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Abstract: An efficient reservoir operation technique plays a very important role in improving the
water resources and energy efficiency of reservoirs. In order to effectively avoid or alleviate the
“curse of dimensionality” of Multi-dimensional Dynamic Programming (MDP) in the application
of cascade reservoirs operation optimization (CROO) and keep a global convergence at the same
time, two dimension reduction methods are proposed in this paper. One is a hybrid algorithm
of MDP and a Progressive Optimality Algorithm (POA), named MDP-POA, which combines the
global convergence of MDP and the strong local search ability of POA. MDP-POA first takes the
global optimal trajectory of MDP in a low discrete degree as the initial trajectory of the POA, and
then implements further optimization to the obtained initial trajectory by the POA with a high
discrete degree, so as to avoid the “curse of dimensionality” of MDP in high discrete degree and
the dependency of the POA for the initial trajectory. The other is an improved MDP (IMDP), which
first constructs a corridor by the optimal trajectory of MDP in a lower discrete degree, and then
implements further optimization in the corridor by MDP with a relatively high discrete degree, so as
to avoid a large number of unnecessary calculations, and shorten the run-time effectively. In a case
study, the results of MDP-POA, IMDP, and MDP are compared and analyzed from the aspects of
power generation and run-time. The analysis indicates that the proposed MDP-POA and IMDP both
have a good application effect and are worthy of further promotion.

Keywords: cascade reservoirs; multi-dimensional dynamic programming; curse of dimensionality;
MDP-POA; IMDP; Qingjiang River

1. Introduction

As one of the most stable forms of renewable energy, hydropower energy can be commercially
developed and utilized on a large scale [1–4]. With the rapid development of cascade reservoirs, cascade
reservoirs operation optimization (CROO) is attracting the attention of more and more scholars all
over the world [5,6]. The global optimal solution of CROO has very important practical significance in
developing long-term optimal operation schemes and rules for cascade reservoirs [7,8]. So, it is very
necessary to solve the CROO problem correctly and reasonably. However, CROO is a multivariate
coupled and complicated nonlinear programming problem [9], which needs to consider not only the
hydraulic connection between upstream and downstream reservoirs, but also a lot of constraints. It has
the characteristics of high dimensionality, strong coupling, and uncertainty [10–12], and its solution is
full of difficulties and has always been the focus of many scholars’ research [13].
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Aiming at the solving of the CROO problem, a wide range of methods have been proposed over
the past decades, which mainly involve conventional optimization algorithms and various heuristic
random search algorithms [14,15]. The conventional methods include Linear Programming (LP) [16],
Nonlinear Programming (NLP) [17], Lagrangian Relaxation (LR) [18], Quadratic Programming
(QP) [19], and Multi-dimensional Dynamic Programming (MDP) [20,21]. They are all elitist algorithms,
and have already received different degrees of success in solving CROO problems. The modern
heuristic random search algorithms include the Genetic Algorithm (GA) [22], Particle Swarm
Optimization (PSO) [23], Ant Colony Optimization (ACO) [24], Fuzzy Neural Network (FNN) [25],
and the Differential Evolution algorithm (DE) [26–28]. These have been extensively used to solve the
CROO problem, and have also received a good application effect.

Among the above algorithms, MDP is a powerful optimization technique for CROO problems.
The most significant characteristic of MDP is that it is able to obtain a global optimal solution and
have no requirement for the initial trajectories. Moreover, MDP imposes no restrictions on the
unsmooth and nonconvex nature of CROO problems, which make it boast high popularity among the
conventional optimization techniques. Many evolutionary algorithms have been proved to possess
a global convergence, while as these algorithms are affected by a stochastic feature, they cannot
guarantee a global optimum with finite iterations [29]. However, although the MDP can solve CROO
problems with a global convergence, the high dimensionality, called the “curse of dimensionality”,
poses difficulties and limits its application in CROO problems, especially for large-scale hydropower
systems [30].

On the whole, there are three ways to avoid or alleviate the “curse of dimensionality” and
guarantee the global convergence of MDP. The first one is to improve MDP effectively on the premise
of guaranteeing a global convergence, so as to shorten the run-time. The second one is to implement
parallel computing by using multi-core processing technology. The third one is to combine MDP with
other algorithms which have a high computational efficiency, so as to make up for their deficiencies of
each other. Some scholars have done related research work in these aspects, as described below.

In terms of algorithm improvements, a variety of improved Dynamic Programming (DP)
algorithms have emerged and been used to avoid or alleviate the “curse of dimensionality”, such
as the Progressive Optimality Algorithm (POA) [31], Dynamic Programming with Successive
Approximation (DPSA) [32], Discrete Differential Dynamic Programming (DDDP) [33], and
Incremental Dynamic Programming (IDP) [34]. These improved algorithms can effectively avoid
the “curse of dimensionality” to a certain degree, but defects still exist. For example, POA is sensitive
to the initial trajectories, and may converge to a local optimum in some situations. DPSA and DDDP
are difficult to use to solve problems with non-convexity, and may also lead to a local optimum. In
addition, other related research has been done by some scholars. For example, Mousavi et al. [35]
reduced the run-time of an MDP model for a multi-reservoir system by diagnosing infeasible storage
combinations and removing them from further computations, which has a good effect within a certain
amount of hydropower stations, but the time consumption is still enormous and intolerable when the
scale of a hydropower system reaches a certain large degree. By taking advantage of the monotonic
relationship between reservoir storage volume and the optimal release decision. Zhao et al. [36]
proposed an improved DP model for reservoir operation optimization (ROO); however, the model
can only be applied to a reservoir operation with a concave objective function. Ji et al. [37] proposed
a novel multi-layer nested multi-dimensional dynamic programming (MNDP) based on a multi-layer
nested structure, but it was mainly used to deal with the problem of computer memory space and
computational complexity for MDP in CROO, and the computing time had not been reduced.

