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Abstract: Hydrologic exchange is a crucial component of the water cycle. The strength of the
exchange directly affects the biogeochemical and ecological processes that occur in the hyporheic
zone and aquifer from micro to reach scales. Hydrologic exchange fluxes (HEFs) can be quantified
using many field measurement approaches, however, in a relatively large river (scale > 103 m), these
approaches are limited by site accessibility, the difficulty of performing representative sampling,
and the complexity of geomorphologic features and subsurface properties. In rivers regulated
by hydroelectric dams, quantifying HEF rates becomes more challenging because of frequent
hydropeaking events, featuring hourly to daily variations in flow and river stages created by dam
operations. In this study, we developed and validated a new approach based on field measurements
to estimate shallow water HEF rates across the river bed along the shoreline of the Columbia River,
USA. Vertical thermal profiles measured by self-recording thermistors were combined with time
series of hydraulic gradients derived from river stages and inland water levels to estimate the HEF
rates. The results suggest that the HEF rates had high spatial and temporal heterogeneities over
the riverbed, with predicted flux rates varied from +1 × 10−6 m s−1 to −1.5 × 10−6 m s−1 under
different flow conditions.

Keywords: hydrologic exchange; SW–GW interaction; field measurements; Columbia River

1. Introduction

1.1. Hydrologic Exchange and River Regulations

Hydrologic exchange is a concept introduced by Harvey and Gooseff [1] which combines surface
water–groundwater interaction processes along river corridors at multiple spatiotemporal scales,
including hyporheic exchange, bank storage, and regional groundwater discharge and recharge. River
water interacts with subsurface water through the hydrologic exchange fluxes (HEFs), which facilitate
the nutrient and carbon cycling, organic biodegradation, fish spawning, metal transport, and other key
biogeochemical and hydroecological processes in the subsurface region of the river corridor [2–7].

Hydrologic exchange dynamics, including the direction, path, magnitude, and residence
time of the HEFs, define where and when these aforementioned processes occur in the river
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bed and bank [8–10]. The HEF dynamics are controlled by channel geometry, catchment geology,
and hydrology in both space and time [11–13], and the HEF rates are essentially governed by
the permeability of the sediments and local hydraulic gradients. While the overall permeability
of the river bed sediment is a physical property that is relatively stable (if not considering the
sediment clogging/colmation at the river bed surface), the hydraulic gradient across the river bed
is a time-varying variable that is highly dependent on the river stage variations. In natural rivers,
the river stage reflects the hydrometeorological and drainage characteristics in the upstream watershed.
However, in a dam-regulated river, variations in stage are dramatically altered by upstream dam
operations on a wide spectrum of timescales from hourly to monthly [14], and these variations extend
to a few hundred kilometers downstream of the dam [15]. Globally, over 30,000 large dams were built
in the past 50 years, which considerably affected terrestrial water resources [16–18] and thus changed
the HEF directions and rates as well as the biogeochemical processes in downstream reaches [19].
A number of studies have investigated HEFs in regulated river systems based on measurements or
modeling at either the point [15] or transect scale [20–22]. However, monitoring HEFs in a large
regulated river reach (>103 m spatial scale) with high spatiotemporal resolutions remain less explored.

1.2. Approaches to Measuring HEF Rates

The challenges of monitoring the HEFs in a regulated large river reach arise from the size
of the domain and dam-induced rapid hydraulic gradient variations that complicate the system
dynamics. Current field measurement methods used in a large river system usually include mass
balance approaches that integrate the groundwater discharge or river loss over the entire reach.
These approaches include longitudinal flow gauging, longitudinal chemistry sampling, or hydraulic
head measurements [23]. Alternatively, interpolation over a number of intensively measured points
(<1 m spatial scale) is a widely used approach to establish spatial distributions across the river bed
for a given river reach. This type of measurement can be categorized into three groups: direct
measurements, indirect measurements based on Darcy’s Law, and indirect measurements based on
heat transport equations [24]. Direct measurements monitor the water volume flow across the surface
water–groundwater interface using seepage meters, which are chambers with the bottom open to the
sediment [25–28]. This type of measurement can only estimate the flux at the interface, and the seepage
meters themselves disturb the surrounding flow field and therefore affect the flux measurements.

