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Abstract: Suspended sediment load (SSL) observations are usually less frequent than precipitation
and river discharge measurements; therefore a reliable procedure is needed for the estimation of SSL.
One year of precipitation, SSL, and discharge measurements at 20-min intervals were performed at
the Kuzlovec torrent in Slovenia. The Frank copula was selected to construct an event-based model
using the following variables: precipitation sum (P), peak discharge (Q), and SSL. The idea was
to estimate the SSL based on the measured P and Q. The proposed model was additionally tested
using the daily data from the Gornja Radgona station on the Mura River, for which 29 years of data
were available and where Khoudraji-Liebscher copulas were used. The estimated SSL values using
the copula were compared with different regression models. The proposed copula model yielded
meaningful SSL estimates. Some performance criteria and tests indicated that the copula model gives
a better fit to the measured data than other tested methods.
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1. Introduction

Sediments are present in most of the aquatic environments around the world and high suspended
sediment loads (SSL) can have an impact on flood safety: sediments can decrease the conveyance
capacity of streams when deposited at critical cross sections and consequently lead to local flooding.
High sediment quantities can worsen ecological conditions of river ecosystems; further, high SSL
values can be an indicator of severe soil erosion problems in the headwaters. However, SSL and bed
load (BL) measurements are usually much rarer than e.g., river discharge or precipitation observations;
therefore a reliable and effective procedure is needed for the estimation of the SSL and BL values using
the information available.

Generally the highest SSL and BL quantities are transported during extreme hydro-meteorological
events, such as (flash) floods and similar phenomena (e.g., [1]), but in some cases average magnitude
flows can have significant influence on sediment transport (e.g., [2]). Sediment measurements during
extreme hydro-meteorological conditions are often a difficult task, especially if manual sampling
is used for SSL observations. Moreover, often SSL data are even not available. This means that
construction of the sediment database is time consuming and not straightforward if one wants to use
such database to estimate sediment budgets or do some other tasks [3]. Until 2012, the Slovenian
Environment Agency (ARSO) used direct manual bottle sampling for official suspended sediment
concentration (SSC) measurements in Slovenia [4,5]. Due to an extensive modernization of the
hydrologic monitoring network, the SSC monitoring was interrupted in period 2012–2015. Since 2015
indirect optical turbidity sensors have been used for official SSC measurements in Slovenian streams.
However, even after this modernization measurements are being performed only at some selected
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monitoring sites (e.g., 4 out of 162 automated monitoring stations for water levels). Several other
technologies can be selected to measure suspended sediments such as acoustic, pump sampling,
nuclear, or remote spectral reflectance methods [6,7]. Detailed analysis of the SSL and BL data is
also required to gain an insight into spatio-temporal variability in sediment transport [8–11] and
sediment texture [12]. Furthermore, at majority of river cross sections where water level and discharge
measurements are performed, SSL and BL observations are often not carried out continuously or there
is no field information available about sediment transport. This situation makes it difficult to estimate
sediment balance of a river reach or an entire river basin in order to develop integrated sediment
management plans as an important constituent parts of integrated river basin management plans.
Even more so for sediment quality issues and estimation of total loads of pollutants bond to suspended
sediment particles.

Different methodologies can be applied to estimate the SSC or SSL values based on the measured
discharge series in cases when measured SSC data is not available. Some of the possible approaches
are: suspended sediment rating curves (e.g., [13,14]), different modifications of the sediment rating
curves (e.g., seasonal grouping, hydrologic grouping such as rising limb or falling limb and correction
factors [15,16]), the mixed-effects model [17], multiple linear regression models [18], the use of optimal
estimators [19], an event-based SSL model [20], artificial neural networks (ANN [21]), neuro-fuzzy
models [22], decision tree algorithms [23], and support vector machines [24]. Each of these methods
has its positive and negative aspects and the selection of a suitable method should be based on
the aim of SSL estimation (e.g., estimation of total suspended loads (TSL), sediment budgets or
estimation of high-frequency time series), while the uncertainty in the estimation procedure should
be considered [25]. Sediment rating curves are probably the most frequently used tool to estimate
SSL. However, prediction efficiency of the rating curves depends on the sampling frequency and it
should be noted that the relationship between discharge and SSC is dynamic and can change due to
the extreme floods [16]. The application of regional rating curve models [26] or regional regression
models [27,28] can be useful for prediction of SSL in ungauged basins. Furthermore, the ANN method
can yield good SSL predictions but only inside the range of the observed values that were used to
build the model [21].

In this study we propose a new approach for estimating the SSL values based on the discharge and
precipitation data using an event-based copula model. Copulas are mathematical tools for dealing with
multivariate extremes, which have become very popular in hydrology and related disciplines in recent
years. Copula functions were applied to several environmental problems, such as multivariate flood
frequency analysis (e.g., [29–33]), rainfall analysis [34,35], geostatistical interpolations [36], simulating
a multivariate sea storm [37], and several other hydrological applications (e.g., [38–41]). A more
detailed list of papers published in the field of hydrology in the last decades where copula functions
were used is available at The Statistics in Hydrology (STAHY) web-page [42]. These successful
applications indicate that copula functions are useful mathematical tools, which can be applied to
a large number of geo-physical problems. Therefore, the copula function was selected to estimate
the SSL values based on the measured peak discharge (Q) and precipitation sum (P) values in this
study. The proposed event-based copula model also captures the sediment lag effect but cannot be
used in case of potential changes in the Q-SSC relationship that can be a result of the extreme flood.
This shortcoming is similar to the one that was already reported when using the sediment rating curve
models [16]. However, the proposed copula model is able to produce probabilistic estimation of SSL
values, which is not possible with conventional sediment rating curves (e.g., [43]).

The main objective of this study is to propose and apply a new methodology for estimating
suspended sediment loads (SSL) using the copula function to two case studies (Kuzlovec torrent and
Mura River). The specific aims of this paper are as follows: (i) to set up the copula model for the
estimation of the SSL values using precipitation, SSC and discharge measurements; (ii) to estimate
the SSL values for the Kuzlovec torrent for the events when no actual SSL measurements were taken;
(iii) to test the proposed methodology using the daily data from the Gornja Radgona station on the
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Mura River. Furthermore, a comparison of the SSL estimation results using the copula function with
some other estimation techniques was also performed.

2. Materials and Methods

2.1. Study Area

Measured data from two catchments was used in this study to test the suitability of the proposed
copula model to estimate the SSL values. Precipitation, discharge and suspended sediment load
data from Kuzlovec, a small torrent experimental basin that is a part of the larger Gradaščica River
experimental basin (Figure 1), was used in the present study to set up the proposed event-based copula
model for the estimation of the SSL values. The Gradaščica River basin is positioned in the transitional
area between the Dinaric and Alpine region in central Slovenia (Figure 1). The headwater section
flows through the varied mountain relief of the Dolomites, and is carved with numerous ravines and
valleys [44]. The Gradaščica River basin comprises an area of 154.4 km2, and the Kuzlovec basin itself
0.71 km2. The basic characteristics of the Kuzlovec torrent are given in Table 1.