In recent years, parallel computing has been widely applied in the field of water resources [38,39].
Especially, in the field of CROO and MDP applications, there are several successful examples.
Dias et al. [40] improved the performance of stochastic dynamic programming by using parallel
processing techniques, and successfully applied it to the long-term operation planning of an electrical
power system. Li et al. [41] developed a parallel MDP algorithm to optimize the joint operation of
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a multi-reservoir system based on a distributed memory architecture and the Message Passing Interface
(MPI) protocol. Ji et al. [37] implemented parallel computing to the proposed MNDP algorithm, and
achieved a good application effect. In order to evaluate the parallel performance of different parallel
modes, Zhang et al. [11] proposed three kinds of parallel MDP algorithms. On the whole, these previous
studies demonstrate that run-time can be reduced a lot in optimization or simulation by using parallel
computing associated with proper parallelization strategies. However, with the increase of the number
of cores used in parallel computing, the parallel efficiency will reduce gradually; specifically, when the
number of cores is large, the parallel efficiency is generally very low.

In terms of hybrid applications, i.e., the combination usage of MDP with other algorithms,
much related research has been achieved, for example, a combination of the GA and DDDP approaches
(GA-DDDP) was proposed and developed to optimize a multiple reservoir system’s operation
by Tospornsampan et al. [42], and the significant advantage obtained from using GA-DDDP is
economizing on computational resources, as GA-DDDP does not require optimizing parameters
and the derivation of feasible initial trial trajectories. Lantoine and Russell [43] presented a hybrid
variant of the differential dynamic programming (HDDP) algorithm to solve constrained nonlinear
optimal control problems, and the hybrid method incorporates nonlinear mathematical programming
techniques to increase its efficiency. Zhang et al. [23] joined parallel deterministic dynamic
programming and a hierarchical adaptive genetic algorithm to solve an ROO problem. However, in
view of the above description and analysis, the effective existing hybrid applications have mainly
focused on improved dynamic programming algorithms (such as DDDP and IDP) or intelligent
optimization algorithms, and there are very few hybrid applications about the baseline MDP which
can converge to the optimal solution without an additional requirement of unsmooth, non-convexity,
and initial trajectories. Therefore, it has an important practical significance to carry out research of
dimension reduction methods for MDP.

In order to effectively avoid the “curse of dimensionality” of MDP and guarantee a global
convergence at the same time, this paper proposes two new dimension reduction methods for MDP
based on a structural and characteristics analysis, i.e., a hybrid algorithm of MDP and POA (named
MDP-POA), and an improved MDP (named IMDP). A detailed case study was provided in this paper
by taking the Qingjiang cascade reservoirs in China as an instance, and in order to evaluate the
performance of the proposed MDP-POA and IMDP, the results of MDP-POA, IMDP, and MDP were
compared and analyzed from the aspects of power generation and run-time. In addition, the authors
have analyzed the varying characteristics of the optimal solution for the proposed MDP-POA and
IMDP under different discretization levels, and provided the recommended discretization levels or
computing schemes for different conditions. The following part of this paper is organized as follows.
Section 2 presents the formulation of CROO problems. Section 3 introduces the principle of MDP
and the POA, and presents the optimization principle of MDP-POA and IMDP. Section 4 shows the
application of MDP-POA and IMDP in the cascade reservoirs of Qingjiang River in China, and the
results are analyzed and discussed in this section. Section 5 presents the conclusions.

2. Formulation of CROO Problems

Power generation is a significant benefit derived from a cascade reservoirs system. CROO aims at
maximizing the power generation by developing an optimal plan over the entire planning horizon,
while satisfying all kinds of physical and operational constraints. Generally, CROO is related to a given
operation of the hydropower stations for T stages as follows.

E = max
n

∑
i=1

T

∑
t=1

Ni
t · ∆t (1)

Ni
t = Ki · qi

t · Hi
t (2)
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where E is the total power generation over the entire planning horizon, unit: kWh; T is the number
of stages over the entire planning horizon; Ni

t is the output of the ith hydropower station in the tth
stage, unit: kW, and the reservoir indexes from upstream to downstream are 1, 2, ... , n in this paper;
Ki is the efficiency coefficient of the ith hydropower station; Hi

t is the average water level of the ith
hydropower station in the tth stage, unit: m, and it is determined by the beginning water level ht of
the tth stage of the reservoir, the end water level ht+1, and the downstream tail water level hdown, i.e.,
Ht = (ht + ht+1)/2 − hdown, while hdown is determined by the total outflow Qt of the reservoir in the tth
stage, and Qt happens to be determined by ht and ht+1. In addition, the reservoir water level h has
a one-to-one mapping relationship with the reservoir volume V, namely the reservoir curve of water
level–volume; ∆t is the duration of a stage, unit: h. CROO is subject to the following equality and
inequality constraints.

(1) Water volume balance:

qi
t =

(
Vi

t−1 −Vi
t

)
/3600∆t+ Ii

t + Qi−1
t −Wi

t − Evi
t (3)

where qi
t is the outflow through the turbines of the ith reservoir in the tth stage, unit: m3/s; Wi

t is the
abandoned water outflow through the flood outflow gate of the ith reservoir in the tth stage, unit: m3/s;
the total outflow Qi

t of the ith reservoir in the tth stage contains qi
t and Wi

t , unit: m3/s; Ii
t is the inflow

of the ith reservoir in the tth stage, unit: m3/s; Evi
t is the evaporation capacity of the ith reservoir in

the tth stage, unit: m3/s; and Vi
t is the storage volume of the ith reservoir in the tth stage, unit: m3.

Because we study the mid- and long-term operation of cascade reservoirs in this paper, the delay of
water flow between two reservoirs is not considered.

(2) Reservoir volume limits:
Vi

t,min ≤ Vi
t ≤ Vi

t,max (4)

where Vi
t,min is the lower limit of Vi

t , which usually corresponds to the dead level, unit: m3; Vi
t,max is

the upper limit of Vi
t , which usually corresponds to the flood control level in flood season and normal

level in dry season, unit: m3.

