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Abstract: The monitoring network for a river system is designed to provide information about water
quantity and quality. The development of Watershed Protection Plans and Total Maximum Daily
Loads require systematic monitoring of waterbodies. In this study, optimum water quality monitoring
networks were selected to assess E. coli loads in the Guadalupe River and San Antonio River
basins. A Genetic Algorithm (GA) was applied to select monitoring stations using the mean annual
E. coli flux from the Spatially Referenced Regression Model on Watershed Attributes (SPARROW).
The objectives of the GA were to minimize the number of monitoring stations, include large values of
the mean annual E. coli flux, and minimize uncertainty of the flux estimations. Constraints related
to the monitoring of critical locations were included in a multi-objective optimization problem.
The SPARROW model was applied to the optimized GA solution sets, which were compared
using the objective values and statistical indices. The best GA-generated alternative set adequately
represented the San Antonio River basin, in good agreement with a previous study conducted using
only SPARROW. The application of the GA ensured the inclusion of the monitoring stations with
large values of E. coli flux, which reflected high-risk areas within the watershed.
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1. Introduction

The monitoring network for a river system is designed to provide information about water
quantity and quality. The water-quality monitoring stations are located at critical locations for the
surveillance of waterbodies from pollution sources. Water resources utility and management programs
such as Total Maximum Daily Loads (TMDL) development and Watershed Protection Plans (WPP) also
require the systematic monitoring of waterbodies [1]. To design a water quality monitoring network,
the contaminant sources and the respective loads must be considered. To reduce the contaminant load
from point and nonpoint sources being delivered to streams, the development of TMDLs requires a
reasonable assessment of those sources. The monitoring network may be subjected to objectives and
constraints related to the cost of monitoring and trends of regional water quality [2]. Identifying the
optimal locations could not only reduce costs, but also provide a better representation of a watershed.
Optimization of the monitoring network can enable watershed managers to prioritize specific objectives
to design a more effective monitoring network.

Genetic Algorithm (GA) is an optimization approach based on Darwin’s evolution concept of
natural selection [3]. GA is a robust technique to obtain near-optimal solutions in the decision space
by a randomly-chosen initial solution set. The solution space is explored and exploited by applying
genetic operators such as crossover, mutation, and selection methods. For water quality research, GAs
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have been used to calibrate and perform sensitivity analysis on models and to allocate the contaminant
load with uncertainty [4–6]. Icaga [7] compared the results of a GA to a previous application of
dynamic programming for reducing the number of monitoring stations in a basin. It was observed
that the performance of a GA, which varies greatly, depends on the initial population size, crossover
and mutation rates. Park et al. [1] applied a single objective GA by aggregating multiple objectives
with normalized weights based on the River Basin representation, water-quality standard compliances,
and pollution sources supervision. They found that the existing monitoring-network design required
significant improvements for converting it into an optimum network. Reed et al. [8] discussed
practical methodologies to implement an efficient single objective GA to design a groundwater
quality monitoring network. They further explored the application of multi-objective algorithm
to minimize the cost and error in estimation of concentration of contaminants by reducing the number
of groundwater monitoring stations [9].

The previously mentioned studies were implemented to design monitoring networks or allocate
loads for non-pathogenic contaminants. Bacteria contamination has become a dominant water quality
issue in the U.S. in recent years, largely because of increasing population, failing septic systems,
and non-point pollution (from forests, pasture land uses and urban land uses) [10]. There are
only limited water-quality records available for bacteria compared to traditionally observed water
quality parameters such as nutrients. Modeling approaches to develop TMDLs, using the monitored
water-quality data as input, are widely used to assess the bacteria load from non-point and point
sources. Because monitoring data are scarce, uncertainty increases for the bacterial load assessment [11].
Therefore, to optimize performance of a water-quality model, uncertainty in the monitored records
should be minimized.

The Spatially Referenced Regression Model on Watershed Attributes (SPARROW) is a water
quality model that predicts fluxes and concentrations and tracks the sources of the contaminants [12–14].
Using simple empirical relationships, SPARROW can be applied in lieu of complex mechanistic models,
especially when water quality data are limited. The SPARROW model relates the monitored water
quality records to spatially-referenced contaminant sources and land–water delivery factors within the
stream or watershed. These factors can affect the increase, decay, and delivery of a bacteria load in
a stream network. E. coli concentrations are often monitored monthly or randomly, such as during
or after storm events. To estimate the mean annual E. coli flux, the concentrations are analyzed
with daily streamflow records by applying a load-estimator model (FLUXMASTER). The mean
annual fluxes of the water-quality monitoring stations serve as the response variables for SPARROW.
A simplified flowchart description of the SPARROW model, integrated with FLUXMASTER, is detailed
elsewhere [13].