Moreover, to additionally test the proposed copula model using the data from larger and
more complex catchment, longer time series of the daily data (discharge and suspended sediment
concentration) from the Gornja Radgona station on the Mura River was used (Figure 1). The basic
properties of the Gornja Radgona station are presented in Table 1. Additionally, also daily rainfall data
from the nearby Cankova rainfall station was used to set-up the proposed copula model.
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Figure 1. Location of the Gradaščica River basin and Gornja Radgona station on the topographic map
of Slovenia with the main stream network.

Table 1. Basic characteristics of the Kuzlovec torrent and Gornja Radgona station on the Mura River.

Name Kuzlovec Gornja Radgona

Basin area (km2) 0.71 10,197
Basin elevation (minimum; maximum; mean) (m a.s.l.) 394; 847; 631 203; 3075; ~1015

Mean basin slope (%) 52 ~25
Mean channel slope (%) 22 ~0.7

Main channel length (km) 1.3 ~300
Mean annual precipitation (mm) 1600–1800 950

2.2. Data

High-frequency data (Q, P, SSC) collected at the experimental basin Kuzlovec was used to estimate
the SSL values by applying the proposed copula model. Water level measurements were performed at
the outlet of the Kuzlovec torrent using the pressure probe (Onset HOBO, Onset Computer Corporation,
Bourne, MA, USA); also, turbidity was measured at the outlet of the torrent using an optical sensor
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(Hydrolab MS5, OTT Hydromet, Loveland, CO, USA). Precipitation measurements were taken using
a tipping bucket rain gauge (ONSET RG2-M, Onset Computer Corporation, Bourne, MA, USA),
which is located at the headwaters of the Kuzlovec basin. The data from June 2013 to May 2014 was
considered in the study. The 20-min time step was used for measuring all three variables used in this
study (precipitation, discharge, and SSC). The precipitation and discharge measurements were carried
out continuously throughout the year, whereas the turbidity observations were performed during
the randomly selected rainfall events. Although turbidity measurements were limited, they were
performed at different seasons and during low and high flows to capture the variability in the sediment
transport. The precipitation data for the two snow events in January and February 2014, which were
not correctly recorded by the tipping bucket rain gauge, were corrected using the officially monitored
precipitation data (Slovenian Environment Agency: OTT Pluvio, OTT Hydromet, Loveland, CO, USA)
from the Črni Vrh nad Polhovim Gradcem station, which is also located in the Gradaščica River
basin, while the two stations are less than 10 km apart [45]. The water-level records were converted
to volumetric discharges by empirical ratings (rating curve) that were validated by gauging at
different flow levels. Discharge measurements were performed using the Flo-tracer dilution flowmeter
(Flow-Tronic, Welkenraedt, Belgium) where kitchen salt (NaCl) was used as tracer. The suspended
sediment concentration (SSC) values were determined based on the function, which relates turbidity
(Nephelometric Turbidity Unit (NTU)) with SSC values (mg/L). The functional relationship between
SSC and turbidity was established using the laboratory analysis of suspended sediment samples.
5 samples were collected at the outlet of the Kuzlovec torrent and turbidity was measured using optical
sensor (Hydrolab MS5). These samples were also filtered, oven-dried and SSC concentration was
determined using the standard laboratory procedures for all 5 samples [46]. Bezak, N. et al. [46] shows
the relationship between the turbidity and SSC for the Kuzlovec torrent. The maximum turbidity value
for the collected samples was about 900 NTU. During the 21 measured events the maximum turbidity
was about 830 NTU. In total 21 runoff events were used to set up the proposed copula model using the
data from the Kuzlovec torrent.

The discharge and SSC data from the Gornja Radgona station were already used to perform
the trivariate frequency analysis using copula functions [32]. More information about the SSL
data in Slovenia can be found in [4]. Furthermore, the daily precipitation data from the nearest
Cankova rainfall station [45] was also used to additionally test the copula model for estimating SSL
values. The period from 1977 to 2005 was selected for this analysis. The Gornja Radgona station was
equipped with limnigraph that was used to determine the water level and discharge at this location.
The suspended sediment measurements were performed using direct manual sampling with 1-litre
bottle where samples were collected few centimeters below the water level [4]. The suspended sediment
concentrations were determined after drying and filtering of the collected samples [4]. In the selected
period the mean daily SSC value was 49.5 g/m3 and the maximum SSC value was 2364 g/m3 [4].
Moreover, the frequency analyses of the SSC data indicate that the SSC value corresponding to the
10-year return period is about 1810 g/m3 [4]. Hellmann rain gauge was used to measure accumulated
daily rainfall at the Cankova station at 7 a.m. In total, 281 events were used to additionally test
the copula model for estimating the SSL values. Detailed description of the methodology used to
determine individual events is given in the next section. All this data (discharge, SSL, rainfall) was
measured by the Slovenian Environment Agency (ARSO) and the data is also publically available [45].

2.3. An Event-Based Sample Selection Methodology

In this study, a new approach using copula functions was proposed to estimate the SSL values
based on the measured discharge and precipitation data. Figure 2 shows the methodology used
for event definition and variables selection. The considered assumption was that the majority of
sediment transport occurs only in the coincidence with the rainfall events. The first step was to
separate continuous rainfall data into individual rainfall events. Two rainfall events were separated
when the inter-event time (i.e., time without rainfall) between two consecutive rainfall events exceeded
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the selected inter-event (IEs) value. The start of the runoff and sediment transport event was selected as
the time of the beginning of the rainfall event; the end of the runoff and sediment transport event was
chosen at the IEs hours (days) after the end of the rainfall event (Figure 2). In case of small or even micro
torrential basins, such as the Kuzlovec torrent, the time of concentration is usually very short, in most
of such basins even shorter than 1 or 2 h (e.g., [47]). However, for larger basins such as the Mura River
basin, much larger time of concentration values can be expected and, consequently, larger IEs values
have to be selected (i.e., a few days) in order to capture also the recession part of the hydrograph and
sedimentograph (i.e., to consider all transported material and hydrograph volume as a consequence of
a rainfall event as part of one event). In both cases the IEs value was defined based on screening of the
data, estimating the time of concentration, and assessing the longest duration of the falling limb of the
hydrograph. Thus, the main idea was that the selected IEs value is slightly greater than the time of
concentration and that the selected IEs value does not result in lumping of separate events into one
event. For the Kuzlovec torrent where 20-min data was available this procedure was performed based
on the screening of the data (e.g., time of concentration was estimated as the time period between end
of the (effective) rainfall event and the end of the surface runoff or the end of the recession part of the
hydrograph). However, for the larger and more complex Gornja Radgona station on the Mura River
where only daily data was available the time of concentration was estimated with the help of isochrones
that were determined based on the digital elevation model (DEM) of the catchment. The time between
the start and the end point of the runoff and sediment transport event was defined as the duration of the
event (Figure 2). The accumulated rainfall (P) was defined as a rainfall sum between the starting and
ending point of the runoff and sediment transport event (Figure 2). The corresponding peak discharge
variable (Q) was defined as the maximum discharge value during the runoff and sediment transport
event (Figure 2). Furthermore, the corresponding suspended sediment load (SSL) was defined as the
sum of the suspended sediment load rate (e.g., g/s) (Figure 2), which was transported during the
runoff and sediment transport event (Figure 2). An event-based copula model, where consecutive
events are assumed to be independent, was thus defined by using three variables: peak discharge (Q)
(L/s or m3/s), accumulated rainfall (P) (mm), and suspended sediment load (SSL) (kg or t).
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Figure 2. Graphical presentation of an event-based definition of variables used in the proposed
copula model.

