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Abstract: Alkaline flocculation has been considered as a potential candidate to remove
algae and eutrophic substances from water. A number of researches using low-cost and
environmentally friendly methods have been suggested to optimize removal efficiency. In this study,
a calcium-containing waste oyster shell, as an environmentally friendly substance, has been used to
treat phosphorous, a eutrophic substance, and to remove algae from the fresh water simultaneously.
The X-ray Fluorescence (XRF) analysis showed that CaO was a major phase in a raw oyster shell,
which played an important role for flocculation of phosphorous as well as algae. In order to
eliminate the algae or phosphorous effectively, oyster shell was calcined at 1000 ◦C and hydrated
in water. The slurry of hydrated calcined oyster shell, from 5 g/L to 12.5 g/L, was utilized in
this experiment, where the experimental results were compared with that of dolomite. A series of
experimental investigations, such as pH and turbidity changes using the water quality analyzer and
UV-Visible spectroscopy (UV-Vis), demonstrated that the algae were efficiently removed. In addition,
total phosphorous (TP) and total nitrogen (TN) analyses at different amounts of slurries of the
hydrated calcined oyster shell showed that almost all the phosphorous was removed at 7.5 g/L of
hydrated oyster shell, but due to the high solubility of nitrogen compounds, no obvious effect for
the removal of nitrogen was observed. Furthermore, powder X-ray diffractions (PXRD) showed that
Ca(OH)2 compounds were transformed to the phosphate compound, suggesting that the oyster shell
caused flocculation by chemically forming with phosphorous ions.
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1. Introduction

For several decades, algal blooms by the eutrophication in a fresh water have been considered as a
steadily generated worldwide issue, threatening aquatic life, human health, water quality, and fishing
operation [1–6]. As examples, in China, main rivers and lakes, such as Yangtz River, Songhua River,
Wuhan east lake, and Taihu lake, have suffered from extensive algal bloom, raising a problem for
drinking water [7]. Additionally, it was reported that the Arctic is melting due to snow algae [8],
and researchers in Greenland have been figuring out how algae has sped up the rate at which the ice is
melting [9]. In particular, some Asian and developing countries, including Vietnam and South Korea,
have been going through severe environmental and social problems due to algal bloom [10–12].

Algae require diverse nutrients including nitrogen, oxygen, phosphorus, silicon, and iron,
but populate with feeding mostly phosphorus (P) and nitrogen (N) as major nutrients. P and N
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in water mainly arise from the increase of contaminants discharged from sewage and wastewater
according to industrialization, leading to a growth of algae by eutrophication.

It has been known that two approaches should be required in order to prevent algae from
growth in fresh water. The first is to remove algae using various physical and chemical methods
including a waterwheel, chemical reagent, red clay, and ultrasonic waves. The other is to eliminate
N and P elements causing eutrophication by several methods, such as the chemical coagulation and
precipitation [13–21]. Even though various possible methods to treat eutrophication or eliminate algae
have been suggested, due to some challenges in cost or efficiency, no best method has been proposed
until now.

In recent years, a series of researches using environmentally friendly methods for water treatment,
such as the removal of algae or eutrophic substances and heavy metals, have been intensively
studied [22–28]. As a few examples, Pan et al. demonstrated that the cationic starch using corn
achieves effective removal of algal cells by means of charge neutralization [22]. In addition, chitosan
modified soil was utilized as a biodegradable reagent to flocculate the algal cell [23]. Furthermore,
Ferhat et al. proved that heavy metals such as copper and zinc were effectively adsorbed by using a
modified clay and chitosan [28]. During our previous research for synthesis of precipitated calcium
carbonate (PCC) using the oyster shell [29], our group has considered that waste oyster shell can be an
environmentally friendly reagent for removing algae or eutrophic substances. It has been reported that
hundreds of tons of waste oyster shells are thrown away to temporary storage every year in a few of
countries including South Korea and China, which has led to social and environmental issues [30–32].
Since the shell of shellfish possess the Ca element as one of their major components, it can be a potential
candidate for the removal of algae or elimination of eutrophic substances by using coagulation and
precipitation methods [33,34]. In those cases, the Ca2+ ion can flocculate the algae by forming an ionic
bond with CO2 or CO3

