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Abstract: This study aimed to compare the hydraulic characteristics of different vitalities of
Populus euphratica to reveal the differences in their water use strategies and water consumption
to provide useful data to scale water use of riparian poplar forests in the lower reaches of the Tarim
River, Northwestern China. Our results showed that the sapwood area of P. euphratica could be
estimated based on its correlation with tree biometric parameters. The sapwood area of vital poplars
tended to be larger than the senesced poplar despite both having the same diameter at breast height.
This indicates that poplar vitality should be taken into account when estimating its sapwood area.
Therefore, we established two different sapwood area estimation models for vital and senesced
poplar (sapwood area = 1.452 × DBH1.553, R2 = 0.891; sapwood area = 0.915 × DBH1.618, R2 = 0.718;
DBH: diameter at breast height). The sap flow process of vital and senesced poplar had certain
differences and similarities; the average diurnal sap flow velocity and water consumption of vital
poplar were 15.85 cm/h and 45.95 L, respectively; for the senesced poplar, it was 9.64 cm/h and
18.17 L, respectively, which were smaller than that of vital poplars. The influence of environmental
factors on the sap flow velocity of two different P. euphratica was similar; the sap flow of both vital
and senesced poplar had positive correlation with air temperature (R2 = 0.800 and 0.851), solar
radiation (R2 = 0.732 and 0.778), vapor pressure deficit (R2 = 0.508 and 0.643) and groundwater depth
(R2 = 0.301 and 0.171), while negative correlation with air humidity (R2 = −0.313 and −0.478).

Keywords: Populus euphratica; tree vitality; sapwood area; water consumption; environmental factors

1. Introduction

Heterogeneous environmental conditions influence the hydraulic characteristics of vegetation.
Water availability is one of the most important factors influencing the growth and development of
plants [1]. Related studies have indicated that the structure of the plant hydraulic system has the
potential to limit water flow through its body, thus restricting its water balance, and eventually its
growth [2]. Therefore, studying the differences in the hydraulic characteristics of plants of different
vitality may help us understand the influence of water availability on tree growth.

The Tarim River, located along the northern rim of the Taklamakan Desert in the Xinjiang Uighur
Autonomous Region, Northwestern China. It is one of the longest inland water ways in the world
along with the Volga, Syr Darya, Amu Darya, and the Ural [3–6]. The riparian forests at the Tarim are
an important ecosystem which plays a key role in maintaining the structure, function and stability of
the arid ecosystem [7,8].
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Populus euphratica Oliv. is a rare, ancient, and endangered tree species which forms the floodplain
forest ecosystem in inland river basins in central Asian arid regions [9,10]. Given its high capacity
against environmental stressors, e.g., saline, high temperature, drought and sand storms, it plays an
irreplaceable function in these areas [11–14]. However, due to the irrational water allocation along
the upper and middle reaches of the Tarim River, the lower reaches (ca. 320 km) has been cut off
since 1970. This has resulted in a decrease in the groundwater level along the lower Tarim [4,15,16],
and the eventual degradation of the riparian ecosystem [6,12,17,18]. Since 2000, the Ecological Water
Diversion to the lower Tarim River was started to restore the degraded ecosystem of this region, and a
number of studies have shown that the riparian forest has demonstrated a positive response to the
water diversion [12,13,19,20].

However, in terms of water shortage in this region, the insurance of long-term water transferring
and the virtuous cycle of ecological environment depends on the rational and efficient usage of limited
water resources, which includes the scientific allocation of water for irrigated agriculture, nature and
ecosystem conservation, as well as for industry, oasis settlements and human well-being [4,21–24].
Therefore, it is important to estimate the water use of riparian forests in the lower Tarim River for
providing scientific reference to the water management authorities. Different upscaling methods have
been reported for estimating the water use of poplar forests [25–27]; however, these methods did not
consider the vitality of poplar trees.