Before applying the copula model the autocorrelation in the marginal data was tested using the
graphical acf test that is implemented in the software R [48]. Figure 3 shows the acf plot for both
case studies (Kuzlovec torrent and Gornja Radgona station on the Mura River). In case of detected
autocorrelation, different procedures such as computing differences between consecutive observations,
applying filters or using other data transformations can be used to remove autocorrelation in the
data (e.g., [49,50]). In our study the residuals of the Autoregressive–moving-average (ARMA) model
were used for this purpose (e.g., [51]). Ljung-Box test was used for testing the null hypothesis of



Water 2017, 9, 628 6 of 23

independence in a given time series, namely P, Q and SSL series for both case studies (Box.test function
in program R [48] was used). This test was used to ensure that consecutive events are independent.Water 2017, 9, 628  6 of 22 

 

 
Figure 3. Autocorrelation plots for the data from the Kuzlovec torrent (upper plots) and Mura River 
(lower plots) where for the Q series for the Mura case the transformed data are showed. 

2.4. Copula Function 

Copula function relates univariate marginal distribution functions with the joint multivariate 
probability distribution function. If X = (X1,…, Xd) is a random vector, F its joint cumulative 
distribution function (CDF), and F1,…, Fd, marginal CDFs, then by Sklar’s theorem [52] there exists a 
d-copula C:[0, 1]d → [0, 1] such that: 

F( , … , ) = ( ), … , ( ) . (1) 

If marginal cumulative distribution functions are all continuous, copula C is unique and Ui: = 
F(Xi) are uniformly distributed on [0, 1]. Moreover, if all CDFs are also strictly increasing, we obtain: ( , … , ) = ( ), … , ( ) . (2) 

On the other hand, for a given copula C and univariate CDFs F1,…, Fd, Equation (1) defines a 
multivariate CDF F with marginals F1,…, Fd. 

Different copula functions were used in this study. For the Kuzlovec case where 21 events were 
available symmetric Archimedean copulas were selected. Clayton, Frank, Gumbel-Hougaard and Joe 
copula functions were chosen among a set of possible alternatives [53–57]. The trivariate symmetric 
Frank copula from the Archimedean family is defined with: ( , , )  =  − ln 1 + ( ( ) )( ( ) )( ( ) )( ( ) ) ,  (3) 

where ∈ (−∞, ∞)\{0}  is a dependence parameter and , , ∈ [0, 1] . The corresponding 
bivariate copula is:  ( , )  = − ln 1 + ( ( ) )( ( ) )( ( ) ) . (4) 

A possible alternative to the symmetric copula functions could be the asymmetric or fully nested 
copula functions from the Archimedean family (e.g., Clayton, Frank, Gumbel-Hougaard) (e.g., 

Figure 3. Autocorrelation plots for the data from the Kuzlovec torrent (upper plots) and Mura River
(lower plots) where for the Q series for the Mura case the transformed data are showed.

2.4. Copula Function

Copula function relates univariate marginal distribution functions with the joint multivariate
probability distribution function. If X = (X1, . . . , Xd) is a random vector, F its joint cumulative
distribution function (CDF), and F1, . . . , Fd, marginal CDFs, then by Sklar’s theorem [52] there exists
a d-copula C:[0, 1]d → [0, 1] such that:

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (1)

If marginal cumulative distribution functions are all continuous, copula C is unique and Ui: = F(Xi)
are uniformly distributed on [0, 1]. Moreover, if all CDFs are also strictly increasing, we obtain:

C(u1, . . . , ud) = F
(

F−1
1 (u1), . . . , F−1

d (ud)
)

. (2)

On the other hand, for a given copula C and univariate CDFs F1, . . . , Fd, Equation (1) defines
a multivariate CDF F with marginals F1, . . . , Fd.

Different copula functions were used in this study. For the Kuzlovec case where 21 events were
available symmetric Archimedean copulas were selected. Clayton, Frank, Gumbel-Hougaard and Joe
copula functions were chosen among a set of possible alternatives [53–57]. The trivariate symmetric
Frank copula from the Archimedean family is defined with:
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Cθ(u1, u2, u3) = −1
θ

ln

{
1 +

(exp(−θu1)− 1)(exp(−θu2)− 1)(exp(−θu3)− 1)

(exp(−θ)− 1)2

}
, (3)

where θ ∈ (−∞, ∞)\{0} is a dependence parameter and u1, u2, u3 ∈ [0, 1]. The corresponding
bivariate copula is:

Cθ(u1, u2) = −1
θ

ln
{

1 +
(exp(−θu1)− 1)(exp(−θu2)− 1)

(exp(−θ)− 1)

}
. (4)

A possible alternative to the symmetric copula functions could be the asymmetric or fully
nested copula functions from the Archimedean family (e.g., Clayton, Frank, Gumbel-Hougaard)
(e.g., [32,53,54]). However, symmetric copulas can be used in cases when investigated variables are
exchangeable. In order to assess the exchangeability the exchTest function that is implemented in
program R copula package was used. More information about the selected test is given in the copula
package reference manual. The asymmetric model can be alternative to the symmetric model in cases
when the dependence between two variables is stronger than the dependence between the other
two pairs (bivariate dependences within a multivariate frame are not the same). For more theoretical
information about different copula functions that were used in this study and copula theory in general
one should refer to [40,53–58].

