ecp packages in R serve as widely-used models for change detection, with
proven effectiveness and efficiency in detecting anomalies in bioinformatics [43], transportation [44],
finance [45], ecology [46], etc. Each of the nonparametric approaches has its pros and cons [47–49].
The model selection should be based on model performance in specific case studies. We first extracted
change points in the observed time series of the sample enterprises using all three approaches, and then
compared the detection results with real situations to achieve the optimal model. After determining the
optimal model, the detection results were further modified for a better estimation of recovery duration.

The first step is to extract possible change points related to the flooding case. According to the
precipitation records of all rain gauge stations in the study area, the first record of 24-h precipitation
that exceeded 50 mm was at 26 June 2015 10:00, while the last was at 30 June 2015 9:00. Therefore,
we can assume the start point of a possible change will be located during that period, if there is in
reality a change over the flooding period. Based on this assumption, only points extracted between
26 June 2015 10:00 and 30 June 2015 9:00 are retained to detect the start point, and the start point of the
change caused by the flood damage can only be one of these points. To determine the end point of the
change, as the recovery process will only begin after a disaster strikes, points detected around 30 June
2015 9:00 (before or after) are hypothesized as the alternatives for end point selection. To further
identify which of these alternatives could be the start or the end point of the change, we constrained
the time duration of changes with respect to the time series of the precipitation data. As sample
enterprises will always be disturbed (changes start) during the downpour and recover (changes end)
after it, the start and end time of a downpour can serve as constraints in determining the exact start
and end points. The downpour here is defined according to the Chinese precipitation classification
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system, where the degree of rainfall reaches downpour level if over 24 h precipitation accumulation
exceeds 50 mm and tends to continue. After examining the start and end time of a downpour recorded
by the nearest rain gauge station, the start point of the change in a sample monitoring point should be
the first immediately after the time of the first downpour record of its nearest rain gauge station, and
the end point of the change should be the first of the alternatives immediately after the time of the last
downpour record, as observed by its nearest rain gauge station.

Next, the detection results must be validated, which is an important but always difficult procedure
in change detection. In this study, the validation procedure helps compare the performances of three
approaches, and determines which is optimal for change detection. As the sample monitoring point
demonstrates change only when the sample area or the surrounding area is damaged by flooding,
we examined the final change detection results of sample enterprises with respect to the flood-damaged
area. For this purpose 100 m buffers for each sample monitoring point were created and used to examine
whether they intersected with the damaged area. Damaged areas are defined according to the inundation
map created by the ArcHydro toolbox in ArcGIS software, based on water level data of gauge stations
(Figure 4). The more the buffers of samples intersect with the damaged area, the better the detection
results. The detection accuracy is calculated following Equations (1) and (2), based on real situations
(damage or non-damage) and detection results (change or non-change), as shown in Table 1.

rcorrect =
a + d

a + b + c + d
(1)

rmisdetect =
b + c

a + b + c + d
(2)

where
rcorrect: correct detection rate;
rmisdetect: misdetection rate.
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Non-Damage c d
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After validation of the detection results, the best of the three approaches is already determined.
However, as any of the three detection methods may have some misdetection cases, the result of
the best approach should be modified to lower the misdetection rate. Misdetection can occur from
two mismatching conditions: samples in the damaged area but with no changes detected (damage
but non-change samples), and samples that have changes but are located in non-damaged regions
(non-damage but change samples). For samples in the first condition, detection results of the other two
approaches (mvc and cpm) should be checked, serving as substitutes for damage but non-change cases
when similar detection results are found in both approaches. For samples in the second condition,
changes detected by the selected method are compared to the results of the other approaches. When
the other two methods have generated similar results, these common detection results will replace
those detected by the selected method.

It is also noteworthy that changes detected in the previous process are composed of two parts—the
duration of disturbance due to flooding damage, and the time consumption for a sample monitoring
point to return to a stable status. To simplify the calculation procedure, the disturbance duration of
a sample monitoring point is assumed to be the length of time the precipitation record of its nearest
observatory remains in the downpour degree. Under this assumption, the returning time can be
calculated by the following Equation (3).