(3) Comprehensive utilization of water resources required at downstream reservoir limits:

Qi
t,min ≤ Qi

t ≤ Qi
t,max (5)

where Qi
t,min the lower limit of Qi

t, which is usually determined by the ecological flow of the
downstream river, unit: m3/s; and Qi

t,max is the upper limit of Qi
t, which is usually determined

by the channel capacity of the downstream river, unit: m3/s.

(4) Power generation limits:
Ni

t,min ≤ Ni
t ≤ Ni

t,max (6)

where Ni
t,min is usually determined by the allowed minimum output, unit: kW; and Ni

t,max is usually
determined by the installed capacity and expected output of the hydropower station, unit: kW.

(5) Boundary conditions limits:
Vi

0 = Vi
b

Vi
T = Vi

e
(7)

where Vi
0 is the storage volume of the ith reservoir at the beginning of the first stage, unit: m3; Vi

b is the
storage volume of the ith reservoir at the beginning of the entire planning horizon, unit: m3; Vi

T is the
storage volume of the ith reservoir at the end of the Tth stage, unit: m3; and Vi

e is the storage volume
of the ith reservoir at the end of the entire planning horizon, unit: m3.
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3. Methodologies

3.1. MDP and POA

DP can be effectively used to solve multi-stage decision-making problems recursively, and the
ROO problem can be regarded as a multi-stage decision-making problem by dividing the reservoir
operation into sub-operations on the basis of operation intervals [44,45]. A reverse recursion procedure
and a chronological order recursion procedure are involved in the application of DP to ROO problems.
In the reverse recursion procedure, starting from the last stage, the output or power generation is
calculated up to the first stage, and the optimal storage water level variations can be obtained at last by
the chronological order recursion procedure. The recursive equation for the tth stage of computation is
as follows [11].

f ∗t
(

VSb
t−1

)
= max

Dt

{
Nt

(
VSb

t−1, Qt

)
+ f ∗t+1

(
VSe

t
)}

f ∗T+1
(
VSe

T
)
= 0

 (8)

where Vt is the state variable; Qt is the decision variable, which is determined by beginning state VSb
t−1

and end state VSe
t ; Dt is the decision variables set in the tth stage; f ∗t

(
VSb

t−1

)
is the optimal cumulative

output of the beginning state Sb at the tth stage, unit: kW; and f ∗t+1
(
VSe

t
)

is the optimal cumulative
output of the beginning state Se at the (t + 1)th stage, unit: kW. The optimal cumulative output
mentioned above means the sum of the output from present stage t to last stage T in the optimal
output process.

Many variables and constraints are integrated into the procedure of solving a CROO problem,
because the number of reservoirs is often two or more in a CROO problem. If the number of discrete
points of storage volume for each reservoir is M for a cascade system consisting of n reservoirs, then
Mn combinations of these discrete points can be obtained. With reference to the reverse recursion
procedure and chronological order recursion procedure of DP in an ROO problem, we can get the
optimal combination of storage volume for each stage. Taking a hydropower station system consisting
of n reservoirs as an example, the combination principle of discrete storage volume is shown in Figure 1,
and the recursive equation of MDP can be formulated as follows.

F∗t (Vt−1) = max
Dt

{
Nt(Vt−1, Qi) + F∗t+1(Vt)

}
F∗T+1(VT) = 0

}
(9)

where Qt = (Q1
t ,Q2

t , . . . , Qn
t )′ is the decision variable vector; and Vt−1 = (V1

t−1,V2
t−1, . . . , Vn

t−1)′ is the
state variable vector. In formula (9), because of the discretization, V1

t is equivalent to (V1,1
t ,V1,2

t , . . . ,
V1,M

t ), V2
t is equivalent to (V2,1

t ,V2,1
t , . . . , V2,M

t ), and Vn
t is equivalent to (Vn,1

t ,Vn,2
t , . . . , Vn,M

t ); F∗t (Vt−1)

is the optimal cumulative output of a storage volume combination at the tth stage, unit: kW; and F∗t (Vt)

is the optimal cumulative output of a storage volume combination at the (t + 1)th stage, unit: kW.
The detailed exposition on the calculation principles and steps of MDP has been recorded in the

literature by Ji [37] and Zhang [11].
The POA is a powerful improved dynamic programming in cascade reservoirs operation

optimization, which was first proposed by the Canadian researchers N.G. F. Sancho and H. R. Harvson
for solving multi-stage dynamic programming problems in 1975. It transforms a complex multi-stage
decision problem into a series of two-stage decision-making problems, which simplifies the solution of
multi-dimensional problems and decreases their computational complexity. The calculation steps of
the POA in solving a CROO model are as follows.

Step 1 Obtain the initial operation trajectories of storage volume by other conventional methods,
these can be represented as {V0(0), V1(0), . . . , VMum(0)}, where Mum is equal to the number
of reservoirs multiplied by the number of operation stages in a year, i.e., Mum = nT.
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Step 2 Within the permitted scope, discretize the point V0(0), into {V0
0 (0), V1

0 (0), . . . ,VM
0 (0)}, where

M is the number of discrete points for an operation point on the initial operation trajectories of
storage volume, and the value of the other points on the initial trajectories are fixed.

Step 3 For different discrete points of V0(0), which are {V0
0 (0), V1

0 (0), . . . , VM
0 (0)}, implement the

simulation calculations respectively by using long series runoff data. Find out the point of
V∗0 (0) that can maximize the power generation of all operation stages of the cascade reservoirs,
then update V0(0) with V∗0 (0), and save it as V0(1). The power generation in the simulation
calculation can be obtained by formula (10), in which k represents the serial number of discrete
points

E = max


[

Ni
t(k) + Ni

t+1(k)
]
· ∆t +

n

∑
i′ = 1
i′ 6= i

T

∑
t′ = 1,

t′ 6= t, t + 1

Ni′
t′ · ∆t; k = 1, 2, . . . , M


(10)

Step 4 In the same way, perform the Steps 2 and 3 to the other points on the initial operation
trajectories, and end up with new operation trajectories {V0(1), V1(1), · · · , VMum(1)}.