In the case of the Gornja Radgona station in the Mura River the Khoudraji-Liebscher copula
functions were used [59,60]. These copula functions were first introduced and discussed in hydrology
by [30,61]. The cumulative distribution function for the three dimensional case is [59,60]:

Cθ1, θ2 = C1

(
u1−α1

1 , u1−α2
2 , u1−α3

3

)
C2
(
uα1

1 , uα2
2 , uα3

3
)
, (5)

where C1 and C2 are two copula functions, and θ1 and θ2 the parameters of these two copula functions
(in case of trivariate symmetric Archimedean copulas). In our case independence copula [39,53–55] and
trivariate symmetric Archimedean copulas (Clayton, Gumbel-Hougaard, Frank and Joe) were selected
as possible candidates for the functions C1 and C2 (each of the Archimedean copula has one parameter).
Further, α1, α2, α3 ∈ [0, 1] are shape parameters [59,60]. The following combinations were tested in this
study: (a) C1 and C2 are independence copulas (this model has 3 parameters: α1, α2, α3); (b) C1 and C2

are independence copula and trivariate symmetric Archimedean copula (this model has 4 parameters:
α1, α2, α3 and θ1); (c) C1 and C2 are trivariate symmetric Archimedean copulas (this model has
5 parameters: α1, α2, α3 and θ1 and θ2). This means that for case (a) 1 combination; (b) 8 combinations;
(c) 16 combinations (all possible combinations of Clayton, Frank, Joe and Gumbel-Hougaard copulas
were used) for the function in Equation (5) were tested.

The maximum pseudo-likelihood method was selected for the estimation of the copula
parameters [62]. The adequacy of the selected copula functions was tested using the Cramér-von
Mises test Sn, which was defined by [63]. The R copula package was used for copula parameter
estimation and the goodness-of-fit test presented in this paper [64]. The most suitable copula function
among Frank, Clayton, Joe, Gumbel-Hougaard and Khoudraji-Liebscher copula was selected using
the model selection criterion (function xvCopula) that is based on the k-fold cross-validation and it is
implemented in the program R copula package [64]. The detailed description of the criterion can be
found in [65].

Various parametric and nonparametric distribution functions were selected as marginal CDFs,
and marginal distribution parameters of the parametric distributions were estimated using the method
of L-moments [66]. For the Kuzlovec case study where parametric distribution functions were used as
marginal distribution functions the following distributions were selected: generalized extreme value
(GEV), Gumbel, Pearson type 3, log-Pearson type 3, exponential, Generalized Pareto and normal [66].
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More information about the selected parametric distribution can be found in [66]. In order to select
the most suitable distribution the Akaike Information Criterion (AIC) was used. The adequacy of
the selected distribution function was tested using the Cramér-von Mises test that is implemented in
the program R lmomco package [67]. Additionally, the following nonparametric distribution function
was used for the Gornja Radgona on the Mura River case study due to the larger number of analysed
events [68,69]:

FX(x) =


1
n′ exp

(
x−X1:n

X2:n−X1:n

)
, x ≤ X1:n

(1− ε)
j

n+1 + ε k
n+1 , Xj:n < x < Xk:n, j < k = 1, . . . , n′

1− 1
n′ exp

(
x−Xn:n

Xn:n−Xn−1:n

)
, x ≥ Xn:n

(6)

where n′ = n + 1, n is data sample length, Xi:n (i = 1, . . . , n) is the generic order statistics
(sample arranged in the ascending order), Xj:n and Xk:n are the order statistics closest to x and
ε =

(
x− Xj:n

)
/
(
Xk:n − Xj:n

)
[70]. More information about this nonparametric distribution function

can be found [70,71].
In order to estimate the SSL values based on the Q and P values, the conditional CDF of

U3 (U3 = FSSL(SSL)) given the values of U1 (U1 = FQ(Q)) and U2 (U2 = FP(P)) can be shown to be
(Appendix A):

Cθ(u3|u1, u2) : = P(U3 ≤ u3|U1 = u1, U2 = u2) =
∂2Cθ(u1, u2, u3)

∂u1∂u2
/

∂2Cθ(u1, u2)

∂u1∂u2
(7)

where Cθ(u1, u2, u3) and Cθ(u1, u2) are given in Equations (3) and (4), respectively. Furthermore,
Khoudraji-Liebscher copula function (e.g., Equation (5)) can be selected instead of the
symmetric copula.

The procedure for estimating the SSL values given the known (measured) values Q and P was
as follows:

• For each measured (known) pair of variables Q and P 10,000 uniform random variables [0, 1]
were generated;

• For each of the 10,000 uniform randomly generated variables, Equation (7) was solved numerically
using the Newton’s method for solving nonlinear equations [72];

• For each of the solutions of Equation (7), the inverse Probability Integral Transform (PIT)

(SSL = F[−1]
SSL (u3)) was used to transform the solution from the copula space [0, 1] to the real

space and consequently estimate the SSL value.
• For each known pair of variables Q and P, which corresponds to the specific event, a sample of

10,000 possible SSL values was obtained.
• The median value of all 10,000 possible SSL values was selected as the estimated SSL value and

50% confidence intervals for each event were also determined. Alternatively, the mode could be
selected as the most likely value in some other cases.

2.5. Regression Models and Performance Criteria

The performance of the proposed copula model was compared with the multiple regression
(MLR) model and exponential model (EXP) that can be defined with the following equations:

SSLMLR = a + b× P + c×Q (8)

SSLEXP = exp(d)×Qe (9)

where a, b, c, d and e are parameters that were estimated using the least-square method. Several
performance criteria described by [69] such as Mean absolute error (MAE), Root mean square error
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(RMSE), Nash-Sutcliffe Efficiency (NSE) index and Coefficient of determination (R2) and residual
analysis (graphical presentation and descriptive statistics of residuals) were used for comparison of
different methods (Copula, MLR and EXP).

3. Results and Discussion

3.1. Kuzlovec Torrent

3.1.1. Estimation of Copula Model Parameters for the Kuzlovec Torrent

The methodology presented in Section 2 for the estimation of the SSL values based on the
measured Q and P was tested using the high-frequency data measured in the Kuzlovec torrent.
The IEs value of 6 h was selected for the Kuzlovec torrent. It was found that the IEs of 6 h is the
reasonable selection for the considered torrent. Because the selected IEs value is greater than the
time of concentration (usually less than 1 h) the consecutive events can be treated independently [73].
However, the selection of the IEs can have significant impact on the defined sample and consequently
also on the results [74] because it influences both the total rainfall amounts (P) and the SSL values.
This means that longer IEs values could result in larger P values due to lumping of consecutive events
into one event. This would probably lead to larger SSL values but we argue that the impact on the
Q values may be smaller. Thus, the dependence structure of the collected data sample may change
(Figure 4). Moreover, larger IEs value would also lead to more multiple-peaks events. Altogether
21 complete events (Q, P, and SSL), which were defined using the procedure described in Section 2
(Figure 2) and that occurred in all four seasons from June 2013 to May 2014, were used for estimating
the copula and marginal parametric CDFs parameters (Figure 4). Table 2 shows the basic properties of
the defined sample.
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Table 2. Summary statistics of the defined variables for the data from the Kuzlovec torrent.