DReturn(i) = TEnd o f Change detected(i)− TEnd o f Downpour(i) (3)

where
DReturn(i): time consumption of ith sample monitoring point to return;
TEnd o f Change detected(i): end time point of detected change of ith sample monitoring point;

TEnd o f Downpour(i): end time point of downpour of ith sample monitoring point.
As sample enterprises are power plants, sewage treatment plants and main factories, their

status can serve as an important index of production and life conditions in the neighboring area,
and the return duration of these enterprises can to some extent represent the recovery capability of
that area, particularly if it consists of build-up area which is derived from artificial land cover of
the GLOBELAND30 dataset [50]. Therefore, to evaluate the recovery capability of the study area,
we mapped the return time consumption over the build-up area, based on the calculation results of the
sample enterprises.

2.3. Connecting the Measurements of Recovery to Resilience

The existing literature has shown that infrastructure recovery capability could serve as important
proxy of community recovery capability [24,33–35,51] and provide a reference when assessing
community resilience to natural disasters [52]. Therefore, in this step, the measured infrastructure
recovery capability would be used as the external validation metrics to identify dominant resilience
factors in the study area. In doing so, a number of variables were collected to represent the
multi-dimensional nature of disaster resilience. The variables were selected from social, economic,
infrastructural, and environmental dimensions, which are reportedly common components [53].
As several variables were from census statistics, such as demographic data at the sub-district (or town)
level, other continuous variables were aggregated at the same levels to match the scale of the data.
The final list of selected variables is given in Table 2. The first component encompasses social aspects,
integrating age distribution, sex ratio, informal settler, and health service. Demographical attributes
serving as subcomponents of the social component suggest that regions with fewer elderly people,
children, or women and with a low level of migration are more likely to enhance community resilience,
thus speeding up the recovery process after a natural disaster [54,55]. The variable of health service
is represented by the share of health care facilities within a sub-district (or town), and a higher level
suggests a higher standard of living for local residents, which may promote pre-disaster preparedness
and post-disaster recovery [12,16]. The second component focuses on economic indicators, combining
indices of industrial development and economic stability. Key indicators are the urban to rural ratio,
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GDP per capita, share of central business district (CBD), and manufacturing density. A higher ratio of
urban to rural, and a greater GDP per capita will in most cases indicate greater diversity and higher
economic stability, which will enhance economic component [11,16]. The share of CBD and the density
of manufacturing represent the commercial and manufacturing establishments that affect the economic
asset exposure to natural hazards, implying a longer recovery time once damaged [11,16,56]. The third
component summarizes infrastructure conditions; it is designed to evaluate the preparedness for
resisting damage before a disaster, and to evaluate the rapidity and redundancy of response during
and recovery after a disaster. Indicators of this component, such as access to administration centers,
hospitals, and open spaces, provide an assessment of the capability of communities to deal with
emergencies [55,57]. Road density is also included, to represent pre-disaster evacuation capability and
the ability to efficiently respond and quickly recover after disasters [11,12]. Environmental resilience is
the last component of disaster resilience, and variables collected include ecological conditions such
as river density, urban green level, elevation, and slope. Previous literature had found that a larger
amount of urban green areas can improve the ecological condition [15], while lower river density
and a flatter surface reduce the risk of storm surge inundation and secondary landslides [12]. Lower
elevation and slope also provide an improvement of the accessibility and ease of rescue work [13,58].

Table 2. Variables representing the four subcomponents of disaster resilience.

Sub-Component Label Variable Measures Data Source

Social Component

Age
Distribution Age % population between 15 and

64 years old PCC, 2010

Sex Ratio Gender sex ratio (male/female) PCC, 2010

Health Services Support of health
facilities population share of health facilities PCC, 2010

Non-household
Population

Mobility of labor
force % non-household population PCC, 2010

Economic
Component

Ratio of Urban
to Rural Urban population ratio of residents to villages OSM, 2013

GDP per Capita Gross Domestic
Product Gross Domestic Product per capita GCRD, 2010

Share of CBD Commercial
establishment

Share of business (CBD centers)
within build-up area OSM, 2013

Manufacturing
Density

Manufacturing
establishment

density of manufacturing within
build-up area OSM, 2013

Infrastructural
Component

Road Density Transport road density OSM, 2013

Access to Open
Space

Emergency
preparation

access to open space (parks, urban
green space, stadium, parking area) OSM, 2013

Access to
Administration

Emergency
preparation

access to governmental institutions
(administration center, police station) OSM, 2013