The method based on Darcy’s Law estimates HEF rates by solving Darcy’s equation:

q = −K
dh
dl

(1)

where q is the flux, K is the hydraulic conductivity of the sediment, and dh/dl is the hydraulic gradient.
K can be estimated from various experiments such as pumping tests, slug tests, and permeameter
tests, while dh/dl can be derived from water level measurements in piezometers at different depths
in the riverbed (for vertical flux) or at different locations at the same level beneath the riverbed
(for horizontal flux) [29]. The concept of the Darcy’s Law-based method is simple and equipment
installation is straightforward, which makes this method popular in some small-scale applications.
However, uncertainties could be introduced in K estimations due to the heterogeneity and variations
of the hydraulic conductivity; and the approach may not be suitable for large river systems because of
its intensive labor requirements [24].

Methods that use heat as a naturally occurring tracer to estimate HEFs have been developed,
widely adopted, and improved since the 1960s [4]. The underlying concept of such methods
is that the temperature distribution in the subsurface zone is determined by the surface water
temperature with strong diurnal fluctuations and relatively stable temperature in deep groundwater.
Heat transports in the subsurface region through thermal convection and conduction processes, which
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modifies the distribution and dynamics of temperature following the 3D heat transport equation.
The one-dimensional thermal transport equation along the vertical direction can be written as:

∂T
∂t

= −qz
ρwcw

ρc
∂T
∂z

+ D
∂2T
∂z2 (2)

where T is temperature; t is time; qz is the vertical flux; z is the depth in sediment; ρw and ρ are the
density of water and water-sediment matrix; cw and c are the specific heat of water and river-sediment
matrix, respectively; and D is the thermal diffusion coefficient. A number of analytical solutions to the
heat transport equation have been provided and applied successfully in specific cases by assuming
the system is in steady state with vertical fluxes only, in a homogeneous semi-infinite sediment
domain [30–32]. Transient state HEF rate can be estimated by applying numerical modeling tools
(e.g., VS2DH [33]) based on the heat transport equations, with thermal boundary conditions and
initial states defined at the river bed and in deep sediment [34–36]. Another method for transient state
estimation is analyzing the amplitudes and phase shift of the damping diurnal temperature signals
at different depths in the sediment [37–40]). Computational codes, such as Ex-Stream and VFLUX,
were also developed to facilitate the application of these models [41,42]. One of the great advantages
of these approaches is that temperature is a reliable tracer and can be relatively easily measured at
different depths using one single measuring rod installed in the river bed compared to a piezometer
nest for the water head measurements. However, it might be a challenge to apply these approaches in
a highly regulated river system, because the temperature signals might be significantly dampened or
distorted by the fluxes with rapidly changing directions and magnitudes.

1.3. Study Objectives

In this study, we aimed to synthesize the HEF measuring methods reviewed above and develop
an approach that is suitable for a large river with highly regulated discharge. Such an approach has to
fulfill the following criteria: (1) using less, easily accessible data to infer HEF rates in a relatively large
domain; and (2) providing continuous HEF rates at high temporal resolutions (e.g., daily or sub-daily).
Note that the river bed in our study reach has small slopes at both longitudinal (1/4000) and lateral
(1/40) directions, so that the major HEF direction that penetrates the river bed is vertical, which is
used to represent the total HEF rate in our analysis. By revisiting monitoring data from previous
studies in our study reach [15,43], we developed and validated our approach by empirically relating
the point vertical HEF rates with river hydrologic conditions and inland water table levels. Such
an approach could provide point HEF rates for large scale groundwater modeling evaluations [44,45],
and provide guidance for the field studies to identify strong HEF hotspots and active biogeochemical
reaction areas at the river bed [46]. Although hydrologic exchanges occur almost everywhere at the
river bed, numerical simulations and field measurements indicated that the exchange fluxes in the
shallow water near the river banks were stronger than those in the center of the channel because of the
greater pressure gradient between the inland water table and the river stage [21,47]. Therefore, in this
study, we only focus on the shallow water area near the bank along the river reach.