2− on the surface of the algae or can be crystallized with PO4
3− or NO3

− ions
to form a few ionic compounds in the solution. In addition to being a novel approach for reducing the
environmental pollution itself as well as eliminating algae or eutrophic substances simultaneously,
the cheap and renewable oyster shell can be a more powerful candidate than that of the other already
suggested reagents. As a preliminary test, our group has first attempted to use oyster shell as an
environmentally friendly substance to treat algae [35], but the article was more focused on the synthesis
of precipitated calcium carbonate (PCC) by the oyster shell than the analysis for the removal of algae,
and detailed experimental and theoretical investigations were not provided.

In this article, we first discuss the experimental and theoretical investigations for the elimination
of phosphorous as well as algae by using an oyster shell. The raw oyster shell was further calcined and
hydrated to maximize the reactivity in the algal solution. A series of turbidity, UV-Visible spectrum
(UV-Vis), total phosphorous (TP), and total nitrogen (TN) analyses at different amount of slurries of
the hydrated calcined oyster shell were provided. In addition, the compounds before and after the
reaction were characterized by the powder X-ray diffraction (PXRD).

2. Materials and Methods

2.1. Sample Preparation

Algae-containing water used in this study was collected directly from Geum River located near
Okcheon-gun in South Korea. In order to cultivate the algae sufficiently, 11 g of K2HPO4 and 5 g
of NH4NO3 with 1:1 molar ratio were added in 5000 mL of distilled water to provide eutrophic
substances. Then, 500 mL of the algae-containing water was diluted in the 5000 mL of prepared
solution. The diluted algal solution was cultivated in an illuminating incubator (IL3, JEIO TECH,
Daejeon, Korea) with continuous white fluorescent light of about 3000 lux set on 12 h light and 12 h
darkness for seven days, and the temperature was maintained at 30 ◦C.

Waste oyster shells were obtained from a temporary waste storage near the seaside of Geojedo
in South Korea. Obtained oyster shells were cleaned by the water and ethyl alcohol to eliminate
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impurities on the surface of the shell, which was further dried in an oven, ground to fine powders, and
sieved under 100 µm before use. The prepared fine powers of oyster shell were calcined by an electric
furnace at 1000 ◦C for 2 h. The calcined oyster shell was crushed with a mortar and separated under
75 µm with a sieving machine. The slurry of a calcined oyster shell was obtained by the hydration
process using a wet ball mill method on a high density poly ethylene (HDPE) container including
alumina balls sized with the 25 mm diameter at 108 rpm for 2 h, where the mass ratio between oyster
shell and distilled water was 25% to 75%.

2.2. Experimental and Structural Analysis

Removal experiments of algae as well as eutrophic substances such as phosphorous and nitrogen
were conducted in the 1000 mL beaker containing 500 mL of cultivated algal solution. Different
amounts of slurries of hydrated calcined oyster shell from 5 g to 12.5 g were added in 500 mL of
algae-containing solution. For comparison, a series of examinations with the same experimental
conditions using a Ca-containing dolomite kiln dust, considered as another possible substance for
elimination of the algae, was performed. After the slurry was added onto the algal solution, initial color
change was observed and further stirred with a glass rod for 5 s to induce the homogeneous coagulation
reaction. After then, the sufficiently precipitated sludge was separated by filtration process and was
dried for structural analysis using the powder X-ray diffraction (X’Pert Pro PW3040, PANalytical,
Almelo, The Netherlands). For comparison, the structural information of a hydrated oyster shell was
obtained by the powder X-ray diffraction (PXRD). Furthermore, X-ray fluorescence (XRF) measurement
was conducted to identify the chemical components of the untreated oyster shell. Samples obtained
from the reaction were analyzed to determine the pH and turbidity using a water quality analyzer
(DKK-TOA WQC-24, DKK-TOA, Shinjuku, Japan) and to figure out the total phosphorous and nitrogen
contents using HS-3300 (Humas, Daejeon, Korea). Furthermore, absorption spectra of obtained samples
were measured in the range from 250 nm to 700 nm to check the existence of microorganisms in the
solution using the UV-Vis spectrometer (SINCO S-3100, Seoul, Korea).