Access to
Hospital

Emergency
preparation access to hospitals OSM, 2013

Environmental
Component

DEM Geological
condition

mean of Digital Elevation Model
(DEM) data GDEMV2, 2009

Slope Geological
condition mean slope GDEM SLOPE,

2009

River Density Land use in natural
terms density of water network OSM, 2013

Urban Green
Area

Green area within
build-up area

total area of green space per square
kilometer of build-up area OSM, 2013

Note: * Statistic unit: per sub-district (or town); The demographic data was derived from the published 2010
Population Census of China (PCC); The GDP data was obtained from a 1 km grid GDP data of China (2010) (Global
Change Research Data Publishing and Repository, 2014) (GCRD); Information Points were downloaded from the
Open Street Map (OSM); Build-up Area was derived from the artificial land cover in GLOBELAND30 dataset [50];
DEM and slope data were derived from the ASTER GDEM dataset published in 2009.
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After determining the variables to represent disaster resilience, the map of time consumption
for recovery was spatially intersected and aggregated at sub-district (or town) level to generate the
corresponding validation metrics at the same scale. A mean value of recovery duration per sub-district
(or town), was then generated to represent the recovery capability of each sub-district (or town).
A longer duration of recovery implies a lower recovery capability.

To validate the indicators of disaster resilience, regression analysis was applied between the
external validation term, represented by the recovery capability of each sub-district (or town), and the
variables collected as proxy for measuring disaster resilience. To prepare the independent variables,
all data in the sub-district (or town) were standardized through a “Min-Max” conversion resulting
in “0–1 range” rescaled variables. Variables which were interpreted as highly correlated (Spearman’s
R > 0.700) were eliminated from further consideration to collinearity problems. The return speed of
water level within 24 h after the strong rainstorm was included in the regression as the control variable
to avoid the confounding effects associated arising from the intrinsic relationship between floods
intensity and flood recovery. This control variable further allows the separation of recovery process
after the flood recession from the total recovery process including the process of flooding receding and
the process of refunctioning of people’s lives and livelihoods as well. As the latter was documented
being largely affected by preexisting community resilience level [11,23], it could, in turn, be more
reasonable to be used as the external term to validate metrics of resilience.

As preliminary testing of variables showed a violation of linearity and normality assumptions
concerning regression, ordinal logistic regression analysis was applied to assess the association among
recovery capability, selected resilience variables and the control variable. Ordinal logistic regression
is applied to deal with a dichotomous dependent variable, so allowing for more than two (ordered)
response categories. Therefore, to prepare the dependent variable for logistic regression, fifty-eight
sub-districts (or towns) within the study area were classified into four classes. These are coded from
1 to 4, where 4 indicates the sub-district could recover within 24 h, representing the highest recovery
capability; 3 indicates a sub-district with the second-highest recovery capability (24 h ≤ recover time <
48 h); 2 represents the third rank of recovery capability (48 h ≤ recover time < 72 h); and 1 represents
the last ranked class, which takes over 72 h to recover.

Unlike linear regression analysis, logistic regression models the log odds ratio of outcome as
a linear combination of the predictor variables (Equation (4)). The outcome is the probability of one
specific event occurring. In this study, the highest recovery class (Class 4) was assigned as the reference
class, and an event was considered to occur when there is movement from one recovery class to
the next.

log
(

P(Y = ki)

P(Y = K)

)
= ai + bi1x1 + bi2x2 + . . . + bijxj (4)

In which,
P(Y = ki): The probability of observing the particular set of dependent variable values (ki) that

occurs in the sample;
P(Y = K): The probability of referent dependent variable value (K) that occurs in the sample;
ai: The multinomial logit estimate for observing ki occurring, relative to observing K occurring in

the sample, when the dependent variables in the model are evaluated at zero.
bij: The coefficient between jth independent variable

(
xj
)

and the natural log of the odds of the
dependent variable equaling ki, when the coefficient is usually estimated using maximum likelihood.