To summarize, the objectives of this study are two-fold: (1) to demonstrate a new approach that
combines field measurement data and regression analysis to infer long term river bed HEF rates in
a highly dynamic river reach; and (2) to examine the spatial and temporal distributions of HEFs in the
shallow water area along the river reach.

2. Method

2.1. Study Reach

Our study reach is a 5 km long, 800 m wide, nearly straight river segment of the Columbia River
near the 300A Area of the U.S. Department of Energy Hanford Site in southeastern Washington State
(Figure 1). The Columbia River flows from north to south through the study reach over an unconfined
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aquifer on top of the impermeable Columbia River Basalt Group. The total thickness of the aquifer
ranges from 40 m to 60 m in this area, with a highly permeable Pleistocene flood gravel layer of the
Hanford Formation on top and a more consolidated and less permeable Ringold Formation at the
bottom. At the top of the river bed, there is a thin layer of alluvium with varying thicknesses ranging
from one to three meters [48]. Measurements used in this study were all collected from sensors installed
in the alluvial layer. Several sandbar islands were deposited in the center of the river, forming a deep
primary channel with a meandering thalweg on one side of the islands and a relatively shallower
secondary channel on the opposite side of the islands (Figure 1). Priest Rapids Dam, a hydroelectric
dam located ~80 km upstream of the study reach, controls the stage for hydropower generation. Based
on historical records over the past 40 years, the range of stage spans 105 m to 109 m based on the
North American Vertical Datum of 1988 (NAD88), with a maximum daily fluctuation of 2 m. In this
study, the river stage observations were recorded by a pressure transducer logger (SWS-1) installed
inside our study domain since the year 2001. Nearly 100 monitoring wells were constructed over
the past 40 years around the 300A Area to record the inland water levels and solute concentrations
for environmental monitoring purposes [49]. In this study, one monitoring well (Well 2–3), about
150 m from the river, was selected as the reference point for the inland water level. Here we define
“inland” as a contrast of the “river”, where the water table does not show sub-daily variations in
response to the dam regulations. According to the Koppen climate classification, our study area is
located in a semi-arid—desert catchment in the Columbia River basin. The annual precipitation in
this region is less than 200 mm, and the evapotranspiration to precipitation ratio is about 1–1.09 [50].
Under such conditions, recharge to the groundwater is close to ~2 mm year−1 [51] and precipitation
over the river surface can be ignored compared to the volume of water in the river channel. Therefore,
the fluctuations observed in the river stage time series are mainly caused by the dam operations.
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2.2. Data Revisiting