Statistic/Variable P (mm) Q (L/s) SSL (kg)

Min 1.6 6.7 0.4
1st quartile 16.8 9.9 3.9

Median 23.0 15.6 17.2
Mean 27.2 31.1 94.3

3rd quartile 37.8 45.8 167.9
Max 63.0 125.9 470.3

First the autocorrelation in the marginal data was tested. Figure 3 shows the acf plots for the
three variables for the data from the Kuzlovec torrent. There was no significant autocorrelation in
the data (Figure 3). This is confirmed by the Ljung-Box test results for the P, Q, and SSL series that
were 1.8 (p-value: 0.18), 1.7 (p-value: 0.19) and 0.77 (p-value: 0.38), respectively. The next step of the
copula approach was to assess the dependence between the pairs of considered variables (cor.test
function was used [48]; null hypothesis: variables are independent; alternative hypothesis: variables
are not independent). The Kendall’s correlation coefficients between pairs of variables Q-P, Q-SSL,
and P-SSL were 0.70 (z-value: 4.4; p-value: 0.0001), 0.79 (z-value: 5.0; p-value: 6 × 10−7), and 0.70
(z-value: 4.4; p-value: 0.0001), respectively. Therefore, the null hypothesis was rejected with selected
significance level of 0.05. The calculated correlation coefficients indicate that the dependence between
pairs of variables is similar. Moreover, the exchangeability test results for pairs of variables P-Q,
P-SSL and Q-SSL were 0.022 (p-value: 0.99), 0.022 (p-value: 0.98) and 0.021 (p-value: 0.72), respectively.
This indicates that the selection of symmetric copula functions (e.g., Clayton, Frank, Gumbel-Hougaard,
Joe), which have one parameter to model the dependence among three variables, seems reasonable for
the Kuzlovec case study.

Before applying the copula function, marginal distribution functions were defined. Different
distribution functions were tested and the most suitable were selected using the AIC criterion. For the
P, Q and SSL the distribution functions with a minimum AIC value were Gumbel, Pearson type 3 and
log-Pearson type 3, respectively. Aforementioned functions were also tested using the Cramér-von
Mises test (lmomco package) and the results were 0.044 (p-value: 0.91), 0.082 (p-value: 0.69) and 0.135
(p-value: 0.44) for the P, Q and SSL, respectively. This indicates that selected distribution functions
could not be rejected at the selected significance level (0.05). The marginal distribution parameters
were estimated using the method of L-moments [67]. The location, scale, and shape parameters
for the Pearson type 3 CDF (Q) were 31.1, 31.6, and 2.3, respectively. Likewise, the location and
scale parameters for the Gumbel CDF (P) were 19.2 and 13.7, respectively. Furthermore, the location,
scale, and shape parameters for the log-Pearson type 3 CDF were 3.0, 2.2, and −0.14, respectively.
More information about the CDF and parameters can be found in [67]. The next step of the
procedure was to estimate the copula parameter and to select the most suitable copula function.
Clayton, Frank, Joe and Gumbel-Hougaard copula functions were compared using the leave-one-out
cross-validation model selection criterion [65]. The criterion results were 24.4, 29.0, 25.0 and 16.1 for
the Gumbel-Hougaard, Frank, Clayton and Joe copulas, respectively. According to these results the
Frank copula should be selected (the largest value of the selected criterion). This function could not be
rejected by the Cramér-von Mises test [63,64] at the selected significance level of 0.05 (statistics: 0.06;
p-value: 0.26). Thus, this copula function was selected as the most suitable for the Kuzlovec torrent
case study. The Frank copula parameter (Equation (3)) was estimated (θ = 10.5) using the maximum
pseudo-likelihood method [62]. Therefore, the Frank copula function was selected to define the model
for estimating the SSL values using the data from the Kuzlovec torrent.
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3.1.2. Comparison with Other SSL Estimation Techniques and Estimation of SSL Values Based on
Measured Q and P

The procedure described in Section 2 was used to estimate the SSL values based on the measured
Q and P. For each pair of measured variables (Q and P), which represents a potential event without SSL
measurements, 10,000 possible SSL values were obtained. Figure 5 shows a distribution of Equation (7)
solutions for four events, which occurred in different seasons. The median value of all 10,000 possible
SSL values for one event was selected as the estimated SSL value, which was eventually transformed to
real space using the inverse PIT. Furthermore, 50% confidence intervals (first and third quartile values
were selected) for each event were also determined and are presented in Figure 5. Moreover, actual
measured SSL values are also shown in Figure 5. It should be noted that November 2013 and May 2014
events were among the events with the highest SSL values. On the other hand, June 2013 and August
2013 events can be defined as low-medium magnitude events. The results indicate that the copula is
able to reproduce both low-medium and medium-high magnitude sediment transport events.

In the next step of the study the proposed event-based copula methodology for estimating the
SSL values was compared with some other possible estimation techniques (Equations (8) and (9)).
Based on 21 events, which were also used in constructing the event-based copula model (Section 2),
the MLR and EXP model were defined and tested to estimate the SSL values. The least-square method
was used to estimate the MLR model parameters and the final constructed model was as follows
SSL = −42.92 + 0.61× P + 3.88× Q. Furthermore, the same method was applied to estimate the
exponential model parameters, and the resulting model was: SSL = exp(0.42)×Q1.20. In the next
step, the copula, MLR, and EXP models were used to estimate the SSL values based on the measured Q
and P variables. Figure 6 shows diagnostic plots for the three compared models, while some commonly
used performance criteria are presented in Table 3. According to the different performance criteria [69],
the proposed copula model yields the worst fit among the tested models. However, the diagnostic
plots (Figure 6) demonstrate that the residuals are generally the smallest when using the copula model.
The calculated residuals were approximately normally distributed and there was no autocorrelation in
the residuals. The median residual values for three models were −1.2, −3.8, and 14.3 kg for the copula,
MLR, and EXP model, respectively. The copula model is able to better reproduce the low-medium
magnitude events, while the differences among compared methods in case of medium-high magnitude
events are smaller and one could also argue that MLR and EXP models gave better fit to the data
compared to the low-medium magnitude events. However, Figure 5 shows that the copula model can
also be used to model medium-high magnitude events. Furthermore, a comparison was also made for
the single-peak and multiple-peaks events (Figure 4). While for the single-peak events copula model
yielded the smallest residual values, the differences among tested methods for the multiple-peaks
events were smaller and the proposed copula model gave the worst results. However, one should keep
in mind that only 4 events were defined as multiple-peaks and actually all these events were composed
from 2 peaks. Moreover, the summary statistics for the estimated SSL values indicate that the copula
model gives the most accurate estimates of the measured SSL values (comparison of Tables 2 and 3).
Using the MLR model the estimated SSL values for some smaller rainfall events (e.g., P < 10 mm) were
estimated as negative (Table 3), which is not a meaningful result. Moreover, the EXP model generally
overestimated these smaller magnitude events (Tables 2 and 3).
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Table 3. Performance criteria results and summary statistics for the estimated SSL values for the
Kuzlovec torren.