3. Results

3.1. Results of Recovery Capability Measurements

For further explanation, a plot series of one sample monitoring point (WWS3) is taken as an example
(Figure 5). The three pictures in Figure 5a illustrate the series plot, ACFs, and PACFs of the original data,
respectively. In most cases, the ACFs of a stationary sequence usually displays a sharp cutoff; however,
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those of the original series decay much more slowly (i.e., significant spikes at higher lags), demonstrating
that the original series is not stationary, and to become stationary it requires an order of differencing. A
differenced series will help us examine the periodicity of the sample dataset, as the obvious tendency of
the original series may sometimes overwhelm its periodicity. Thus, the ACFs and PACFs of differenced
series have been explored and are given as the middle and bottom figures in Figure 5b. As the ACFs
decay quickly and have no significant spikes at higher lags, it appears that this differenced series is
a stationary series, and does not need “periodic difference” to remove its periodicity.
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Figure 5. Series plot, ACFs and PACFs: (a) original sample data; (b) differenced series. The
autocorrelations are significant for a large number of lags, but perhaps those at lag-2 and above
are merely due to the propagation of the autocorrelation at lag-1. This can be confirmed by the PACF
plot. Note that the PACF plot of original data has another significant spike at lag-3 in addition to lag-1,
meaning that the higher-order autocorrelations cannot be easily explained by the lag-1 autocorrelation.
Differencing should therefore be performed for further analysis.

Based on the preprocessed series of waste-water and waste-gas discharge/emission data, the
selected three approaches were used to detect the change points, respectively. To compare results of the
three methods, a flood inundation map was generated, for reference in further comparison analysis. The
map, given in Figure 6, illustrates the spatially variable flood depth within the study area. The darker
shades of red represent a high degree of damage, where the greatest inundation level was suffered.
The seriously damaged area lies mainly within Jintan, whereas the administrative center (Zhonglou,
Tianning) experienced the least flood inundation damage. This distribution information (the proportion
of inundated build-up area, Figure A1) derived from the ArcHydro toolbox inundation map is consistent
with the local government damage report (the proportion of affected population) (Figure A2).

A comparison of the results of the three change detection approaches according to the flood
inundation map are listed in Tables 3 and 4, which indicate that the ECP approach has given
a comparatively higher correct detection rate, and is the optimal method for change detection in this case.
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Table 3. Detection results of the three methods.

Mvc Change Non-Change

Damage 28 18
Non-Damage 3 8

Cpm Change Non-Change

Damage 35 12
Non-Damage 8 2

Ecp Change Non-Change

Damage 35 11
Non-Damage 5 6

Table 4. Accuracy of detection.

Measure mvc cpm ecp

Correct Detection Rate 0.63 0.65 0.72
Misdetection Rate 0.37 0.35 0.28

The time consumption of each sample monitoring point to recover was calculated according
to change detection analysis. The recovery map of the whole study was then generated as Figure 7.
The darker shades of red represents a comparatively longer time for regions such as Zhenglu, Hengliu,
Xueyang, and Bieqiao to recover their pre-disaster status. These regions are mainly within the suburban
area, which suffered different levels of flood inundation and damage, but which all experienced longer
recovery times than other regions. Also of interest is the quick recovery process that occurs in
regions within Jintan, as these regions suffered the highest inundation damage according to the flood
inundation map (Figure 6).
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3.2. Results of Regression Analysis

As the dependent variable, the recovery capability of each sub-district (or town) is classified
into four, based on the average time consumption for recovery of artificial land area within the
corresponding sub-district. The distribution of this dependent variable is mapped in Figure 8.
To explain this spatial heterogeneity of recovery capability, which serves as an external validation term,
an ordinal regression model was built to assess the contribution of an individual variable as a proxy
for measuring disaster resilience. After eliminating highly correlated variables, nine variables were
remained as possible explanatory variables in regression analysis. To construct the control variable,
the return speed of water level was interpolated and aggregated into sub-district (or town) level.
Then a mean value of the return speed per sub-district (or town), was generated to represent the
recovery capability of each sub-district (or town) (Figure 9). During a stepwise ordinal regression
analysis, six variables were significant according to the final results (Table 5). The “Chi-square” statistic
of the model indicates that the regression model as a whole is statistically significant (p = 0.001).
The “Estimate” in Table 5 is the ordered log-odds (logit) regression coefficient, which reveals the
change in the recovery capability level when there is a one-unit increase in a potential independent
variable, given that other variables are constant in the model. Coupled with “Significance”, these two
parameters could help to identify more influential variables as proxies of resilience measurement to
predict recovery capability.

In the social component, both of the two variables—health services and sex ratio prove significant
in predicting recovery capability. Higher levels of health services and larger percentages of male
population are important factors that make up the social resilience of communities. As health services
can provide efficient rescue work when facing disruption and guarantee higher health condition of
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the community, easy access to health services will benefit the recovery process [53]. The sex ratio may
also contribute to predicting recovery capability, as it is possible that males are in a better position to
respond to natural hazard events than females, and more able to participate in rebuilding work after
natural disasters [59].