Given that the pressure gradient is the major driving factor of the HEF, we hypothesize that
the HEF rates could be empirically related to the head difference between the river stage and the
inland water table. We tested this hypothesis by revisiting a published data set [43]. The data was
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collected at half-hourly time steps at Spring 9 (Figures 1 and 2), a site inside our study domain, from
August 2004 to June 2005. It included temperature time series for surface water and a location 19 cm
deep in the riverbed (Figure 3A) as well as a vertical flux time series at the riverbed (Figure 3B)
derived using Darcy’s Law from measured Vertical Hydraulic Gradient (VHG, by piezometers) and
hydraulic conductivity estimated by slug tests at this location. We also extracted the inland water
level from the monitoring well mentioned above and the corresponding river stage data for the same
time frame (Figure 3C). Strong linear correlations were detected between head difference and the
Darcy’s Law-based vertical fluxes at both half-hourly (r = 0.971) and daily (r = 0.979) time steps
(Figure 4). The scatter plots also showed that the fitted linear model based on the daily time series can
be used to describe a similar relationship at the half-hourly time scale with high goodness-of-fit values.
This indicates that the linear relation based on daily fluxes and the corresponding head difference can
be used to estimate sub-daily fluxes if the continuous sub-daily head difference data are available.
Further statistical analyses indicated that at the daily time scale, the fitted sum square of HEF rates
based on head difference is 2.61 × 10−10, with a residual sum square of 1.28 × 10−11, and R2 of 0.958.
The corresponding F-test yields a nearly zero p-value of 2.58 × 10−202, rejecting the null hypothesis
that the relationship is insignificant, which confirms the significant linear relationship. This finding
inspired the method we developed for HEF rate estimations (described below).
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2.3. Using Temperature Records to Infer Vertical HEF Rates

The method we used to quantify vertical HEF rates is based on temperature time series measured
in both surface water and in the riverbed. Rapid changes in river stage lead to quick variations in
magnitude and frequent directional changes in the vertical fluxes across the river bed. Because no
single method was capable of estimating vertical fluxes from such a complex system, we applied
two different methods for time periods with different observed subsurface thermal characteristics.

The first method is a simple analytical solution of a 1D heat transfer equation described by [32],
which assumes that the system is in a steady-state condition and that the direction of HEFs is
constantly upward:

qz = −
Ks

(1−n)K f
n

ρ f C f z
ln

Tz − TL
T0 − TL

(3)

where Ks and Kf are thermal conductivities of fluid and solid, respectively; n is porosity; ρfCf is fluid
volumetric heat capacity; z is the depth of sensor; and T0, TZ, and TL represent the surface water
temperature, the temperature at the sensor location, and groundwater temperature (assumed to be
constant). This method is only applicable when there is constant upward flux.

The second method is the Local Polynomial method with a Maximum Likelihood estimator
(LPML) developed by Vandersteen et al. [39] and has been extensively tested with time-series data [52].
The LPML model transforms temperature signals from the temporal domain to the frequency domain
and finds the best vertical flux rate to fit equations that describe the subsurface signal frequency
as a response function of the surface signal frequency. The 1D heat transport Equation (2) can be
written as:

∂2T
∂Z2 + α

∂T
∂z

+ βT + γ
∂T
∂t

= 0 (4)

With
α = − qzρwcw

Dρc
(5)

β = 0 (6)

γ = − 1
D

(7)
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where ρ and ρw are densities of the fluid-sediment matrix and the fluid; c and cw are the specific heat
of the fluid-sediment matrix and the fluid; D is the effective thermal diffusion coefficient that can be
estimated from the bulk thermal conductivity (K) through D = K/ρc; and α, β, and γ are parameters
in the frequency response function (FRF) that converts the surface temperature signal to the signal in
the sediment at depth z in the frequency domain. These parameters can be fitted using a maximum
likelihood estimator based on observations and therefore can be used to determine the vertical flux:

qz = −αDρc
ρwcw

(8)

The LPML model can incorporate the full or any portion of the temperature time series at
daily to seasonal time steps. It can also deal with transient temperature signals by separating them
into periodic, non-periodic, and additive noise portions using the local polynomial (LP) method.
However, similar to other frequency-based methods such as those described by Hatch et al. [37] and
Keery et al. [38], LPML works well when both surface and subsurface temperature time series share
the same frequency, especially for the fundamental frequency range (e.g., diurnal cycles). This method,
therefore, is more applicable when the subsurface temperature variations follow a pattern comparable,
and have a fundamental frequency similar to that of the surface water temperature.