Statistic/Model Copula MLR EXP

MAE (kg) 40.3 34.76 42.5
RMSE (kg) 68.3 59.42 61.7

NSE 0.74 0.80 0.79
R2 0.77 0.80 0.79

Min SSL (kg) 1 −16.1 14.7
Median SSL (kg) 13.3 36.47 40.6

Max SSL (kg) 451 476.5 494.0
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distribution function could be an alternative to the parametric distribution in order to reduce the 
number of parameters. In the case of the Kuzlovec torrent extreme flash flood occurred in August 
2014 that caused intense sediment transport and changes in the location of the torrent channel 
thalweg [75]. This means that additional measurements should be performed at this location in order 
to confirm that the proposed model (either copula or regression model) is still valid for this location 
after this extreme event with more than 100 years return period according to the rainfall data analysis 
[75].  
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The fit between the measured and estimated data could be improved with the inclusion of
additional information in the model. For example, bed load data, antecedent soil moisture conditions
and antecedent sediment transport data are just some of the possible options in case that this
information is available. For the Kuzlovec torrent the relationship between the 1-day (ANTP1), 3-day
(ANTP3) and 5-day (ANTP5) antecedent rainfall and SSL was also evaluated. The Kendall correlation
coefficients for ANTP1-SSL, ANTP3-SSL and ANTP5-SSL were 0.17 (p-value: 0.28), −0.08 (p-value: 0.61)
and 0.02 (p-value: 0.89), respectively, which indicates that antecedent rainfall is not a good predictor
of the SSL for the Kuzlovec torrent. One of the possible alternatives to improve the copula model
results can also be use of copula function with more parameters (e.g., Khoudraji-Liebscher copula) but
one should keep in mind that over-parametrization could occur in such case, especially estimates of
fitted parameters can be uncertain in case of 21 events. Moreover, nonparametric distribution function
could be an alternative to the parametric distribution in order to reduce the number of parameters.
In the case of the Kuzlovec torrent extreme flash flood occurred in August 2014 that caused intense
sediment transport and changes in the location of the torrent channel thalweg [75]. This means that
additional measurements should be performed at this location in order to confirm that the proposed
model (either copula or regression model) is still valid for this location after this extreme event with
more than 100 years return period according to the rainfall data analysis [75].

Due to the smallest residual values and because probabilistic estimation of the SSL values can
be obtained with the copula model this method was chosen to estimate the SSL values for the events
when SSC observations were not performed. Based on the methodology presented in Section 2
the SSL estimates were conducted for 92 events which occurred in all four seasons. Months June,
July, and August were classified as summer, September, October, and November as autumn, December,
January, and February as winter and March, April, and May as spring. For events where accumulated
rainfall (P) did not exceed 1 mm the estimates of SSL were not performed and further results are not
presented. Table 4 shows the results of the estimation procedure for different seasons. The results
demonstrate that approximately 3.6 t of SSL were transported through the measuring cross section in
the Kuzlovec torrent in the observed period (June 2013–May 2014) (Table 4). The lower confidence
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interval was 2.1 t and the upper one 6.9 t (Table 4). One can notice that most of the SSL was transported
during winter 2013/2014 (Table 4), which was relatively warm and with small amounts of snow
in the considered period. The highest P and Q values are also characteristics of the winter period.
The autumn 2013 contributed about 40% of the total SSL, while in summer 2013 and spring 2014
together about 12% of SSL was transported. A more comprehensive seasonality analysis could be
done if more than one year of data would be available. However, one should also keep in mind that
from June 2013 to May 2014 a total of 1613 mm of rainfall was measured in the investigated basin,
which is below the long-term average for the analyzed area (about 1700 mm). Furthermore, none of
the rainfall events was really extreme. The maximum measured accumulated rainfall amount for
one event was 89 mm, which occurred in January, and the duration of the event was about 2 days.
This suggests that under different, more extreme, hydro-meteorological conditions significantly more
material could be transported even in the small torrential basin like Kuzlovec (up to ~5 or even
10 t/ha/year), because generally most of the material is transported during extreme events such as
floods (e.g., [1,75]). One should keep in mind that for the Kuzlovec case study only 21 events were
used for parameter estimation and fitting of the trivariate copula functions. This means that several
types of uncertainties can affect estimation results due to the relatively small sample size: (i) model
identifiability; (ii) estimates of the fitted parameters and (iii) ultimate estimates of the derived risks.
However, the main aim of the study was to demonstrate that the proposed event-based copula model
can be used for estimating SSL values based on the known Q and P values. Thus, the proposed
methodology was additionally tested on another case study (Gornja Radgona station on the Mura
River) where 281 events were available to fit the proposed copula model and to make an estimation of
the SSL values using the copula model.

Table 4. Basic properties of the SSL, Q and P values for different seasons for the Kuzlovec torrent.

Season Mean P (mm) Max Q (L/s) SSL (kg) SSL0.25 (kg) SSL0.75 (kg)

Summer 2013 11.4 36.0 99 58 172
Autumn 2013 17.8 125.9 1429 805 2787

Winter 2013–2014 26.8 138.6 1724 989 3293
Spring 2014 12.1 43.5 360 217 645

3.2. Gornja Radgona Station on the Mura River

3.2.1. Estimation of Copula Model Parameters for the Gornja Radgona Station

The proposed copula model was also applied to the data from the Gornja Radgona station on
the Mura River (Figure 1). The daily discharge, suspended sediment concentration, and precipitation
(Cankova station) data from 1977 to 2005 were used. The same methodology as that for the Kuzlovec
torrent was used for the event definition (Figure 2). However, the IEs value of 3 days was selected in
order to separate individual events. Given that only daily data was available, the time of concentration
was estimated using the Geographic information system (GIS) algorithm for the calculation of
isochrones that uses DEM to estimate the isochrones [76]. The estimated time of concentration
was about 64 h; therefore the IEs value of 3 days was selected for event separation. It was found that
this value is sufficient to capture the recession part of hydrograph and sedimentograph. In the next
step P, Q, and SSL variables were calculated for each event. A threshold of 30 mm (P) was applied
to remove small magnitude events. At the end 281 events were used to construct the copula-based
model (Figure 7). Table 5 shows the summary statistics of the defined variables. One of the important
aspects in the SSL estimation is also that the relationship between the discharge and sediment transport
did not significantly change in the observed period (e.g., impact of extreme flood). For the Gornja
Radgona station on the Mura River this can be confirmed with the SSC trend test for the period from
1977 to 2005 [4]. The results indicate that SSC trend is not statistically significant [4]. This means
that use of the complete data period (1977–2005) as one part seems reasonable. In case of statistically
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significant trend data sample should be divided into more parts depending on the data complexity
and trend characteristics.
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Figure 7. Graphical presentation of 281 events that were used to define the copula model for the Gornja
Radgona station on the Mura River.

Table 5. Summary statistics of the defined variables for the data from the Gornja Radgona station on
the Mura River.