Step 5 Compare the power generation between the initial operation trajectories {V0(0), V1(0), . . . ,
VMum(0)} and the new operation trajectories {V0(1), V1(1), . . . , VMum(1)}; if the error meets the
accuracy requirements, then stop counting, otherwise take {V0(1), V1(1), . . . , VMum(1)} as the
new initial operation trajectories, and repeat Step 2 to Step 4.Water 2017, 9, 634 6 of 19 
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Figure 1. The discretization procedure of cascade reservoirs’ storage volume and their combination
rule in Multi-dimensional Dynamic Programming (MDP).

3.2. Hybrid Application of MDP and POA

As we know, for a large-scale cascade hydropower system, the calculation amount of MDP in
a high discrete degree will be very huge, which can lead to a very long run-time, while in a low discrete
degree, it cannot guarantee the accuracy of the final solution. As described the introduction, the POA
is sensitive to the initial trajectories, but it has a strong local search ability and fast computing speed.
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Therefore, if we take the global optimal trajectories of MDP in a low discrete degree as the initial
trajectories of the POA, and implement further optimization to the obtained initial trajectories by the
POA with a high discrete degree, then we can effectively avoid their defects and play their advantages.
That is to say, we first obtain the relatively good initial trajectories for the POA by MDP in a short time,
and then optimize the initial trajectories further by the POA, which can give full play to its local search
ability and only take a very short time. Described above is the basic principle of the proposed hybrid
algorithm in this paper, i.e., MDP-POA.

Taking the optimization calculation of one reservoir as an example, the principle of MDP-POA is
shown in Figure 2. For cascade reservoirs, its principle is basically identical to Figure 2. In Figure 2,
M1 is the number of discrete points for MDP optimization, and it usually takes a small value, such as
20 or 30. M2 is the number of discrete points for POA optimization, and it usually takes a large value,
such as 100 or 200.
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Optimality Algorithm (POA) in MDP-POA.

The calculation steps of MDP-POA in solving a CROO model are similar to that of the POA. The
difference is in the first step, where the POA obtains the initial operation trajectories of the storage
volume by conventional methods, but we obtain the initial optimal operation trajectories of the storage
volume by MDP with a low discrete degree (such as 10, 20, or 30) in MDP-POA.

3.3. Improved MDP

There is a “curse of dimensionality” problem for MDP, mainly because it is a traversal optimization
process, which means that all combinations of storage volume in the feasible region are calculated. The
calculation amount of MDP is usually very huge when the number of discrete points is large. However,
what we ultimately need is just an optimal storage volume process line; not all the calculations in the
traversal optimization are required for us in the end. Therefore, the question of how to reduce the
unnecessary calculations is the key to shorten the run-time of MDP. The essence of shortening the
run-time for MDP is to reduce the amount of discrete combinations of storage volume in the calculation.

On the whole, there are two ways to decrease the discrete combinations. The first way is to
implement the calculation with a low discrete degree, which will reduce the number of total discrete
combinations, but it will affect the precision of the final solution. The second way is to implement the
calculation with a high discrete degree, but remove the unlikely optimal solution region first. However,
the optimal result of MDP in a current discrete degree is related to all of the discrete combination
calculations. So, before the traversal calculation, we cannot eliminate any discrete combinations that
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we think are unlikely optimal solution regions in the calculation, and we can eliminate them only
after we make sure of it. Therefore, we can implement the calculation with a low discrete degree first,
which is used to determine the generally unlikely optimal solution region in a short time, and remove
it, and then implement further optimization for the rest of the region with a relatively high discrete
degree, so as to ensure the accuracy of algorithm. The rest of the feasible region mentioned above is
actually a corridor constructed through the optimal trajectories of MDP with a low discrete degree,
and the further optimization also described above is actually implemented in the corridor by MDP
with a relatively high discrete degree. Described above is the basic principle of the proposed improved
MDP in this paper, i.e., IMDP.

Taking the optimization calculation of one reservoir as an example, the principle of IMDP is
shown in Figure 3. For cascade reservoirs, its principle is basically identical to Figure 3. In Figure 3,
the corridor size can be two or more discrete units around the initial optimal trajectories, and the times
of corridor optimization can be implemented once or several times.

In contrast, there are two differences between IMDP and Incremental Dynamic Programming
(IDP). The first is that IDP requires an initial operation trajectory; however, IMDP directly uses
the optimal solution of MDP in a low discrete degree as the initial operation trajectory of MDP in
further optimization with a high discrete degree, and it does not need to find the initial solution
by other methods. The second is that IMDP generally requires only one-time corridor optimization
to achieve a good result, while IDP may require multiple iterations, and so its computation time is
generally longer.
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of MDP in a low discrete degree (such as 10, 20, or 30), and set up some IMDP schemes, for example, 
schemes “IMDP: 10 × (20/2)”, “IMDP: 10 × (40/4)”, “IMDP: 20 × (10/2)”, and “IMDP: 20 × (20/4)” as 
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discrete points in the first-stage calculation and 20 discrete points in the second-stage calculation, and 
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Figure 3. Potential optimal solution region derivation and corridor construction of Improved
Multi-dimensional Dynamic Programming (IMDP).