To identify periods suitable for the two methods, we employed the Dynamic Harmonic Regression
(DHR) model [53] to decompose the observed surface water and subsurface time series into signals
that represent the general trend and fundamental frequency. The DHR model has been successfully
applied to detect the amplitude and phase of thermal signals in other studies (e.g., [38,42]). It treats
observed temperature time series (yt) as the sum of a general trend (Tt), a fundamental signal and its
associated harmonics (Ct), and a white noise component (et):

yt = Tt + Ct + et (9)

Ct =
N

∑
i=1

[ai,t cos (ωit) + bi,t sin (ωit)] (10)

where ai,t and bi,t are time-varying parameters, ω1 is the fundamental frequency, and ωi is the
harmonics of ω1 with ωi = i × ω1. The decomposition of the time series using the DHR model
was conducted by applying the CAPTAIN toolbox using an auto-regression technique [54].

The decomposed general trend and amplitude of the fundamental frequency (i.e., diurnal) from
surface and subsurface locations were used to first identify periods with clear upward groundwater
fluxes when the analytical solution method is applicable. The surface water trend line follows
a clear seasonal cycle that gradually changes between 2 ◦C and 24 ◦C within a year, while the deep
groundwater temperature at this location is fixed at about 16 ◦C in our study reach. In summer
and winter seasons, the temperature difference between surface and groundwater could reach up to
10 ◦C. As a result, each period with significant disparities between the two trend lines from the water
and river bed temperatures indicates a groundwater discharge event and can be considered a clear
upward flux period. Here we define “significant departure” as periods when the difference between
surface and subsurface trend lines is more than three times the standard deviation of the fundamental
(diurnal) signal. During these periods, the shallow subsurface temperature is highly affected by
the upwelling of deep groundwater and the diurnal signal from the solar radiation is dampened or
even disappeared (when the upward flux is very strong), which makes the frequency-based method
impractical. Therefore, in these periods of strong upward fluxes, we assume that the system remains at
a quasi-steady state at the daily scale and is suitable for the analytical solution (Equation (3)) for the
daily flux estimations.

Given that the temperature at the bottom of the subsurface remains nearly constant and the
diurnal temperature signal is forced by solar radiation heating the river water, the amplitude of the
diurnal signal in the subsurface should be always less than that in the river water. However, the diurnal
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temperature amplitude of the subsurface decomposed by the DHR model could be overestimated at
the edge of strong upwelling events because of the rapid temperature variations. Here, we simply
compared the diurnal amplitudes from surface water and subsurface and discarded the data with
greater subsurface amplitudes to reduce the uncertainties caused by the edging effects. The data that
passed the filtering were then identified as inputs to the LPML model. Although data were screened at
a daily time step, the LPML model was applied at the original 10-min interval over a three-day moving
window for each day of interest. The workflow of data screening and model application are shown in
Figure 5.
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Data screening clearly introduces discontinuities to the inferred riverbed HEFs at the daily time
scale. However, the data points would be sufficient to establish the linear relations between the daily
fluxes and the corresponding head difference between the river stage and the inland water table. As we
demonstrated in Section 2.2, the same relationship can also be further used to estimate sub-daily fluxes
at the riverbed.

We tested the approaches on the Spring 9 temperature data set (Figure 2) and compared the
estimated fluxes with the published data based on Darcy’s Law. In data filtering, out of the total of
293 days, 122 days were selected to apply the analytical method, 103 days were selected for to apply
the LPML model, and 68 days were discarded. Figure 6 demonstrates how the periods were selected
based on the criteria described above. To incorporate the uncertainties associated with sediment
physical properties, we randomly generated 100 sets of parameter values within the ranges based
on sediment properties provided by Ma et al. [55] (Table 1). The estimated daily vertical fluxes from
the 100 realizations were plotted against the daily head difference to fit a linear model, and the range
defined by the maximum and minimum slopes generally covered the fitted line derived from the
observations (Figure 7). We did a linear regression test for these data points and the p-value of the
F-test was 1.22 × 10−12, indicating the linear relationship was significant at α = 0.05. Then we applied
the 100 ensemble models to the head differences obtained from the river stage and inland water level
observations and compared the envelope defined by the 5th and 95th percentiles of the ensemble with
the Darcy’s Law-based flux (Figure 8). The comparisons revealed that the temperature-inferred vertical
flux range adequately captures the direction and magnitude of the HEFs at both daily and half-hourly
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time scales. The same modeling framework was then used to estimate the vertical fluxes in the shallow
water along the river, as introduced in Section 2.4.
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Table 1. Ranges of physical parameters used to generate parameter sets in the model.