The objectives of this study were to assess and compare the hydraulic characteristics of
Populus euphratica of different vitalities by monitoring the diurnal changes of its sap flow during
hot sunny days, measuring and estimating the area of water conducting tissue, as well as analyzing
the correlation between sap flow velocity and environmental factors. These experiments were carried
out on poplar trees of different vitalities growing at two sites with different groundwater conditions.
There is evidence from the literature that the sapwood area of the poplar tree can be estimated based
on the correlation between the sapwood area and tree biometric parameters [25,27]; furthermore,
the water consumption of poplar trees at stand level could be obtained by upscaling methods based
on the sap flow measurement of sample trees [26,28], but little information is available regarding the
water consumption of poplar trees at different vitalities. This knowledge is of particular importance
when estimating whole tree water usage in this region more accurately.

2. Materials and Methods

2.1. Study Area

The study area was located at the lower reaches of the Tarim River (Arghan, 40◦08′50” N,
88◦21′28” E), between the Taklamakan and Kuruktagh Deserts in the southern part of the Xinjiang
Uighur Autonomous Region, Northwestern China (Figure 1). The region is within an extremely arid
warm temperate zone, with an annual precipitation from 17 to 42 mm and a potential evaporation
of approximately 2500–3000 mm [4,11,17], rendering this area one of the most hyper arid places
in the world [10,27,29]. The average groundwater depth beside the riverbank is low, thus can
only support vegetation types with a higher drought resistance [29,30]. Therefore, desert riparian
vegetation has a relatively simple structure along the river. The main tree species are Populus euphratica
Oliv., Elaeagnus angustifolia L; and the main shrubs are Tamarix hispida Willd., Tamarix elongata
Ledeb., Tamarix ramosissima Ledeb., Halimodendron halodendron (Pall.) Voss., Lycium ruthenicum Murr.,
Karelinia caspica (Pall.) Less., Hexinia polydichotoma (Ostent.) H.L., Inula salsoloides (Turcz.) Ostrnf.,
Phragmites communis, Poacynum hendersonii (Hook. F.) Woodson., Halostachys caspica (M.B.) C.A. Mey.,
Alhagi sparsifolia (B.Keller et Shap.) Shap. and Glycyrrhiza inflate Bat. [10–12,16].
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Figure 1. The lower reaches of the Tarim River and the study area Arghan [10]. 
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88°20′59″ E; senesced poplar trees were located at 40°08′07″ N, 88°21′44″ E. Three sample trees were 

selected from each plot to run sap flow measurements. Sapwood samples were taken from 91 vital P. 

euphratica and 78 senesced P. euphratica using an increment borer, in addition, their biometric 

parameters (DBH: Diameter at breast height, CD: Crown diameter and TH: Tree height) were 

measured to run modeling analysis for estimating the sapwood area and model validation. Table 1 

shows a summary of the statistics of the poplar trees used for sapwood sampling. 

Table 1. Summary statistics of poplar trees with vital and senesced growth status. 
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Note: DBH = diameter at breast height, TH = tree height, CD = crown diameter. 

Figure 1. The lower reaches of the Tarim River and the study area Arghan [10].

2.2. Sample Selection and Measurement

Based on the vitality classification criteria of Halik et al. [12] and Aishan et al. [20],
Populus euphratica of different vitality status were chosen. Vital poplar sample trees were located at
40◦08′44” N, 88◦20′59” E; senesced poplar trees were located at 40◦08′07” N, 88◦21′44” E. Three sample
trees were selected from each plot to run sap flow measurements. Sapwood samples were taken from
91 vital P. euphratica and 78 senesced P. euphratica using an increment borer, in addition, their biometric
parameters (DBH: Diameter at breast height, CD: Crown diameter and TH: Tree height) were measured
to run modeling analysis for estimating the sapwood area and model validation. Table 1 shows a
summary of the statistics of the poplar trees used for sapwood sampling.

Table 1. Summary statistics of poplar trees with vital and senesced growth status.