3. Results and Discussion

3.1. Characterization

During the research, our group has found that since the limestone and dolomite contained much
of the Ca species, the experiments using both of them resulted in an outstanding removal efficiency of
algae. To identify the chemical components in the oyster shell, a raw oyster shell was characterized by
the X-ray Fluorescence (XRF), in which the result was compared with that of limestone and dolomite.
As shown in Table 1, the limestone includes a large amount of CaO and a small amount of SiO2 and
MgO as minor phases. On the other hand, a dolomite showing a chemical composition of CaMg(CO3)2

has the Mg as well as Ca as major components. In the case of an oyster shell, as similar with a
limestone, the Ca was observed as a component with the highest concentration. Since similar chemical
components as the limestone were identified in the oyster shell, the reactivity with the algae by an
oyster shell will be expected to be similar to the reactivity by a limestone.

Table 1. A result of X-ray Fluorescence (XRF) Analysis for limestone, dolomite and oyster shell.

SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O TiO2 MnO P2O5 Igloss

Limestone 0.11 0.03 0.09 55.54 0.20 0.03 <0.02 <0.01 0.01 0.01 43.79
Dolomite 0.06 0.04 0.18 31.27 21.81 0.03 <0.02 0.01 0.07 0.01 46.37

Oyster shell 0.45 0.12 0.06 53.66 0.26 0.06 0.55 <0.01 0.01 0.16 44.56

To investigate the reactivity of the calcined oyster shell in the solution, the hydration activity
was measured depending on the time, in which good hydration activity gives rise to better reactivity
with particular species in the solution. Hydration activities of quicklime and dolomite kiln dust
samples were also measured for comparison with that of a calcined oyster shell. As shown in Figure 1,
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temperature was increased depending on the time in all three samples that showed an exothermic
reaction, but all of them revealed different patterns of hydration activity in the solution. The quicklime
showed rapid hydration activity in a short time, and the maximum temperature was observed at 70 ◦C.
On the other hand, dolomite kiln dust showed that the temperature quite slowly increased up to 48 ◦C
in the 600 s. In the case of calcined oyster shell, the hydration activity was so slow that the maximum
temperature did not arrive in a given time. Even though both limestone and oyster shell showed the
analogous chemical elements by the XRF analysis and included a similar particle size (under 75 um),
different hydration activity was observed, which might be due to the slightly different contents of
some elements such as Si and Na in both samples. Since the low hydration activity of reactants leads
to less reactivity with substances in the solution, sufficiently hydrated calcined oyster shell was used
for the experiment in order to enhance reactivity and reduce reaction time with algae or phosphorous.
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Figure 1. Time dependent curves showing the hydration activity for (a) quicklime; (b) dolomite kiln
dust; and (c) calcined oyster shell.

3.2. Dosage Effect on Chemical Properties

To investigate the pH change of the algal solution, different amount of slurries of a calcined oyster
shell were added onto the algal solution. In addition, for comparison with a result from a calcined
oyster shell, the value of a pH change of an algal solution with a dolomite kiln dust was also provided.
As shown in Figure 2, with the increase of slurry dosage, the pH of both samples were increased.
The pH of the algal solution with a calcined oyster shell was rapidly increased up to approximately
11.7 at 5.0 g/L and relatively stable in the range of 5.0–12.5 g/L. The reason that the pH was increased
with the raised amount of the slurry can be explained by the following steps. The hydrated Ca(OH)2

from the calcined oyster shell exists as Ca2+ and OH− in the solution. Then, the Ca2+ cations flocculate
with some species, such as CO2 or CO3