According to the above principle of IMDP, we can construct the corridor by the optimal result
of MDP in a low discrete degree (such as 10, 20, or 30), and set up some IMDP schemes, for example,
schemes “IMDP: 10 × (20/2)”, “IMDP: 10 × (40/4)”, “IMDP: 20 × (10/2)”, and “IMDP: 20 × (20/4)”
as shown in Figure 4, in which the discrete degree of the schemes is equivalent to the discrete degree
of MDP with 100 discrete points. Taking the IMDP scheme “IMDP: 10 × (20/2)” for example, it has
10 discrete points in the first-stage calculation and 20 discrete points in the second-stage calculation,
and the 20 discrete points are distributed in two discrete units uniformly, which can be demonstrated
by the first figure in Figure 4. So, the discrete degree of scheme “MDP: 100” and “IMDP: 10 × (20/2)”
are the same, or at least the discrete degree of the IMDP scheme is not lower than that of MDP. The
meaning of other IMDP schemes in Figure 4 are similar to scheme “IMDP: 10 × (20/2)”.
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in MDP.

The calculation steps of IMDP in solving a CROO model are similar to that of MDP, which can be
briefly summarized as follows.

Step 1 Obtain the initial optimal operation trajectories of the storage volume by MDP in a low discrete
degree (such as 10, 20, or 30), which can be represented as {V0(0),V1(0), . . . , VMum(0)}.

Step 2 Construct a corridor through the initial optimal operation trajectories of MDP obtained
in Step 1.

Step 3 Within the constructed corridor scope, discretize every point in {V0(0),V1(0), . . . , VMum(0)} by
another discrete degree.

Step 4 In the constructed corridor, obtain the optimal storage volume combination for each stage by
MDP with a reverse recursion calculation and a chronological order recursion calculation.

4. Case Study

4.1. Basic Data

The Qingjiang River is one of the main tributaries of Yangtze River below the Three Gorges
Dam [46], and its basin area is 17,600 km2. Its mean annual rainfall, runoff depth, and annual average
discharge are approximately 1460 mm, 876 mm, and 423 m3/s, respectively. The total length of the
main stream is 423 km with a hydraulic drop of 1430 m [47]. There are three hydropower stations
on the main stream, i.e., Shuibuya, Geheyan, and Gaobazhou from upstream to downstream. Two
hydropower stations are under regular operation (i.e., Shuibuya and Geheyan), and thus they are
selected as the focus of the research in this paper. The basic parameters of the two hydropower stations
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are shown in Table 1, and the plane sketch map of the Qingjiang River cascade hydropower stations is
shown in Figure 5 [48].

Table 1. Parameters of the Shuibuya and Geheyan hydropower stations in Qingjiang River.

Items Unit Shuibuya Geheyan

Total storage 108 m3 42 34
Flood control storage 108 m3 5 5

Crest elevation m 409 206
Normal water level m 400 200

Flood limited water level m 391.8 192.2
Install capability MW 1840 1212

Guaranteed output MW 310 187
Output coefficient - 8.5 8.5
Regulation ability - Multi-year Annual
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Figure 5. Plane sketch map of the Qingjiang cascade hydropower stations.

The long series runoff data of this cascade system is available from 1959 to 2000, a total of 41 years.
For this study, the years of 1967, 1999, and 1975 are selected as the typical wet, normal, and dry years,
respectively. The runoff data for each typical year is shown in Table 2.

Table 2. Typical runoff data for each month in the wet, normal, and dry years (m3/s).

Month
Dry Year Normal Year Wet Year

Shuibuya Geheyan Shuibuya Geheyan Shuibuya Geheyan

January 208 69 172 57 244 81
February 228 75 322 106 266 88

March 235 77 426 140 346 114
April 608 200 258 84 761 250
May 1431 471 529 174 912 301
June 1157 381 1772 582 1826 601
July 669 219 1716 563 6193 2036

August 280 93 1800 591 1552 511
September 216 71 541 178 2730 898

October 404 133 2305 758 2452 806
November 398 131 642 212 697 230
December 178 59 427 140 174 57
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4.2. Results and Analysis

According to the data provided above, we solve the CROO problem described in Section 2 by the
proposed MDP-POA and IMDP. In the optimization calculation, the length of the operation stage is set
to 10 days, the planning horizon is set to one year, the storage water level at the beginning of the entire
planning horizon is set to normal level for each reservoir, and no restrictions are set for the end. The
upper limit of the water level for each reservoir is flood-limited water level in flood season and normal
level in dry season, and the lower limit for each reservoir is the dead level.

In order to comparatively analyze the dimension reduction effect of MDP-POA and IMDP with
the baseline MDP, we established five schemes for MDP, and the number of discrete points for these
five schemes is 10, 20, 30, 60, and 100, respectively. Ten, 20, and 30 are the numbers of discrete points
for the low discrete degree schemes, which are mainly used to construct the corridor for IMDP or
derive the initial trajectories for the POA in MDP-POA. Sixty and 100 are the numbers of discrete
points for the high discrete degree schemes, which are mainly used for comparative analysis.

In the optimization calculation of MDP-POA, we took the optimal solution of MDP in a low
discrete degree as the initial operation trajectories of the POA, and established 13 schemes in the POA
optimization stage. The number of discrete points for each scheme is 10, 20, 30, 40, 60, 80, 100, 120,
140, 160, 200, 300, and 400, respectively. In addition, it is important to note that the number of discrete
points used in the POA optimization stage should be greater than that in the MDP optimization stage.

In the optimization calculation of IMDP, we constructed the corridor by the optimal results
of MDP in a low discrete degree (i.e., 10, 20, or 30), and set up four IMDP schemes, as shown in
Figure 4. The discrete degree of the four schemes is equivalent to the discrete degree of MDP with
100 discrete points.

4.2.1. MDP-POA

The detailed calculation results of MDP and MDP-POA in the dry year, the normal year, and the
wet year are shown in Tables 3–5, respectively, where the term “MDP with 10” in the tables means
that the optimization result of MDP with 10 discrete points is used as the initial trajectories of POA in
MDP-POA optimization. The meaning of “MDP with 20” and “MDP with 30” are similar to “MDP
with 10”. The places with bold font or bold italics font in Tables 3–5 are the key points to extract the
data for Table 6.