Tree Parameters DBH (cm) TH (m) CD (m) Sapwood Area (cm2)

Vitality Status Vital Senesced Vital Senesced Vital Senesced Vital Senesced

Number of samples 91 78 91 78 91 78 91 78
Average 21.5 21.2 8.3 6.5 4.9 4.4 175.6 130.8

Max 53.1 35.4 13.0 10.0 8.5 7.2 822.5 332.6
Min 7.4 9.0 2.6 2.9 2.0 1.8 18.4 18.2

Note: DBH = diameter at breast height, TH = tree height, CD = crown diameter.
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To calculate the sapwood area of the poplar stem, we assumed that the tree stem was circular,
that the sapwood and the inner wood areas were in the shape of concentric circles, and the outer circle
represented the sapwood area (Figure 2a). The sapwood of P. euphratica is easy to differentiate from
the inner wood when the sample is fresh (Figure 2b), and can usually be observed with the naked eye.
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Figure 2. Sapwood and inner wood of the tree stem where (a) the blue colored part is the sapwood,
and the green colored part is the inner wood; (b) the white area on the left is the sapwood, the dark
area on the right is inner wood of P. euphratica.

The following equation is for calculating the sapwood area:

sapwood area = π× d
2

2
− π× (

d
2
− sapwood depth)

2
(1)

where π is the mathematical constant (3.14), and d is the diameter of tree at breast height.

2.3. Sap Flow Measurement

A SFM1 sap flow meter (ICT, Armidale, NSW, Australia) that utilized the heat ratio method (HRM)
was used to record heat pulse velocity (Vh) at 15 min intervals for the period from 1 to 10 September
2015. The installation and sensor design were identical to descriptions provided in Pfautsch et al. [31]
and Keyimu et al. [32].

2.4. Meteorological Data

Meteorological parameters, such as Rs (solar radiation), Ta (air temperature), RH (air humidity)
were collected from the corresponding sensors (Watchdog 2000, Spectrum Co. Ltd., Selmer, TN, USA).
The parameters were recorded at 1 h intervals; data read out was completed using Spec ware software.
Vapor pressure deficit (VPD) was calculated using the following equation [33]:

VPD =

(
1− RH

100

)
× ea∗ (2)

where RH is air humidity, ea* is vapor pressure. ea* is obtained using the following equation [34]:

ea∗ = a× EXP(b× Ta
Ta+c ) (3)
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where Ta is air temperature, and the values of parameters a, b, and c are 0.611 kPa, 17.502, and
237.3 ◦C, respectively.

2.5. Groundwater Data

The groundwater depth (GWD) measurement was carried out simultaneously with sap flow
measurement using a Diver data logger (Schlumberger Limited, Paris, France) at two different
sites. Logger installation, sensor design and measurement principles were provided in detail in
Keilholz et al. [24,35].

2.6. Data Processing

A sap flow tool (ICT International, Armidale, NSW, Australia) was utilized to process the raw
sap flow data, calculate the sap flow velocity, and water consumption. The number of trees and their
biometric parameters data as well as sapwood area calculation were processed by Microsoft Excel 2015
software. Sapwood area estimation models for both vital and senesced P. euphratica were created by
selecting the sapwood area as a dependent variable, and DBH, crown diameter, and tree height as the
independent variables. Regression models between sap flow and meteorological parameters were
established by selecting the VPD, RH, Ta, Rs, and GWD as the independent variables and sap flow rate
as the dependent variable. Modeling analysis was carried out using the SPSS statistical tool 20.0 (IBM,
Armonk, NY, USA). Paired t-test was conducted for validating the sapwood area estimation model at
p ≤ 0.05 significance level. All plotting was carried out on Microsoft Excel 2015.

3. Results

3.1. Sapwood Area of P. euphratica with Different Vitality

In the first plot, the results showed that DBH and sapwood area could be modeled at higher
R2 when compared to other biometric parameters (Figure 3), R2 = 0.901, n = 48. In the meantime,
the sapwood area of the rest of the trees was measured. The t-test result showed that there was no
significant difference between the model’s estimated value and the measured value (n = 43) of the
sapwood area (p > 0.05) (Figure 4). Therefore, the estimation value of power function model was
reliable, and could be used for estimating the sapwood area.

However, the performance result of the first model (which was established based on the biometric
parameters of vital poplars) was not reliable when it was used to estimate the sapwood area of senesced
poplars (Figure 5). As the estimated sapwood area tended to be larger than the measured sapwood
area, the mean value of the model based estimated sapwood area and measured sapwood area were
166.04 cm2 and 134.05 cm2, respectively. Therefore, another model was established using similar
growth parameters of senesced poplars (Figure 6), R2 = 0.718, (n = 40), the model validation result was
reliable (p > 0.05) (Figure 7) (n = 38).
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Figure 3. Sapwood area estimation model for the vital poplars.