2−, on the surface of the algae or react with phosphorous and
nitrogen ions in the solution, in which the concentration of the remaining OH− ions are increased,
which brings the pH to be increased up to approximately 13.0.
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Moreover, higher pH values at the solution of a calcined oyster shell were observed when
compared with that of a dolomite kiln dust in the whole added amount of range, which can be
explained by following two reasons. First, Mg(OH)2 compounds in the dolomite kiln dust show a
quite low solubility (0.0064 g/L at 25 ◦C) rather than the Ca(OH)2 (1.73 g/L at 20 ◦C), which provides
the low concentration of OH− ion in the solution. In addition, based on the Le Châtelier’s principle,
in a reaction of the equilibrium condition, if any change on the concentration of the reactant or product
is subjected, the system readjusts itself to offset the effect of the given change. According to this
principle, since dolomite kiln dust consists of Mg(OH)2 as well as Ca(OH)2, OH− ions increased
by Ca(OH)2 holding a higher solubility, preventing the Mg(OH)2 from being ionized to Mg2+ and
OH−. Those two reasons make the pH of a solution with dolomite kiln dust less increased. Hence,
concentrations of Ca2+ ions provided by the oyster shell can facilitate better coagulation properties
than that of dolomite kiln dust.

After putting the calcined oyster shell and dolomite kiln dust as a control group into the cultivated
algal solution, subsequent results were shown in Figure 3. When each different amount of slurry was
injected on the algal solution, instantaneous color changes were hardly observed with a naked eye on
both samples, but a slightly faded color was observed in a solution with the slurry of a calcined oyster
shell, which shows that coagulation or precipitation time in an algal solution with an oyster shell is
more rapid than that of a dolomite. After stirring for 10 s with a glass bar, the color of both solutions
became quite transparent, and a large amount of the sludge was precipitated with the algae. In the
case of a solution with the dolomite kiln dust, a less transparent algal solution was observed compared
with that of dolomite kiln dust, which arose from the less reactivity by the insoluble Mg(OH)2 from
the dolomite kiln dust.
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500 mL algae-containing water.

To investigate a more detailed analysis for the transparency of the algal solution, the measurements
for turbidity were conducted with a water quality analyzer at different amounts of the slurry. As shown
in Figure 4a, after the reaction, the turbidity of both solutions diminished proportionally to the amount
of the slurry, which verifies the elimination of the algae. From 5 g/L, the turbidity of the solution
with the slurry of a calcined oyster shell dropped to more than that of the dolomite kiln dust. This
phenomenon was due to the fact that the relatively less soluble Mg(OH)2 of the hydrated dolomite
kiln dust was included in the algal solution, providing low concentration of Mg2+ ions to flocculate
the algae, which was in agreement with the result from pH test.
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Furthermore, absorption spectra for the algal solution were plotted to investigate the
characteristics of microorganisms in the algal solution at different adding contents of the slurry
in the range from 250 nm to 700 nm using the UV-Vis spectroscopy, shown in Figure 4b. In the range of
the ultra violet region, UV-C represents the region from 250 nm to 280 nm, and it was known that the
microorganism absorbs the light of UV-C [36,37]. Since the alga is a sort of plant-like microorganisms,
it can absorb the light of UV-C region. In the case of an untreated algal solution, a large absorption
peak was observed at near 280 nm, which was further diminished as the added amount of slurry
increased up to 7.5 g/L, and in the range from 7.5 g/L to 12.5 g/L, a similar absorption intensity was
observed. Thus, it was demonstrated that the addition of a slurry of the oyster shell into the algal
solution is effective for the elimination of microorganisms forming algae.