Smith et al. [14] recommended using SPARROW to design a monitoring network by considering
the prediction improvement when simulating for different sampling locations. However, monitoring
limitations create uncertainty in the mean annual flux estimations, which can produce large errors in
SPARROW predictions. These limitations include scarcity of monitored data, location of monitoring
stations, and irregular monitoring intervals. An optimum set of monitoring stations can be selected
from the existing monitoring network based on a simple application of SPARROW, as previously
studied [13].

In this study, the optimum water quality monitoring networks were selected to assess E. coli loads
with minimal uncertainty for two major river basins (Guadalupe River and San Antonio River) of
Texas. A GA was applied to select the monitoring networks with adequate spatial variation from the
FLUXMASTER assessment of mean annual flux. The objectives of the GA application were: (1) to
minimize the number of monitoring stations; (2) to include large values of mean annual flux; and (3) to
minimize the uncertainty with regard to flux estimations. Constraints related to the monitoring of
critical locations were included in a multi-objective optimization problem. The SPARROW model was
then applied to the GA solution sets. From the optimum sets of monitoring stations, the best monitoring
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network was selected based on the objective values and statistical indices. Performance of the
“optimized” network was then compared to a previous model that was selected only using SPARROW.

2. Methodology

2.1. Study Area and Data Sources

The SPARROW model was applied to assess E. coli flux, an indicator of fecal contamination,
in the Guadalupe and San Antonio River Basins of Texas. The spatial extent of the study area (area
29,380 km2) is from longitude 30◦18′44′′ N to 28◦22′2′′ S and from latitude 99◦42′31′′ W to 96◦47′10′′ E.
The study area includes a metropolitan area (San Antonio), an unconfined aquifer (Edwards Aquifer),
and forest and pasture as major land uses (55.4% and 28.0%, respectively). Attributes such as land
use, average temperature and precipitation, reach slope and velocity, and reservoir area were obtained
from the National Hydrography Dataset (NHD) Plus [15]. Monitored records of E. coli concentrations
were obtained from the Guadalupe Blanco River Authority (GBRA) and San Antonio River Authority
(SARA) [16,17]. The daily stream-flow data at stream gauges were available from United State
Geological Survey (USGS) [18]. The effluent discharge [19] from wastewater treatment plants (WWTPs)
were included as probable E. coli sources. Because the concentration data of contaminants in the effluent
was not available, the permitted flows from WWTPs were used in the model. There were many point
sources throughout the study area that discharged relatively low flows; therefore, only the WWTPs
with discharge greater than two million gallons per day were included. Low discharging WWTPs were
not used in the model to ensure that large mean annual E. coli fluxes were included Soil permeability
values were derived from the State Soil Geographic Database (STATSGO) [20]. In SPARROW, the reach
length and depth reflect temporal changes and sunlight penetration, which affect the decay of bacteria.
Further, the streams were divided into three categories (small, medium and large) on a quantile basis
for the reach decay factors. Figure 1 shows the location of the monitoring stations in the Guadalupe
and San Antonio sub-basins. Reaches with flow greater than 0.13 m3 s−1 are defined as major streams.
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To reduce the effect of irregular monitoring and the short time period of records on the water
quality assessment, an initial set of monitoring stations was selected on the basis of standard error
to mean annual flux ratio in FLUXMASTER. Only 56 out of 72 monitoring stations were selected as
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inputs for the GA, mainly because of the availability of E. coli data; stations without regular monitoring
were excluded. Additionally, to minimize uncertainty, only stations with at least a two-year duration
and 10 observations were considered. Schwarz et al. [21] recommended at least 20 monitoring stations
for the application of SPARROW to include the spatial variability. The model error in the SPARROW
predictions is related to the quality and scale of explanatory variables. Applying combinatorial
mathematics, there are 7.86 × 1014 possibilities to select 20 stations from the 56 monitoring stations
with equal probability.

2.2. Genetic Algorithm Overview

To initialize the GA, a random set (called the population) of solutions were coded into various
formats, such as binary, real, integers, etc. These solutions are called chromosomes. Every chromosome
consists of genes that provide information on the solution attributes. The population of solutions was
evaluated for fitness. The fitness value indicated how well a solution met the problem’s objective
functions and constraints. The variation operators, mutation and recombination, were applied to
create a diverse set of new solutions (called children) from the existing solutions (called parents).
Recombination or crossover includes the interaction between two or more parents, whereas mutation
is the outcome of a random change in the chromosome of a parent. The children were tested for
their fitness, and then selected as parents in a new generation. The mutation operator explored new
solutions from unexplored regions in the solution space. The selection operation ensured overall
improvement in the mean quality of solutions in the next generation. The newly created generation was
treated as parents until either the solution set converged to the best possible solution or a predefined
termination condition was met [22].