Parameters Range (from Ma et al. 2012)

Porosity 0.15~0.18
Solid density (kg/m3) 2650~2760

Fluid-specific heat capacity (J/(kg K)) 4186
Soild-specific heat capacity (J/(kg K)) 715~920
Solid thermal conductivity (W/(m K)) 1.2~2.2
Fluid thermal conductivity (W/(m K)) 0.58

Thermal diffusivity (m2/s) 5.19 × 10−7~2.24 × 10−6

2.4. Monitoring near Riverbed Temperature along the River

We deployed iButton® temperature sensors (Maxim Integrated Products, Model number DS1922L)
at five locations along the west bank of the river (Figure 1) to record temperature time series in the river
water and the riverbed. The iButton® sensor is a cylindrical, wireless device 17 mm in diameter and
6 mm thick. Its data storage capacity is 4096 values with 0.0625 ◦C measuring resolution and 0.5 ◦C
accuracy. The elevations for all the monitoring locations were low enough to make sure the sensors
would not be exposed to the air even in low-flow conditions. These locations were also selected based
on the local hydrodynamic conditions and river bed properties and were labeled alphabetically from
south to north. Sites A and B were located in the secondary channel that featured relatively low-flow
velocities and small sediment sizes on the river bed, while sites D and E were located in the primary
channel that featured relatively high flow velocities and large grain sizes in the alluvial sediment layer.
Site C was in the transition zone between Sites B and D (Figure 2).

Temperature time series from the riverbed top and certain depth in the sediment were required
for estimating the flux across the riverbed. Therefore, at each location, two sensors were secured in
separate open drill holes along a 1 in. diameter, 1.5 m long solid plastic rod half planted in the river
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bed to record surface and subsurface temperature time series. All sensors were programmed to record
every 10 min from 2 March to 30 March 2016. The coordinates and elevations of each sensor are listed
in Table 2. The method described in Section 2.3 was then applied to the monitored temperature records
at each location to obtain the local HEF rates at the river bed. Note that here we used the surface water
sensors to approximate the temperature at the top of the river bed and the vertical HEF fluxes were
estimated based on the distances between the subsurface sensors to the river bed.

Table 2. Coordinates (based on NAD 1983 StatePlane Washington South system) and depths of the
iButton sensors installed at the monitoring sites.

Site Northing (m) Easting (m) Surface Water Sensor
(Dist. from River Bed)

Subsurface Sensor
(Dist. from River Bed)

A 117,140.6 594,347.3 25 cm 25 cm
B 117,046.4 594,347.3 31 cm 19 cm
C 116,784.4 594,383.5 24 cm 26 cm
D 116,179.5 594,502.3 22 cm 28 cm
E 116,153 594,509.2 37 cm 13 cm