For the elimination of algae, cation sources play important roles for the precipitation by the
crystallization formed by the ionic bonding with a phosphorous ion contributing an eutrophication as
well as for a coagulation by the chemical reaction on the surface of algae. To verify the reactivity for
the phosphorous ion with Ca2+ ions from the oyster shell, the concentration of total phosphorous (TP)
in the algal solution was measured at a different adding amount of the slurry of a calcined oyster shell
and dolomite kiln dust as a comparison. As shown in Figure 5a, as the added amount of the slurries,
the concentration of TP was diminished. Particularly, in the case of a calcined oyster shell, TP was
rapidly decreased up to an initial 7.5 g/L and resulted in the elimination of almost all concentration
of phosphorous in the algal solution. On the other hand, dolomite kiln dust did not have an effect
on the concentration of the phosphorous until 5.0 g/L and after then, the concentration was rapidly
dropped. However, unlike the case of an oyster shell, complete removal of phosphorous was not
reached with the dolomite sample, which demonstrates that the oyster shell is a better reagent for the
elimination of phosphorous ion in the solution than the dolomite. This phenomena is due to the fact
that a lack of Ca2+ ions in the dolomite sample provides less sources to bond with phosphorous ions.
Therefore, dolomite requires more slurry dosages to treat the phosphorous from water than the oyster
shell. The Ca2+ ion in an oyster shell or dolomite can be crystallized with phosphorous ion as a form of
Ca3(PO4)2 or Ca5(PO4)3OH by Equations (1) and (2), which can be further confirmed by the structural
analysis with powder X-ray diffractions and was discussed on next section.

3Ca2+ (aq) + 2PO4
3− (aq)↔ Ca3(PO4)2 (s, aq) (1)

5Ca2+ (aq) + OH− (aq) + 3PO4
3− (aq)↔ Ca5(PO4)3OH (s, aq) (2)
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In addition to the phosphorous, nitrogen also causes an algal growth. To investigate the
elimination of nitrogen in the algal solution, the concentration of the total nitrogen (TN) was measured
at the different amounts of the slurry. As shown in Figure 5b, it was found that no obvious effect on
the concentration of TN was observed with both samples. This phenomenon can be explained using
two mechanisms. First, nitrogen generally exists as an NO3

− ion in the solution and reacts with Ca2+

ion to form Ca(NO3)2, shown in below Equation (3). However, Ca(NO3)2 possesses good solubility
and exists as a form of an ion as Ca2+ and NO3

− in the aqueous solution, and thus the concentration of
a nitrogen seems to remain without any changes in the solution. Besides, as described by Equation (4),
since Ca(NO3)2 can react with PO4

3− ion in the solution, which is apt to PO4)2 [38], concentration of
the NO3

− ion still remains without any changes. Second, in addition to the NO3
−, nitrogen can exist

as an ammonium (NH4
+) ion in the solution. The ammonium ions cannot react with other cations

such as Ca2+ and react with the anions such as OH− ion in the water, forming NH4OH compound.
However, since the NH4OH compound is also soluble in the water, the NH4

+ ion remains as it is in the
solution. Although the oyster shell did not treat the nitrogen element in the algal solution, algae cannot
be grown up for just removing the phosphorous element [39].

Ca2+ (aq) + 2NO3
− (a)→ Ca(NO3)2 (aq) (3)

3Ca(NO3)2 (aq) + 2PO4
3− (aq)↔ Ca3(PO4)2 (s, aq) + 6NO3

− (aq) (4)

3.3. Structural Analysis

As briefly mentioned above, two Ca3(PO4)2 and Ca5(PO4)3OH compounds can be produced by
the reaction with Ca2+ of an oyster shell and PO4

3− in the water, which was confirmed by the powder
X-ray diffraction measurements. Figure 6a shows the X-ray diffraction patterns of a hydrated calcined
oyster shell powder before the reaction. As expected, CaO as a major phase of an oyster shell was
changed to Ca(OH)2 by the hydration process with H2O. In addition, due to the carbonation process
of Ca2+ ions with CO3