Statistic/Variable P (mm) Q (m3/s) SSL (t)

Min 30.1 62.7 357.7
1st quartile 37.7 169 3453

Median 49.3 244.3 9317
Mean 58.3 295.1 26,410

3rd quartile 68.4 374 26,500
Max 186.9 1237 303,000

The acf plot was used to test autocorrelation in the marginal data. Moreover, the Ljung-Box test
results were 1.9 (p-value: 0.17), 6.2 (p-value: 0.01) and 2.6 (p-value: 0.10) for the P, Q and SSL data,
respectively. It was found that for Q data autocorrelation was significant (selected significance level
0.05). Therefore, the residuals of the ARMA model were used to remove the autocorrelation in the Q
data. Figure 3 shows the acf plots for P, transformed Q, and SSL values with 0.95 confidence limits for
the Gornja Radgona station on the Mura River. The next steps of the analyses were performed using
the transformed data (residuals of the ARMA model). The Ljung-Box test result for the transformed Q
data was 0.01 (p-value: 0.91).

The calculated Kendall correlation coefficients between pairs of variables Q-P, Q-SSL, and P-SSL
were 0.29 (z-value: 7.3; p-value: 2× 10−13), 0.64 (z-value: 15.9; p-value: 2× 10−16) and 0.28 (z-value: 6.9;
p-value: 4 × 10−12), respectively. These correlation coefficients do not depend on the transformation of
the data. Moreover, the exchangeability test results for pairs of variables Q-P, Q-SSL, and P-SSL were
0.04 (p-value: 0.24), 0.01 (p-value: 0.94) and 0.04 (p-value: 0.15), respectively. Since the dependence
between pairs of variables is not the same, the symmetric copula function with one parameter is
not the most suitable model. Therefore, the Khoudraji-Liebscher copula function (Equation (5)) was
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used to model the data from the Gornja Radgona station on the Mura River. Different combinations
of the Khoudraji-Liebscher copula were tested (independence copula and Joe, Clayton, Frank and
Gumbel-Houaard copulas were used as C1 and C2 in Equation (5)). The adequacy of different
combinations ((a), (b) and (c) defined in Section 2.4) was tested using the Cramér-von Mises test Sn.
Based on the selected significance level of 0.05 the following combinations of C1 and C2 (Equation (5))
could not be rejected: (i) Joe-C1 and Joe-C2 (statistic: 0.10; p-value: 0.07); (ii) Gumbel-Hougaard-C1 and
Gumbel-Hougaard-C2 (statistic: 0.08; p-value: 0.10) and (iii) Gumbel-Hougaard-C1 and Joe-C2 (statistic:
0.07; p-value: 0.14). In total 25 combinations were tested and all other combinations were rejected at the
selected significance level of 0.05 ((a), (b) and (c) defined in Section 2.4). Moreover, to select the most
suitable copula function the copula leave-one-out cross-validation selection criterion was used [65].
The criterion results were 162.1, 164.8 and 157 for the combinations (i), (ii) and (iii), respectively.
Based on these results the combination of Gumbel-Hougaard-C1 and Gumbel-Hougaard-C2 was
used for the estimation of the SSL values for the Gornja Radgona station. The selected model has
5 parameters. In some other cases different combination of C1 and C2 could be selected in order
to reduce the number of parameters (over-parametrization issue). For example, the application of
independence copula (case (a) defined in Section 2.4) leads to a model with 3 parameters, which
is positive from the over-parametrization perspective. However, in this case study models with
smaller number of parameters (cases (a) and (b) defined in Section 2.4) were rejected by the selected
goodness-of-fit test for copula functions. The copula parameters were estimated using the maximum
pseudo-likelihood method. The estimated parameters θ1 and θ2 for the Gumbel-Hougaard (C1) and
Gumbel-Hougaard (C2) copulas were 1.78 and 3.12, respectively (where U1 = FQ(Q), U2 = FSSL (SSL)
and U3 = FP(P) according to the notations used in Equation (5)). Moreover, the shape parameters α1, α2

and α3 were 0.60, 0.63 and 2 × 10−5, respectively. Different parametric distributions such as Gumbel,
Generalized Pareto, Pearson type 3, log-Pearson type 3 and GEV were tested but none of them gave
an adequate fit to the data. Therefore, the nonparametric distribution function, which is defined with
Equation (6), was used to model the selected variables (Q, P, and SSL). This distribution function was
tested using the Kolmogorov-Smirnov test and for all variables the nonparametric distribution could
not be rejected at the chosen significance level of 0.05.

3.2.2. Comparison with Other SSL Estimation Techniques

In the next step, the SSL values were estimated using the copula, MLR, and EXP models. The MLR
and EXP models were fitted to the original data. Table 6 shows the results for some commonly used
performance criteria (e.g., [69]) and the summary statistics for the estimated SSL values using the
copula model. For MLR and EXP models original data (autocorrelation in the Q data was not removed)
was used. The copula parameters were estimated using the maximum pseudo-likelihood method
which is based on ranks and selected nonparametric distributions are able to produce good fit to the
marginal data independently of the transformation (residuals of the ARMA model). MLR and EXP
models forms were SSL = −33, 349 + 31× P + 196×Q and SSL = exp(−0.18)×Q1.79, respectively.
Figure 8 shows the diagnostic plots for the three compared models (original data was used for the
MLR and EXP models). The copula and EXP models yield comparable results according to the selected
performance criteria (Table 6). However, according to the residuals shown in Figure 8 the copula model
gives a better fit to the measured data than the EXP model. This can also be confirmed with the median
residual values for the copula, MLR, and EXP models, which were −195, 240, and 3918 t, respectively.
Similar as for the Kuzlovec torrent, the copula model performs better in case of low-medium magnitude
events while in case of medium-high magnitude events differences among tested methods are smaller.
Since the daily data was only available not much can be said about the single-peak and multiple-peaks
events in case of the Gornja Radgona station on the Mura River. Furthermore, the comparison of
the summary statistics for the estimated and measured SSL values (Tables 5 and 6) indicates that the
proposed copula model can reproduce the actual SSL values better than the other two tested methods.
Similarly as for the Kuzlovec torrent the MLR method yields negative SSL values for some specific low
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magnitude events. The Mura River catchment is larger and more complex than the Kuzlovec torrent
and it is clear that the SSL estimation results are slightly better for the first case than for the latter
one. However, these better results can be attributed to the larger number of events available to fit the
model (reduced uncertainty in the parameter estimation), nonparametric distribution functions used
and application of the Khoudraji-Liebscher copulas that are more suitable for complex dependence
structure than symmetric copulas. We argue that similar performance of copula model can be expected
in case of small and medium-large size catchments in case of similar sample sizes. Moreover, similar
conclusion can also be made for the data frequency since comparable results are obtained using
daily and 20-min data. However, prediction results can be improved with the inclusion of additional
parameters in the model (e.g., antecedent conditions).

Table 6. Performance criteria results and summary statistics for the estimated SSL values for the Gornja
Radgona station on the Mura River.