3. Results

The temperature data from the five iButton monitoring sites (Figure 9) showed that the river
water temperature measurements were nearly identical across the sites, featuring a clear diurnal cycle
over the period and a moderate raising trend with a daily mean temperature of about 5.5 ◦C on
2 March and 7 ◦C on 30 March, while the subsurface temperature differed among the sites. At Sites
A and B, which are located in the secondary channel, the subsurface temperature had a similar general
trend but a damped magnitude in diurnal variations compared to that in the surface water. At the
sites located in the primary channel (D and E), strong variations in subsurface temperature and great
departures (over 10 ◦C) from the surface temperature were evident, indicating strong upwelling
events. Site C is located at the transition zone between the primary and the secondary channels, which
has small subsurface temperature variations, with the magnitude between the primary channel and
the secondary channel. Head differences at these sites were extrapolated from the reference river
gauge observations at SWS-1 and inland well readings at Well 2–3 (Figure 10) based on the river stage
and inland water table gradients established based on historical data. The river stage during the
monitoring period ranged from 104.9 m to 105.9 m, which was quite representative because it covered
about 80% of the full spectrum of the historical stage in the past 30 years that has a 5th percentile at
104.8 m and a 90th percentile at 106 m. For each site, we performed a linear regression analysis to
test whether a significant linear relationship existed between the estimated HEF rate and the head
difference. The p-values of the F-tests were 4.95 × 10−14, 6.65 × 10−14, 1.86 × 10−13, 4.29 × 10−12,
and 5.89 × 10−13, for the sites A–E, respectively, indicating that the linear relationship were all
significant. Then, the linear model for esimating flux rates as a function of head differences between
the river stage and inland water level was established at each iButton location with 100 realizations.
The corresponding time series of estimated HEF rate envelopes from the 5th and 95th percentile of
the ensembles are shown in Figure 11. Generally speaking, both upwelling and downwelling events
were observed at all sites and extreme values are shown in response to maximum and minimum flow
stages. However, the estimated flux rates show strong spatial and temporal variability and differ
significantly between the sites in the primary and secondary channels. At Sites A and B the fluxes were
at magnitudes of about ±5 × 10−7 m s−1 and ±4 × 10−7 m s−1, while at sites D and E, the values were
nearly one magnitude greater (i.e., up to ±1.8 × 10−6 m s−1). The flux ranges at D and E were found to
be comparable to fluxes at Spring 9 (about 2 × 10−6 to −4 × 10−6 m s−1) derived using Darcy’s Law.

Three flow conditions from the iButton monitoring period were selected for further comparison.
The three conditions represented the high flow on 10 March, median flow on 28 March, and low
flow on 8 March (Figure 12). We connected the median value of the predicted flux rates across the
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five monitoring locations under different flow conditions and found that at high and median flow
conditions most of the fluxes were predicted to be negative, indicating aquifer recharging conditions;
while at low flow, the aquifer was discharging at all locations. At Site B, the predicted range of flux rates
were overlaping with each other across the zero flux line, showing that the uncertainty of the prediction
may lead to opposite flux directions at certain locations with relatively small flux magnitudes. At Sites
D and E, the predicted flux rates varied greatly (from +1 × 10−6 m s−1 to −1.5 × 10−6 m s−1) with
respect to different flow conditons. The results also suggested that sites located in the primary
channel (i.e., D and E) had remarkably higher flux magnitudes (up to 6–9 times higer) compared to
those in the secondary channel (i.e., A and B), indicating strong spatial heterogenerity induced by
geomorphological features.
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4. Discussion and Conclusions

In this study, we introduced an approach for inferring HEF rates based on temperature
measurements using the stage–flux relationship. This approach allows us to obtain long-term, high
spatiotemporal resolution hydrologic exchange dynamics in a large river reach based on the river flow
and inland groundwater conditions with relatively easy field installations. Our predicted HEF rates
vary between +1 × 10−6 m s−1 to −1.5 × 10−6 m s−1 under various flow conditions in the shallow
water region along the river bank. This results are comparable with previous studies performed
in other regulated rivers (e.g., [20,21]), in terms of the order of magnitude of the flux rates and the
mechanism between the HEFs and the dam operations. The strength of this approach is that it remains
robust under high-frequency river stage variations imposed by flow regulations (i.e., dam operations).
Such variations rarely occur in a natural river except for during an extreme flooding event, which
means it may not be generally applicable to fluvial systems with constant groundwater discharge from
a confined aquifer. In small highland rivers, local geomorphological features such as riffles and pools
might be a greater dominant factor than the head difference in controlling HEF rates [56,57].