To efficiently obtain the optimal solution, the application of a GA also includes decision making to
select the parameters for the genetic operations [23]. To solve a multi-objective problem, two different
strategies can be applied either by aggregating the weighted objectives to form a single objective
problem or by finding the multiple solutions on a Pareto front to generate the best alternatives.
The first method provides the leverage to solve the problem as a single objective, but assigning
weights can be challenging for most problems. The second method requires solving the problem
for all the objectives to obtain the non-dominated or Pareto set of solutions. Non-dominated sets of
solutions consist of feasible optimal solutions. Non-dominated solutions sacrifice in one objective(s) to
achieve gain in the other objective(s) of a problem. This provides the flexibility of different possible
options to make a final decision. The dimension of Pareto front is equal to the number of objectives
in the problem. It is desired that the Pareto front should provide the uniformly distributed and
complete spectrum of the problem including the extreme ends of the objective functions. Based on
the second method, various multi-objective algorithms such as Vector Evaluated Genetic Algorithm
(VEGA), Strength Pareto Evolutionary Algorithm (SPEA), Non-dominated Sorted Genetic Algorithm
(NSGA) and their modifications are available [24,25]. These algorithms are designed on the basis of
dominance rank, count, distance, or their combination to distinguish between the dominated and
non-dominated solutions. A member’s dominance rank and count are defined on the basis of the
number of members dominating the member and the number of members being dominated by the
member. The distance is a measure of the well distributed Pareto front. In this study, a GA based on
the Multi-Objective Evolutionary Algorithm (MOEA) [26] was used to obtain the Pareto sets for the
optimized monitoring network.

2.3. Objectives and Constraints

Uncertainty in prediction of mean annual flux by regressions tools, such as FLUXMASTER,
can occur due to poor data quality and quantity. To minimize the effect of the uncertainty in
FLUXMASTER on SPARROW predictions, uncertainty was considered a selection objective. A solution
was represented by a binary string of 56 genes: 0 for “not selected” and 1 for “selected”. The objectives
were defined mathematically for the GA application:
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1. To minimize cost, the number of monitoring stations was kept as small as possible without
compromising the water quality standard. As such, maintaining longer duration records for a smaller,
but sufficient number of monitoring stations is preferable to collecting many redundant monitoring
records of shorter duration,

Min
n

∑
i=1

Yi (1)

where Yi is the decision to include a monitoring station at location i.
2. The average of the logarithm of the mean annual fluxes for all the monitoring stations was

maximized to ensure that stations selected for model calibration included high risk areas,

Max

n
∑

i=1
Yi log(mi)

n
∑

i=1
Yi

(2)

where mi is the predicted mean annual flux from the FLUXMASTER output.
3. The standard error to flux ratio for the monitoring stations was minimized to mitigate bias

associated with large standard errors of the mean annual flux [27],

Min
n

∑
i=1

SFiYi (3)

where SFi is the standard error to mean annual flux ratio.
The constraints were defined to find the optimal solutions with the GA:
1. To represent sufficient spatial variability of the water quality in the region, the total number of

monitoring stations was greater than 20.
n

∑
i=1

Yi ≥ 20 (4)

2. Monitoring station locations with ecological or hydrological importance, which require
continuous monitoring, must remain in the network. In this study, the Edwards Aquifer contributing
zone, with four monitoring stations, has an impact on the recharge of the aquifer. Likewise, the City of
San Antonio has six monitoring stations. To account for the importance of these two areas, at least two
stations in the Edwards Aquifer region and three stations in San Antonio were retained in the final
solution. If a set of monitoring stations violated this constraint, a penalty was imposed by making the
value of the third objective impossibly large.