Statistic/Model Copula MLR EXP

MAE (t) 12,403 15,500 13,637
RMSE (t) 26,261 26,230 25,400

NSE 0.65 0.65 0.67
R2 0.66 0.65 0.67

Min SSL (t) 900 −20,020 1410
Median SSL (t) 8768 16,280 16,210

Max SSL (t) 283,500 214,500 297,900
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4. Conclusions

This paper presents a development and an application of the event-based copula model for
estimating the SSL values based on the measured discharge and precipitation data. The high-frequency
discharge, precipitation, and suspended sediment concentration measurements from a small
experimental basin in Slovenia was used to set up the copula model (21 events that occurred from
June 2013 to May 2014 were used). Furthermore, the copula model was additionally tested using the
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29-years data series on daily discharge, suspended sediment concentration, and precipitation from the
Gornja Radgona station on the Mura River where in total 281 events were used. In both case studies
events occurred in different seasons. The main conclusions of this study are as follows:

• The proposed copula model for estimating the SSL values based on the measured Q and P values
yielded meaningful results. According to some performance criteria and graphical presentation
of the results the copula model gives comparable results to those obtained using other tested
models (MLR and EXP). For the Gornja Radgona station the copula model yielded better fit
to the actual measured SSL values than other tested methods. In this case study 281 events
were available to estimate the copula model parameters and nonparametric distributions were
selected as marginal distributions. However, for the Kuzlovec torrent much smaller number of
events was analyzed and parametric distribution functions were used. The differences in the
estimation results could also be a consequence of different copulas that were selected (symmetric
and Khoudraji-Liebscher copulas). Using the copula model the probabilistic estimation of the SSL
values can be obtained, which is not possible using other tested methods. Moreover, the smallest
residual values were characteristic of the estimation procedure that was carried out using copula
function, which indicates an important advantage of the proposed copula method compared
to other tested methods. However, there were some differences between the low-medium and
medium-high magnitude SSL events.

• The proposed copula based model is flexible. Both symmetric and Khoudraji-Liebscher copula
functions were used to construct the copula model based on the dependence characteristics
of the analyzed variables. Furthermore, other copula functions with more parameters and
different properties such as Gaussian copula or Vine copulas could be used in this model to
estimate the SSL values based on the Q and P. Similarly, also different marginal distribution
functions can be selected, even nonparametric. The proposed copula model where nonparametric
marginal distribution functions were used is more robust tool that is not significantly affected by
transformations of the marginal data.

• An event-based copula model used in this study could easily be upgraded with additional
variables (e.g., bedload, water electrical conductivity measurements, antecedent sediment
transport conditions or antecedent soil moisture), because copula functions of higher dimensions
can be constructed relatively easily. Moreover, similar model could also be used for the estimation
of different environmental variables (e.g., biogeochemical model-water chemistry).

• Unlike some other techniques, the presented event-based model also captures the sediment lag
effect. In the future it would be reasonable to consider also the sediment depletion (exhaustion)
effect (e.g., antecedent sediment transport), which can have a considerable impact on the SSL
values during consecutive events.

• The proposed event-based copula model can be a useful tool for estimating sediment budgets.
The methodology was successfully applied to two different case studies, a small forested torrent
and a larger river catchment and comparable results were obtained in both cases (in first case
20-min data was used while in the second case daily data was used).

The presented methodology for estimating SSL values should be additionally tested on the
high-frequency data from other parts of the world, while SSL estimation results could be compared
using additional estimation techniques (e.g., those that can be used for estimating SSC time-series).
However, the results of this study, using the one-year high-frequency experimental data from the
Kuzlovec torrent (21 events) and the 29 years of daily data from the Gornja Radgona station on the
Mura River in Slovenia (281 events), demonstrate that the proposed methodology has a promising
potential as it has already yielded meaningful results for the two selected field case studies.
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Appendix A

This appendix shows the derivation of Equation (7). A basic version of this formula can be found
in the literature [54] but we could not find the formula explicitly stated for the multi-conditional case.
For the sake of completeness we therefore sketch the proof.

Assume that C3(u1, u2, u3) and C2(u1, u2) are continuous and partially differentiable trivariate
and bivariate copula functions, respectively, from the same family. Remember that:

C3(u1, u2, u3) = P(U3 ≤ u3, U2 ≤ u2, U1 ≤ u1),

and
C2(u1, u2) = P(U2 ≤ u2, U1 ≤ u1), (A1)

are CDFs and U1, U2, U3 are marginal distribution functions (uppercase letters are used to define
random variables and the lowercase letter represent the realisation of a specific event). The conditional
probability of U3 and U2 given U1 by definition equals:

P(U3 ≤ u3, U2 ≤ u2|U1 = u1) = lim
δ1→0

P(u1≤U1≤u1+δ1,U2≤u2,U3≤u3)
P(u1≤U1≤u1+δ1)

=

lim
δ1→0

P(U1≤u1+δ1,U2≤u2,U3≤u3)−P(U1≤u1,U2≤u2,U3≤u3)
P(u1≤U1≤u1+δ1)

,
(A2)

where the limit process is necessary due to continuity of U1. Since U1 is uniformly distributed on [0, 1],
the denominator above equals δ1 and we have:

P(U3 ≤ u3, U2 ≤ u2|U1 = u1) = lim
δ1→0

C(u1 + δ1, u2, u3)− C(u1, u2, u3)

δ1
=

∂C3(u1, u2, u3)

∂u1
. (A3)

Here the last equality is the definition of the partial derivative.
By the same reasoning we get for the bivariate case:

P(U2 ≤ u2|U1 = u1) =
∂C2(u1, u2)

∂u1
. (A4)

Now using the formula P(A|BC) = P(AB|C)
P(B|C) we obtain:

P(U3 ≤ u3|U2 = u2, U1 = u1) = lim
δ2→0

P(U3≤u3,u2≤U2≤u2+δ2|U1=u1)
P(u2≤U2≤u2+δ2|U1=u1)

=

lim
δ2→0

P(U3≤u3,U2≤u2+δ2|U1=u1)−P(U3≤u3,U2≤u2|U1=u1)
P(U2≤u2+δ2|U1=u1)−P(U2≤u2|U1=u1)

.
(A5)

Using Equation (A3) and Equation (A4) it follows:

P(U3 ≤ u3|U2 = u2, U1 = u1) = lim
δ2→0

(
∂C3(u1,u2+δ2,u3)

∂u1
− ∂C3(u1,u2,u3)

∂u1

)
/δ2(

∂C2(u1,u2+δ2)
∂u1

− ∂C2(u1,u2)
∂u1

)
/δ2

. (A6)
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Taking the limit and using the definition of the second order partial derivative we finally obtain:

P(U3 ≤ u3|U1 = u1, U2 = u2) =

∂2C3(u1,u2,u3)
∂u1∂u2

∂2C2(u1,u2)
∂u1∂u2

. (A7)

Using mathematical induction, Equation (A7) can be generalized to d-dimensional case for any d.
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