Water 2017, 9, 622 6 of 14Water 2017, 9, 622 6 of 14 

 

 

Figure 4. Validation result of the sapwood area estimation model of vital poplars. 

 

Figure 5. Validation result of the sapwood area estimation model. 

 

Figure 6. Senesced poplar sapwood area estimation model. 

0

50

100

150

200

250

300

350

400

450

500

7
.4

9
.2

1
0
.0

1
3
.0

1
5
.7

1
6
.2

1
6
.4

1
7
.3

1
8
.3

2
0
.1

2
0
.7

2
1
.2

2
1
.6

2
2
.7

2
3
.7

2
3
.9

2
5
.0

2
5
.8

2
6
.7

2
9
.3

3
0
.7

3
5
.9

S
ap

w
o

o
d
 a

re
a 

(c
m

2
)

DBH (cm)

Measured value Estimated value

0

50

100

150

200

250

300

350

400

1
1

.7

1
2

.4

1
4

.3

1
4

.7

1
5

.3

1
5

.6

1
8

.3

1
8

.7

1
9

.2

1
9

.8

2
0

.2

2
0

.9

2
1

.1

2
2

.0

2
2

.3

2
2

.5

2
2

.6

2
4

.2

2
4

.9

2
5

.7

2
6

.5

2
9

.3

3
5

.4

S
ap

w
o

o
d
 a

re
a 

(c
m

2
)

DBH (cm)

Measured value Estimated value

y = 0.915x1.618

R² = 0.718

0

50

100

150

200

250

300

350

5 10 15 20 25 30 35 40

S
ap

w
o

o
d

 a
re

a 
(c

m
2
)

DBH (cm)

Figure 4. Validation result of the sapwood area estimation model of vital poplars.
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Figure 6. Senesced poplar sapwood area estimation model.
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Figure 7. Validation result senesced poplar sapwood area estimation model.

3.2. Sap Flow Characteristics of P. euphratica with Different Vitality

There were certain similarities of sap flow variation between poplar trees of different vitality.
Both vital and senesced poplars showed a pronounced diurnal sap flow process, all had peak variation
features (Figure 8); and during the night the sap flow remained active, but at lower rate.

However, heterogeneous characteristics of sap flow variation also existed between the vital and
senesced poplars. This was manifested from aspects of average sap flow velocity, daily consumed
water amount, and increasing and decreasing time points of sap flow. The average sap flow velocity
of vital poplars throughout the whole measurement period was 15.85 cm/h, which was higher than
the average sap flow velocity of senesced poplar at 9.64 cm/h. The average daily consumed water
amounts of vital and senesced poplars were 45.95 L and 18.17 L, respectively (Figure 9). Sap flow
velocity of both vital and senesced poplars started to rise from 7:00 a.m., whereas the sap flow of
senesced poplars reached its higher value of 13.69 cm/h at 10:00 a.m. and vital poplars reached its
higher sap flow 25.68 cm/h at 12:00 p.m., after the midday depression appeared. From 17:00 p.m.
onwards, the sap flow velocity of senesced poplars began to decrease, which was 2 h earlier than
vital poplars.
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Figure 8. Diurnal sap flow variation of P. euphratica within different vitalities.
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Figure 9. Accumulated sap flow of vital and senesced poplar trees.

3.3. Relationship between Sap Flow of Different Vitality P. euphratica and Meteorological Factor

The sap flow variation feature of vegetation was closely related to changing environmental factors
during the measurement period [36]. While conducting sap flow measurements on the sample trees,
environmental factors were recorded simultaneously (Figure 10). The result of the non-parametric
Spearman correlation analysis between sap flow velocity and environmental factors showed that the
diurnal variation of sap flow velocity of both vital and senesced poplar was significantly related to
VPD, Ta, RH, Rs and groundwater depth. It was negatively related to RH, and positively related to
other meteorological factors (Table 2). The influence of meteorological factors on the sap flow rate of
vital poplars was in the order of: Ta (0.800) > Rs (0.732) > VPD (0.508) > RH (−0.313) > GWD (0.301).
For the senesced poplars, it was in the same order of: Ta (0.851) > Rs (0.778) > VPD (0.643) > RH
(−0.478) > GWD (0.171).