Table 3. Detailed calculation results of MDP and MDP-POA in the dry year.

Number of
Discrete
Points

MDP MDP-POA (MDP with 10) MDP-POA (MDP with 20) MDP-POA (MDP with 30)

Time
(min)

Power
Generation
(108 kWh)

Time
(min)

Power
Generation
(108 kWh)

Time
(min)

Power
Generation
(108 kWh)

Time
(min)

Power
Generation
(108 kWh)

10 0.0271 64.6816 - - - - - -
20 0.3242 64.7359 0.0375 64.6817 - - - -
30 1.5507 64.7549 0.0391 64.7117 0.3359 64.7359 - -
40 - - 0.043 64.7233 0.3364 64.7471 1.5585 64.7549
60 23.3055 64.7711 0.0734 64.7270 0.3419 64.7560 1.5681 64.7594
80 – – 0.0819 64.7334 0.3551 64.7609 1.5819 64.7622
100 174.1452 64.7745 0.0939 64.7349 0.3679 64.7618 1.5887 64.7670
120 - - 0.1639 64.7384 0.3931 64.7644 1.5962 64.7673
140 - - 0.1849 64.7391 0.4051 64.7651 1.6048 64.7677
160 - - 0.2224 64.7402 0.4157 64.7671 1.6136 64.7679
200 - - 0.2528 64.7403 0.4191 64.7679 1.6266 64.7698
300 - - 0.5302 64.7434 0.5221 64.7688 1.6932 64.7709
400 - - 0.8485 64.7442 0.6271 64.7691 1.8133 64.7722
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Table 4. Detailed calculation results of MDP and MDP-POA in the normal year.

Number of
Discrete
Points

MDP MDP-POA (MDP with 10) MDP-POA (MDP with 20) MDP-POA (MDP with 30)

Time
(min)

Power
Generation
(108 kWh)

Time
(min)

Power
Generation
108 kWh)

Time
(min)

Power
Generation
(108 kWh)

Time
(min)

Power
Generation
(108 kWh)

10 0.0247 99.5278 - - - - - -
20 0.3229 99.6715 0.0356 99.5938 - - - -
30 1.6677 99.6997 0.04 99.6386 0.3317 99.6715 - -
40 - - 0.0489 99.6526 0.3390 99.6829 1.6799 99.6997
60 24.8702 99.7149 0.0609 99.6598 0.3453 99.6951 1.6863 99.7074
80 - - 0.0731 99.6700 0.3541 99.7041 1.6919 99.7150
100 174.893 99.7227 0.0876 99.6726 0.3622 99.7123 1.7078 99.7209
120 - - 0.0954 99.6776 0.3926 99.7129 1.7384 99.7227
140 - - 0.1056 99.6779 0.4046 99.7163 1.7411 99.7247
160 - - 0.117 99.6792 0.417 99.7165 1.7454 99.7251
200 - - 0.1662 99.6808 0.4389 99.7168 1.7824 99.7261
300 - - 0.2267 99.6829 0.4953 99.7198 1.8393 99.7272
400 - - 0.3661 99.6879 0.5954 99.7214 1.9009 99.7288

Table 5. Detailed calculation results of MDP and MDP-POA in the wet year.

Number of
Discrete
Points

MDP MDP-POA (MDP with 10) MDP-POA (MDP with 20) MDP-POA (MDP with 30)

Time
(min)

Power
Generation
(108 kWh)

Time
(min)

Power
Generation
(108 kWh)

Time
(min)

Power
Generation
(108 kWh)

Time
(min)

Power
Generation
(108 kWh)

10 0.0252 141.9756 - - - - - -
20 0.3323 142.1347 0.0315 142.1243 - - - -
30 1.5837 142.1806 0.034 142.1629 0.3497 142.1347 - -
40 - - 0.045 142.1748 0.3571 142.1805 1.6003 142.1806
60 23.6526 142.2406 0.0541 142.2023 0.3614 142.1951 1.6139 142.2271
80 - - 0.0645 142.2081 0.3783 142.2027 1.6217 142.2302
100 176.7312 142.2444 0.0758 142.2128 0.3804 142.2028 1.6336 142.2359
120 - - 0.0822 142.2135 0.3895 142.2072 1.6409 142.2361
140 - - 0.1050 142.2153 0.3981 142.2112 1.6511 142.2433
160 - - 0.1102 142.2225 0.4223 142.2130 1.675 142.2453
200 - - 0.137 142.2227 0.4439 142.2166 1.6994 142.2483
300 - - 0.1979 142.2237 0.5276 142.2177 1.7829 142.2494
400 - - 0.2483 142.2263 0.5546 142.2179 1.8099 142.2512

Through the detailed calculation results of MDP and MDP-POA in Tables 3–5, we can extract
the relevant data that can indicate that MDP-POA is superior to MDP (with 60 or 100 discrete points)
on power generation, including the initial trajectories, the time consumption for initial trajectories,
the number of discrete points for the POA, the total computation time, and the power generation,
as shown in Table 6, which is mainly used for contrastive analysis between MDP and MDP-POA.

Table 6. Extracted data of MDP and MDP-POA from Tables 3–5.