2− ions in the water, the small amount of calcite (CaCO3) phase was observed
in the X-ray patterns. Figure 6b shows the X-ray patterns at a different amount of the slurry after
the reaction. Any diffraction peaks for Ca(OH)2 were not detected, but a new large peak at near 32◦

was observed, which represents the hydroxylapatite, Ca5(PO4)3OH, adopting the hexagonal P63/m.
In other words, almost all calcium species were consumed for the chemical bonding with phosphate
ion (PO4

3−). In addition to the formation of a hydroxylapatite, calcite (CaCO3) can also be obtained by
the reaction of Ca2+ with CO2 or CO3

2− onto the surface of the algae [34]. Interestingly, X-ray patterns
indicate that the contents of a calcite phase were increased proportionally to the added amount of the
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slurry, which might be due to the fact that the Ca2+ ion reacts with PO4
3− ion prior to the reaction with

CO2 or CO3
2−. Then, as the amount of the slurry was increased, the remaining Ca2+ ion reacts with

CO2 and CO3
2−, forming a CaCO3.
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Figure 6. Powder X-ray diffraction patterns of (a) hydrated oyster shell powder and (b) final products
at the different amount of calcined oyster shell.

In addition, X-ray diffraction patterns of a dolomite kiln dust were collected, shown in Figure S1
(Supplementary Materials). Different from the calcined oyster shell, hydrated dolomite kiln dust
contains Mg(OH)2 as well as Ca(OH)2 as major phases, and after the reaction, as shown in the
Figure S1b, Mg(OH)2 didn’t take part in the reaction and remained in the final sludge, which is due to
the fact that the solubility of Mg(OH)2 (0.0064 g/L at 25 ◦C) is relatively lower than that of Ca(OH)2

(1.73 g/L at 20 ◦C), which prevents Mg(OH)2 from participating in the reaction with other species.
Although this cheap and renewable oyster shell can be considered as a potential candidate to

treat the algae and eutrophic substances from wastewater, high pH or precipitated sludge are other
challenges. For these practical problems, a solution may be achieved with other methods such as
modifying the oyster shell with chemical reagents or adding some substances to remove the sludge.

4. Conclusions

A novel approach for the removal of phosphorous as well as algae has been conducted using
the oyster shell as a cheap and eco-friendly substance. It was demonstrated by the XRF analysis that
CaO was a major phase of an oyster shell, which plays a crucial role on flocculation of the algae and
phosphorous. Hydrated calcined oyster shell was utilized to enhance the chemical reactivity with
anion species, such as CO3

2− and PO4
3− in the algal solution. As a result of a turbidity measurement,

it was proved that the algae were coagulated and precipitated proportionally to the added amount
from 5 g/L to 12.5 g/L as the form of a sludge, and the removal of microorganisms was observed using
the UV-Vis spectrum, implying the oyster shell prevents microorganisms from growing up as the algae.
In addition, dispersal of a 7.5 g/L of calcined oyster shell into the algal solution removed almost all
phosphorous element. On the other hand, nitrogen elements were prone to remain in the algal solution
ranging from 5 g/L to 12.5 g/L of hydrated oyster shell due to the good solubility of compounds
formed with nitrogen elements. Structural determination by the PXRD showed that Ca5(PO4)3OH
compound was produced as a result of the reaction between the Ca2+ ion from the oyster shell and the
PO4

3− ion in the algal solution, then continuing to form CaCO3 as a form by a reaction with CO2 or
CO3

2− onto the surface of the algae. As the consequence, this approach achieved an effective removal
of algae and phosphorous with quite a small amount of calcined oyster shells in a relatively short time.
With some additional studies such as lowering the relatively high pH accompanied by the reaction and
handling the precipitated sludge, the use of renewable oyster shell can reduce cost and environmental
concerns to treat the algal blooms.
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Figure S1: Powder X-ray diffraction patterns of (a) dolomite kiln dust powder and (b) final products at the
different amount of dolomite kiln dust.
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