Table 2. Spearman correlation between sap flow velocity and environmental factors.

Environmental Factors Ta (◦C) Rs (w/m2) RH (%) VPD GWD (m)

Sap flow velocity of vital poplar 0.800 ** 0.732 ** −0.313 ** 0.508 ** 0.301 **
p-value <0.01 <0.01 <0.01 <0.01 <0.01

Sap flow velocity of senesced poplar 0.851 ** 0.778 ** –0.478 ** 0.643 ** 0.171 **
p-value <0.01 <0.01 <0.01 <0.01 <0.01

Note: ** Significant at 0.05 level.

The multiple regression equations showed that the main influencing factors on the sap flow rate of
vital and senesced poplars were almost similar in the order of Ta, Rs, and GWD (Table 3). The regression
coefficients of the equations were tested, and the significant error probability of the respective variables
was <0.01, indicating that our regression equation revealed the interrelation between environmental
factors and sap flow rate.

Table 3. Relationship models between sap flow velocity and environmental factors.

Sap Flow Velocity Regression Model Validation Results

Sap flow velocity of vital poplar Fv = −50.903 + 1.960 Ta + 0.011 Rs − 2.759 VPD + 5.377 GWD R2 = 0.720, F = 150.995, n = 240
Sap flow velocity of

senesced poplar Fv = −2.853 + 0.746 Ta + 0.005 Rs + 0.992 GWD R2 = 0.770, F = 263.218, n = 240
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Figure 10. Diurnal variation of sap flow velocity of P. euphratica with different vitality and 

environmental factors. (A): Diurnal variation of sap flow velocity of different vitality poplars, (B): 

Diurnal variation of air temperature, (C): Diurnal variation of solar radiation, (D): Diurnal variation 

of air humidity, (E): Diurnal variation of vapor pressure deficit (VPD), (F): Diurnal variation of 

groundwater depth. 

4. Discussion 

A comparison analysis of the hydraulic characteristics of different plant species, the different 

individual of the same species (at different vitality), and the same species in heterogeneous 

environmental conditions should be based on their simultaneous observation and measurement; 

otherwise it does not make sense. 
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diameter at breast height, crown size, biomass, leaf area index) and the sapwood area. Hatton and 
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efficient upscaling parameters [42,43]. However, there are differences of sapwood width and 
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which is influenced by the tree growth status [44,45], site condition [46,47], and tree genetic traits 
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different sapwood area estimation models, this support the findings in our study. 
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Figure 10. Diurnal variation of sap flow velocity of P. euphratica with different vitality and environmental
factors. (A): Diurnal variation of sap flow velocity of different vitality poplars, (B): Diurnal variation
of air temperature, (C): Diurnal variation of solar radiation, (D): Diurnal variation of air humidity,
(E): Diurnal variation of vapor pressure deficit (VPD), (F): Diurnal variation of groundwater depth.

4. Discussion

A comparison analysis of the hydraulic characteristics of different plant species, the different
individual of the same species (at different vitality), and the same species in heterogeneous
environmental conditions should be based on their simultaneous observation and measurement;
otherwise it does not make sense.

Sapwood is the water-conducting tissue [37–39], and direct correlation manifested between
the sapwood area and water consumption of trees [27,40,41]. Estimation of the sapwood area of a
tree stand is commonly achieved based on the correlation between growth parameters of the tree
(e.g., diameter at breast height, crown size, biomass, leaf area index) and the sapwood area. Hatton
and Vertessy’s study showed that the area of xylem conducting tissue, DBH, and tree basal area were
efficient upscaling parameters [42,43]. However, there are differences of sapwood width and sapwood
area among different tree species, even among different individuals of the same tree species, which
is influenced by the tree growth status [44,45], site condition [46,47], and tree genetic traits [48,49].
Therefore, heterogeneous environmental conditions and the growth status of trees require different
sapwood area estimation models, this support the findings in our study.