Year

MDP MDP-POA

Number of
Discrete
Points

Time (min)
Power

Generation
(108 kWh)

Initial Line Time1
(min)

Number of
Discrete
Points

Time2
(min)

Total Time
(min)

Power
Generation
(108 kWh)

Dry year 60 23.3055 64.7711 MDP with 30 1.5507 400 0.2626 1.8133 64.7722
100 174.1452 64.7745 none none none none none none

Normal year 60 24.8702 99.7149
MDP with 20 0.3229 140 0.0817 0.4046 99.7163
MDP with 30 1.6677 80 0.0242 1.6918 99.7150

100 174.8930 99.7227 MDP with 30 1.6677 120 0.0707 1.7384 99.7227

Wet year 60 23.6526 142.2406 MDP with 30 1.5837 140 0.0674 1.6510 142.2433
100 176.7312 142.2444 MDP with 30 1.5837 160 0.0913 1.6749 142.2453

In Table 6, the “Time1” of MDP-POA column represents the time used to obtain the initial
trajectories for POA optimization by MDP, and “Time2” represents the time used in POA optimization.
“Total time” is the sum of “Time1” and “Time2”, i.e., the run-time of MDP-POA. Several conclusions
can be derived from Table 6, as shown below.
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First of all, when we take the calculation results of MDP with 10 discrete points as the initial
trajectories of POA, no matter how high the number of discrete points we take in POA optimization,
there is no case that the MDP-POA on power generation is better than MDP in a high discrete degree
(60 and 100). Thus, it can be seen that the dependency of the POA for the initial trajectories is very
strong, and it has a great influence on the final results.

Second, in the dry year, the power generation of MDP with 100 discrete points is 64.7745× 108 kWh.
However, in the optimization results by MDP-POA, there is no case that the power generation is greater
than 64.7745 × 108 kWh when we take the results of MDP with 10, 20, and 30 discrete points as the
initial trajectories of the POA. So, there is no data for MDP-POA to match the results of MDP with
100 discrete points in the dry year, and they are marked with “none” in Table 6.

However, in the above two cases, although the power generation of MDP-POA is slightly
insufficient compared with MDP, the run-time is greatly shortened. In the other cases, when we
take the results of MDP with a low discrete degree (20 or 30) as the initial trajectories of the POA, the
results of MDP-POA on power generation and run-time are both better than the one-off optimization
results by MDP with a high discrete degree (60 or 100). The detailed contrasts are as follows.

Although the increment is small, the power generation of MDP-POA is better than MDP. For
example, (1) “64.7722” obtained by MDP-POA is greater than “64.7711” obtained by MDP with
60 discrete points in the dry year, (2) “99.7163” obtained by MDP-POA is greater than “99.7149”
obtained by MDP with 60 discrete points in the normal year, (3) “142.2433” obtained by MDP-POA is
greater than “142.2406” obtained by MDP with 60 discrete points in the wet year, and (4) “142.2453”
obtained by MDP-POA is greater than “142.2444” obtained by MDP with 100 discrete points in the
wet year.

On the run-time, the results of MDP-POA are much better than MDP. For example, corresponding
to the data in Table 6, it can be seen that 1.8133 is much less than 23.3055 (13 times), 0.4046 is much
less than 24.8702 (61 times), 1.6918 is much less than 24.8702 (15 times), 1.7384 is much less than
174.8930 (101 times), 1.6510 is much less than 23.6526 (14 times), and 1.6749 is much less than 176.7312
(105 times). On the whole, the calculation time of MDP can be reduced to about 1/10 to 1/100 of the
original by MDP-POA.

Thus, it can be seen that the proposed MDP-POA in this paper has a very good application effect,
and it can greatly shorten the run-time of MDP on the premise of ensuring the power generation is not
less than MDP. In addition, from Table 6, it can be seen that MDP-POA can obtain a relatively better
result when the initial operation trajectories are obtained by MDP with 30 discrete points, which means
that when the number of discrete points of MDP is 30, on the one hand, it can be guaranteed that the
final result of MD-POA is better than that of MDP, and on the other hand, the calculation time is also
stable and within an acceptable range. For the discrete points of POA optimization in MDP-POA, the
general value is about 125 when the number of discrete points of MDP is 30, which is the average of 80,
120, 140, and 160 in Table 6.

4.2.2. IMDP

Corresponding to the three typical years, the calculation results of each IMDP scheme are shown
in Table 7 below. The bold font in Table 7 means the power generation of scheme “IMDP: 10 × (20/2)”
and “IMDP: 20 × (10/2)” is slightly insufficient compared with scheme “MDP:100”.

In Table 7, the scheme “MDP: 100” is the baseline MDP scheme, which is the one-time calculation
mode and means that the MDP has 100 discrete points in the whole calculation. The schemes “IMDP:
10 × (20/2)”, “IMDP: 20 × (10/2)”, “IMDP: 10 × (40/4)”, and “IMDP: 20 × (20/4)” are the IMDP
schemes, and they are in the two-time calculation mode.

From Table 7, it can be seen that the results of scheme “IMDP: 10 × (40/4)” and scheme “IMDP:
20 × (20/4)” on run-time and power generation are both better than scheme “MDP: 100” in the dry
year, the normal year, and the wet year. Especially on run-time, the superiority of IMDP is significant,
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as the run-time of “IMDP: 10 × (40/4)” can be reduced to about 1/30 of “MDP: 100”, and the run-time
of “IMDP: 20 × (20/4)” can be reduced to about 1/240 of “MDP: 100”.

Table 7. Results of MDP and IMDP.

Dry Year Normal Year Wet Year

Scheme Time
(min)

Power
Generation
(108 kWh)

Scheme Time
(min)

Power
Generation
(108 kWh)

Scheme Time
(min)

Power
Generation
(108 kWh)

MDP: 100 174.1452 64.7745 MDP: 100 174.8930 99.7227 MDP:100 176.7312 142.2444

IMDP:
10 × (20/2) 0.4295 64.7552 IMDP:

10 × (20/2) 0.4425 99.6990 IMDP:
10 × (20/2) 0.4285 142.2450

IMDP:
20 × (10/2) 0.3567 64.7738 IMDP:

20 × (10/2) 0.3551 99.7281 IMDP:
20 × (10/2) 0.3635 142.2373

IMDP:
10 × (40/4) 5.8605 64.7752 IMDP:

10 × (40/4) 5.9122 99.7270 IMDP:
10 × (40/4) 5.7351 142.2494

IMDP:
20 × (20/4) 0.7389 64.7746 IMDP:

20 × (20/4) 0.7402 99.7285 IMDP:
20 × (20/4) 0.7337 142.2466

For the scheme “IMDP: 10 × (20/2)” and the scheme “IMDP: 20 × (10/2)”, although the power
generation is slightly insufficient compared with scheme “MDP:100” in some cases (as shown by bold
font in Table 7), they are better than scheme “MDP: 100” in most cases, and their superiority is also very
significant on run-time, as the run-time of “IMDP: 10 × (20/2)” can be shortened to about 1/400 of
“MDP:100”, and the run-time of “IMDP: 20 × (10/2)” can be shortened to about 1/500 of “MDP: 100”.