Uncertainties in this approach could come from field measurements, parameterization of physical
properties, model assumptions, modeling resolution, and model structure [58]. These include (1) the
accuracy of the iButton sensors and the lags on temperature signal recording due to the thermal
skin effects of the measuring rod might affect the inferred HEF rates [59]; (2) river bed geomorphic
features (e.g., dunes) may create local perturbations on the HEF patterns and thermal processes; (3) the
riverbed temperature was approximated by measurements ~20 cm above the river-bed surface due
to site and equipment limitations. The water layer between the sensor and the river bed surface may
create temperature signal attenuations and lead to uncertainties in flux estimates. Our future studies
will evaluate and consider the attenuation effects of the water in reducing the uncertainties; (4) the
ranges of the physical property values used in the LPML model parameterizations (Table 1) were
from the literature, which may not fully cover the uncertainties of these parameters; (5) the approach
we used to identify the time period for different models were based on a frequency analysis (DHR),
which is arbitrary and might introduce errors to the analysis. In fact, the choice of applying DHR
for data-screening is site-specific, which is only required in locations with strong upwelling fluxes
periodically diminishing or even removing the diurnal signals from the temperature data; (6) fluxes at
the horizontal and lateral directions, which are smaller in magnitude compared to the vertical fluxes,
may still affect the vertical flux estimations [60]; (7) the size of the moving window and the temporal
resolution used in the LPML model may introduce uncertainties to the modeling results [39]. Another
limitation of this approach is that it is only valid at locations where the HEFs are dominated by the
stage gradient between river and inland water table. In other words, the hydrostatic driver controls the
HEF dynamics [44]. However, in some areas in the river, the HEFs are controlled by the hydrodynamic
driver, which is determined by the local hydraulic conditions. For example, at the upstream tip of the
island, where the hydrodynamic pressure is always high due to the speed of the river flows, the HEF
rate may always be negative (i.e., downwelling).

The results of this study suggest that the magnitude of vertical fluxes in the primary channel could
be about 6–9 times greater than in the secondary channel. Given that the head differences between the
river stage and inland water table are similar across these locations, the major controlling factor that
leads to this difference is the permeability of the riverbed sediment. We measured the flow velocity
at the iButton® locations and found that the mean velocity at the primary channel sites (0.4 m/s)
was about two-fold higher than at the secondary channel sites (0.2 m/s). According to the Hjulstrøm
Curve [61], which demonstrates the sediment erosion, transport, and deposition with regard to the
flow speed and grain size, the averaged grain size of the riverbed sediment between the primary
and secondary channels might differ by about three times, which then leads to approximately nine
times the difference in permeability according to a number of empirical models such as Krumbein and
Monk’s equation [62], or the Kozeny–Carman equation [63]. This is an overly simplified explanation of
the flux differences in the two channels and requires further development and validation, but linking
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the HEF rate and the surface flow speed might be an informative way of estimating vertical flux in
deep waters where the field measurements are not available and are hard to obtain. For example,
the center of the primary channel in the study reach is as deep as 15 m under low-flow conditions,
which poses a safety issue for installing iButtons® or any other instruments.

To conclude, in this study we successfully inferred the sub-daily vertical HEF rates at five shallow
water sites along the shoreline based on temperature profile measurements and relationships between
the riverbed hydrologic exchange rate and river flow conditions. The results reveal that the HEF rate
had high spatial and temporal heterogeneities over the riverbed, and a magnitude of fluxes 6–9 times
higher in the primary channel than in the secondary channel. This approach can be easily employed
in other river reaches to facilitate large scale river corridor studies or to inform biogeochemical and
ecological studies in highly dynamic large river reaches.
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