The diurnal sap flow variation feature of vital and senesced poplars in this study was similar
as both showed obvious circadian rhythms; however, there were differences in the increasing and
decreasing time points, as well as the average, maximum, and minimum value of sap flow. Average
sap flow velocity of vital poplars was almost twice that of the senesced poplar. Sap flow of vital poplar
started to decrease from 19:00 p.m., which was 2 h later than the senesced poplar, which may have been
decided by the physiological and morphological status of the tree itself. Hörtensteiner’s study showed
that chlorophyll content in tree leaves decreased when the tree leaves were senesced [50]; furthermore,
Christ et al. found that water shortage also induced decreasing chlorophyll in tree leaves [51], however,
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the lower chlorophyll content in tree leaves weakened the photosynthetic activity of tree leaves, which
eventually reduced transpiration. Bucci et al. and Chave et al. presented studies that showed that
lower water availability increased the density of sapwood and lowered the water transport capacity
in trees [52,53]. The average sap flow velocity during the day was higher than at night. Although
the sap flow process was weaker at night, it remained active. This was probably to refill the water
loss during the day to keep its water balance [54], which corresponded to the research results of
Zhang et al. [55,56], Si et al. [57], and Yu et al. [58].

Water is the most influencing factor to the survival, distribution and development of vegetation
in hyper arid regions [59]. The root system is the main organ of the plant to absorb water from the
ground, therefore, its morphology and distribution impacts the growth of vegetation. Feng et al.
showed that P. euphratica had a highly developed root system, and its root density decreased with
increasing distance from the ground [60], therefore, when the groundwater table was lower, the plant
water uptake through its root would be restricted to some degree, and the amount of water transported
by vegetation decreased. In contrast, a higher groundwater table enabled vegetation to uptake more
water. Our findings on the difference of sap flow velocity and diurnal water consumption between two
different measurement sites with heterogeneous groundwater depth corresponded with the research
results of Ma et al. [61], Zhao et al. [62], and Shen et al. [63].

As demonstrated in our study, the groundwater depth was positively related to the sap flow
velocity of both vital (R2 = 0.301) and senesced (R2 = 0.171) poplars. When the sap flow velocity
increased, the groundwater depth also increased, which was due to the water uptake by poplar trees.
The correlation of sap flow velocity and groundwater depth in the vital poplars distributed plot
was larger than that of the senesced poplar plot, which indicates that the groundwater availability
strengthened the influence on the water uptake of poplars.

Many studies have shown that Rs, RH, Ta, and GWD are the most influencing external
factors on the water consumption of trees [40–42,56,64]. Solar radiation affects the photosynthetic
and transpiration activities of vegetation; it is the energy required to activate photosynthesis.
Air temperature rises with the strengthening of solar radiation. When the leaf temperature is higher,
plants decrease its temperature through increasing its transpiration rate. Leaf stomatal resistance
increases when the air temperature reaches 32 ◦C, next, the stomata conductance and water potential
decreases, which reduces the transpiration rate [65]. Air humidity changes the VPD between the plant,
leaf, and atmosphere. When the air humidity is low, the difference in vapor pressure between the leaf
and atmosphere is higher, which accelerates the transpiration rate. In contrast, when the air humidity
is higher, the transpiration rate is lower.

5. Conclusions

As reported in the relevant literature, the results of our study further showed that DBH and
the sapwood area of poplars were closely related to each other; therefore, DBH could be used to
estimate the sapwood area by establishing statistical models. However, the sapwood area of vital
poplars tended to be larger than the senesced poplars, therefore, the vitality of the poplars should be
taken into account when estimating the sapwood area. There were certain similarities and differences
between the sap flow processes of vital and senesced poplars; sap flow velocity and diurnal water
consumption of vital poplars was larger than that of the senesced poplars. However, the influence
of environmental factors on sap flow was similar; sap flow of both vital and senesced poplars had a
positive correlation with air temperature, solar radiation, vapor pressure deficit, groundwater depth,
and negative correlation with air humidity. Our results demonstrated that the hydraulic characteristics
of two different vitalities of poplar were not the same, and that when analyzing the water usage
strategy and estimating the water consumption of poplar forests, these two kinds of trees should be
treated differently.
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