Therefore, on the whole, the proposed IMDP in this paper can not only greatly shorten the run-time
of MDP, but also can effectively guarantee the global convergence of the algorithm. In addition, from the
comparison of the four IMDP schemes, it can be seen that the schemes “IMDP: 10 × (40/4)” and “IMDP:
20 × (20/4)” are better than schemes “IMDP: 10 × (20/2)” and “IMDP: 20 × (10/2)”. That is to say, in
general, the wider the constructed corridor is in the optimization calculation, the better the final results
are at the end. Although the run-time will generally increase with the enlargement of the corridor size, it
is still much less than that of MDP. In addition, from the perspective of computing time, comparing the
scheme “IMDP: 10 × (40/4)” with the scheme “IMDP: 20 × (20/4)”, it can be found that the computing
time of the “IMDP: 10 × (40/4)” scheme is much bigger than that of the “IMDP: 20 × (20/4)” scheme, so
the scheme “IMDP: 20 × (20/4)” is superior to “IMDP: 10 × (40/4)”, which indicates that it is best to set
the same discrete degree in the two-stage calculation of IMDP when using it to solve a CROO problem,
such as the 20 to 20 in scheme “IMDP: 20 × (20/4)”. Such a parameter setting can not only achieve the
final expected discrete degree, but also can be very good to avoid the unevenness of the discrete degree
in the two-stage calculation of IMDP, which often results in a huge amount of total computation.

Taking the schemes “IMDP: 10 × (40/4)” and “IMDP: 20× (20/4)” as examples, the storage water
level variations of Shuibuya and Geheyan reservoir in the three typical years are shown in Figures 6
and 7, respectively. In the two figures, the “Up reservoir” represents the Shuibuya reservoir, and the
“Down reservoir” represents the Geheyan reservoir. The green line (MDP schemes) in Figures 6 and 7
cannot be seen sometimes, because it is covered by the red line (IMDP schemes).
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From Table 7, it can be seen that the power generation of IMDP is worse than MDP in some cases.
The reason is that the constructed corridor by the calculation result of MDP does not cover the optimal
solution of MDP with 100 discrete points. In addition, as we know, MDP has a global convergence
which was proved [49], and its calculation results must be the optimal value under a certain discrete
degree. However, from Table 7, we can see that the power generation of IMDP is often greater than
MDP. The reason for this phenomenon is that there are boundary constraints which make the discrete
degree in some parts of the corridor higher than the discrete degree of MDP with 100 discrete points.
In fact, for all of the three typical years, this situation often happens in the dry season.

In addition, when comparing the results from this study with the research results in other
literature, it can be found that the proposed MDP-POA and IMDP in this paper have a great advantage
in computing time. For example, in the literature by Ji et al. [37], the computing time of MNDP is
significantly greater than that of MDP, while from the Tables 6 and 7, it can be found that the computing
time of MDP-POA and IMDP are much smaller than that of MDP on the premise of ensuring the quality
of solution, which means that the MDP-POA and IMDP have great advantage in computing time
compared to the MNDP method. For the parallel MDP provided in the literature by Zhang et al. [11],
in solving the joint optimization of two reservoirs with a discrete degree of 48, its computing time of
the three kinds of parallel modes is between 2 and 4 min, however, for the IMDP algorithm proposed
in this paper, besides the scheme “IMDP: 10 × (40/4)”, the computing time of the rest of the schemes
is less than 1 min. Addtionally, it is important to note that the discrete degree of IMDP in this paper is
equivalent to 100, whose number of combinations of storage volume is much bigger than that of 48 in
the parallel MDP; moreover, IMDP is a serial calculation mode and only one central processing unit
(CPU) core is needed in the calculation, while the calculation of the parallel MDP calls over a dozen
CPU cores. Therefore, in general, the IMDP proposed in this paper is better than the parallel MDP
provided in the literature by Zhang et al. [11].

5. Conclusions

Aiming at the “curse of dimensionality” problem of MDP, this paper proposed two dimension
reduction methods after a characteristic analysis of the MDP algorithm, i.e., MDP-POA and IMDP. The
Qingjiang cascade reservoirs were selected as a study case, with conclusions summarized as follows.

(1) The two methods both can greatly shorten the run-time of baseline MDP and effectively hold its
optimality to a certain extent. Although the incremental power generation is not significant, the
run-time reduction is especially significant; MDP-POA can shorten the run-time to around 1/10
to 1/100 of the baseline MDP, and IMDP can shorten the run-time to around 1/30 to 1/500 of the
baseline MDP.

(2) For MDP-POA, the higher the discrete degree is in the MDP optimization stage, the better the
results are by the POA optimization. For IMDP, the wider the constructed corridor is in the
optimization calculation, the better the final results are at the end. Although the run-time will
generally increase with the augment of the discrete degree or the enlargement of the corridor
size, the superiorities of MDP-POA and IMDP are still significant compared with MDP.

(3) There is little difference on power generation between MDP-POA and IMDP, but on run-time,
IMDP is better than MDP-POA.

In most cases, the power generation of MDP-POA and IMDP is better than MDP, but is insufficient
in some cases, which indicates that the proposed algorithms still have a certain deficiency. So, there
is still a lot of work that needs to be done in the future. For practical application, more advanced
improvements and optimization designs for the two algorithms need to be further studied. For the
validity of the proposed methods for other reservoirs, more case studies need to be carried out.
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