Table 5. Regression results of potential variables.

Component Variable Estimate Significance (Two-Tailed)

Social
Sex Ratio 1.074 0.050 *

Health Service 1.219 0.043 *

Economic
Ratio of Urban to Rural 1.393 0.044 *

Share of CBD — —

Infrastructural
Road Density 3.009 0.003 **

Access to Open Space 2.537 0.002 **

Environmental
Slope 1.176 0.014 *

River Density 0.934 0.092
Urban Green Area — —

Control Return Speed of Water Level 1.053 0.010 **

Notes: All data were standardized using “Z-score” conversion before regression; for the whole model, significance
= 0.001, pseudo R2 (Nagelkerke) = 0.614; Significance of the test of parallel = 0.804 > 0.005, which means the ordinal
model is acceptable; * Significant at 0.05; ** Significant at 0.01.
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Based on the regression statistics, the ratio of urban to rural contributed significantly to explain
variance of the recovery capability. The strong prediction power of the ratio of urban to rural
suggested that a higher urbanization level could speed up recovery process. Given the high association
between this urbanization variable and GDP, it also indicated that urbanization could directly enhance
community resilience through generating greater economic diversity and larger amount of economic
resources; and could indirectly promote resilience development through boosting the GDP growth
and subsequently producing higher economic stability [11,16]. On the other hand, share of CBD was
not included according to the stepwise regression procedure. As the share of CBD represents the
local commercial establishment, a higher share of CBD implies higher economic asset exposure and
might cause longer time to recover once seriously damaged [16,56]. However, according to the flood
inundation map (Figure 6), regions around CBD in Changzhou (e.g., Zhoulou and Tianning) were
not seriously affected by the flood hazards. Therefore, there is not enough evidence to analyze the
contribution of economic differences between spatial units in this model.

Within the infrastructural component of resilience, two variables included, road density and
access to open space, were both strong predictors of recovery capability. Road density directly relates
to evacuation capabilities before disasters and redundancies within supply routes for response and
recovery after disasters [8,60]. This fact is also in accordance with the high correlations among road
density and another two accessibility variables—access to hospital and access to administration,
which implies increasing accessibility to critical infrastructures could enhance resilience and speed
up local recovery process. It is also noteworthy that access to open space is again validated as an
important factor in building flood resilience. A possible explanation is that it can serve as floodable
land, which could store floodwater and sediments without incurring further damage to constructions
in the region [57]. In this way, constructions (power plants, sewage treatment and local factories) with
less damage could be expected to return to their normal functions more quickly.

The topographic slope was the only environmental predicator for resilience. Considering the
high correlation between DEM and slope, higher recovery capacity would be expected in flatter area
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because lower elevation and slope could improve the accessibility and ease the response and rescue
work [58]. On the other hand, lower river density can reduce the risk of storm surge inundation, and it
would shorten the recovery duration once damaged [12]. However, the contribution of river density to
recovery measured in this study was not statistically significant. A possible explanation is that river
density could affect mostly the speed of flood recession but contribute less to the return speed of living
activity and production. In the case of urban green area, the limited amount of green area over the
whole build-up regions might constrain its contribution to recovery process.

The significance of the control variable highlights the influence of the return speed of water level
in determining the total recovery capability. The inclusion of the control variable allows us to identify
the contributions of other factors, especially to the refunctioning of people’s lives and livelihoods.
As the recovery process of people’s living and productive activity was documented mainly related
with antecedent resilience level, it is more reasonable and reliable to use the variables validated in this
study as proxies of resilience to flooding disasters.

4. Conclusions and Discussion

Building flood resilience is a topic of considerable interest for governments, researchers, and
residents prone to disaster damage, due to the increasing frequency of record-breaking flood levels
in Asian delta cities. Within this context, a quantitative approach to assessing disaster resilience has
previously been challenging. As there is no agreement on the precise definition of disaster resilience,
it is hard to measure it directly. The traditional approach is to apply variables from multi-dimensions
as proxy measures to index disaster resilience. To validate the selection of these variables, a method
has been proposed that uses related empirical measurements (vulnerability, recovery, etc.) as external
validation metrics. However, a shortage of available data, particularly data with high spatial and
temporal resolution, constrains the application of this approach when measuring disaster resilience.
This work aimed to address this issue.

This study has proposed a new method to measure recovery capability, using change detection
analysis based on the time series of waste-water and waste-gas discharge/emission data. To guarantee
the accuracy rate of change detection outcomes, the detection results of three approaches with respect to
real observation data were compared, and ecp was selected as the final detection method. The change
detection results were then modified according to the outcomes of the other two methods, to improve
the accuracy rate. This approach made it possible to measure recovery after a flood hazard, and in
most cases comparatively small-scale and short-term recovery processes were experienced. As the
government of China has compelled local power plants, sewage treatments and industries (especially
those with potential to emit heavy pollutants) to published their waste-water and waste-gas discharge
data online, the method used here could have a broad application, especially in regions with limited
access to other data sources to monitor recovery process (e.g., high-resolution remote sensing data).

To further explore variables that could be used to measure resilience, we applied ordinal regression
analysis using the measured recovery capability at sub-district level, which could serve as an external
validation term for selecting variables. The results show that health service, sex ratio, ratio of
urban to rural, access to open space, road density and slope condition are statistically significant
in characterizing disaster resilience. The six variables validated in this study are consistent with the set
of variables mentioned as proxy for community resilience to other natural hazards [8,13,16,61]. This
implies that, in general, investment in promoting adaptation activities and policies for one kind of
natural hazard should have a synergistically positive effect on community resilience to other natural
hazards; and to flash flood hazards, especially in regions within China, the six variables play more
dominant roles in determining the recovery capability that was represented by the return speed of
people’s living and industrial productivity. Therefore policies and measures related to the validated
variables are suggested to be given priority when building up community resilience to flood hazards
in the future. Specifically, a set of specific measures for the local government and urban planners are
devised. First, based on the performance of the two socio-economic indicators which represent sex
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ratio and urban to rural ratio condition, respectively, it would be advisable for the local government to
reallocate more rescue resources to regions with higher proportion of vulnerable population (such as
women, children, and the elderly) and to regions with lower level of urbanization. On the other hand,
with respect to infrastructural and environmental aspects, decision makers and urban designers could
suggest providing more open space (e.g., parks, stadium, and public squares) or enlarging existing
ones; enhancing the accessibility and connections of a region where road network is undeveloped;
setting up emergency services in residential areas near mountain regions or migrating residents from
seriously vulnerable regions to more suitable areas.

As this work is the first attempt to use the proposed method in a real case study, there is still room
for improvement along this line of research. For example, the explanatory power of the final model could
be improved by introducing new independent variables, such as those relating to the effect of government
policy and community capital on post-disaster recovery (e.g., the indicators related to emergency relief
services, sense of place and cultural resources, etc.). If the data are available, these variables would
be considered and their contributions in improving resilience explored in future studies. In addition,
effective ways need to be examined to improve the accuracy of change detection and control uncertainties
in validating change detection results, Besides the above aspects, other related empirical measurements
can be considered (such as vulnerability, adaptive capacity and so on) in addition to recovery capability, to
fully capture the characteristics of disaster resilience. And more empirical case studies at different regions
may also be conducted to further evaluate the applicability of the proposed method.
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Appendix A

Table A1. Comparison between disaster resistance and disaster resilience.

Concepts Disaster Resistance Disaster Resilience

Definition • A measure of how much the system changes • The extent to which it can recover after the source of
change is removed

Context

• Resist the onset and impact of a disaster
• Continue to function at close to normal capacity

and capability
• Defeat the impact of the event

• Absorb the impact of a disaster
• Return to normal operations with the least possible delay

and minimum possible dysfunction
• Limit the impact of the event

Measures
• Mitigation
• Preparedness

• Preparedness
• Response and recovery

Practical
Examples

• Levees to deal with river flooding • Shelter and evacuation planning

• Well-developed emergency services • Community disaster recovery task forces (e.g.,
post-disaster health services)

Pros and Cons

• More specific and efficient measures to one type
of disasters (e.g., Levees to flooding)

• With limited utility against other threats
• Cost increases when taking specific resistance

measures to each type of disasters
• Plan to achieve resistance where possible against

high value threats

• Measures to one type of disasters could be used for
managing other disasters.

• More complicated and need cooperation from different
government departments, local institutions and agencies

• Cost decreases due to the common measures to
different disasters.

• Achieve resilience for those we cannot reasonably resist,
such as flooding caused by extreme precipitation

http://218.94.78.61:8080/newPub/web/home.htm
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