2.4. GA Application

The population size of 100 was selected for this application of a GA. After trying different
numbers of generations for the convergence of the population, the number of generations was kept
as 30. The size of the elite set, members of a population which go directly to the next generation,
was 20. Two-point binary crossover with a probability (PC) of 0.6 was used, whereas mutation (Pm)
was uniformly distributed with the probability of 0.05. In the two-point crossover operator, two
positions in the parents’ strings were chosen at random; new offspring were formed by swapping
the element values between parents. When applied, the uniformly distributed operator chose an
element in the original member and that element was changed to a random value between the defined
upper and lower bounds. Using the modified MOEA (Figure 2), the non-dominated solutions from
every generation entered as elites. The remaining population was chosen from among the dominated
solutions, using tournament selection, by comparing all the objectives for optimal values (higher
value of Objective 2 and lower values of Objective 1 and Objective 3). Elites went directly to the next
generation, while the other solutions went through crossover and mutation operators. If there were
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more non-dominated solutions than elites, then the elites were selected based on the neighborhood
distance:

D(x) =

min
m
∑

j=1

{
‖x− xj‖ : x, xj ∈ {x1, . . . . . . , xnd}

}
m

(5)

where D(x), the neighborhood distance for a member x, is the sum of the distances from m nearest
solutions on the same Pareto front; and nd is the number of non-dominated members.
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In this problem, m was equal to three. The process continued until the last generation. The GA
was repeated ten times to compare the results. Finally, the SPARROW model was applied on the
Pareto solutions.
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2.5. Statistical Indices

After applying SPARROW to the optimum sets of monitoring stations, several indices were
used to evaluate the respective models. Because SPARROW is a regression model, the coefficient
of determination (R2) and the root mean of the square of the errors (RMSE) were used to assess
the goodness of fit for each model. Ideally, the RMSE of the annual mean E. coli fluxes for a set
of monitoring stations would be minimized and the R2 would approach 1. However, each model
incorporated different parameters and number of observations. Therefore, additional criteria were
used to compare the model performance.

To gauge complexity and accuracy, the Akaike Information Criterion (AIC) was calculated.
A lower AIC, which would indicate a less complex model with minimal error, was desired.
The Nash–Sutcliffe Efficiency (NSE) reflects agreement between observed and predicted values; NSE
values range from −∞ to 1 [28]. Negative NSE values indicate a biased model, whereas unbiased
agreement increases as the values approach unity. The tendency of the model to over- or underestimate
was measured by positive or negative percent bias (PBIAS), respectively.

The previous study [13] applied FLUXMASTER to estimate the standard error to mean annual
flux ratios for the monitoring stations; sets of monitoring stations were chosen based on those ratios.
The optimal model from that study (Model III) was used for comparison with those chosen by the GA.
Model III included only monitoring stations with a standard error to mean annual flux ratio that was
less than or equal to 0.6, resulting in 21 monitoring stations.

3. Results and Discussion

As alternatives to the selected model from the previous study [13], four optimized sets of
monitoring stations were identified by applying the modified MOEA. The corresponding objective
values and statistical indices of the alternative models (A–D) were compared to Model III (Table 1).
The number of selected monitoring stations in the optimized sets varied from 20 to 30. The optimized
sets contained fewer monitoring stations than those available in the basin. A reduction of monitoring
stations could result in a decrease of monitoring costs. Additionally, the maintenance of fewer
monitoring stations could enable longer durations of recorded monitoring for the same cost as
maintaining more stations with shorter durations. Longer monitoring records may also allow better
E. coli flux predictions using SPARROW.

Table 1. Objectives and statistical indices for the alternative models (A–D) and Model III.

Objectives and Statistical Indices A B C D III

Number of selected monitoring stations 21 20 26 30 21
Average of log mean annual flux 18.13 17.13 21.37 25.82 5.50

Sum of standard error to mean annual flux ratio 16.14 14.89 19.01 22.61 7.7
Akaike Information Criteria (AIC) 874.20 840.40 824.41 1249.20 101.50
Nash– Sutcliffe Efficiency (NSE) −0.05 0.00 0.57 −0.03 0.88

Percent Bias (PBIAS) 52.70 67.00 3.20 79.13 28.00

The majority of the selected monitoring stations were common among the alternatives (Figure 3).
Model B had the lowest number of monitoring stations (Objective 1), lowest average flux (Objective 2),
and the least uncertainty in the predicted flux (Objective 3) among all alternatives (Table 1). If cost
reduction were the priority, Model B would be the best option. However, this model has poor
agreement with observed values. Because Model D had the highest number of monitoring stations,
highest average flux, and the greatest uncertainty in the predicted flux (Table 1), that set of monitoring
stations would not be ideal.

The average of log mean annual flux (Objective 2) for Model III was lower than the alternatives
identified using the modified MOEA. This implies that Model III did not include many monitoring
stations with high mean annual flux values. However, the statistical indices of the alternatives did
not indicate good agreement with observed values. For instance, the AIC values were large for the
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alternatives, suggesting that the complex processes affecting E. coli flux were not accurately represented.
Only Model C and Model III had NSE values that showed good agreement between the predicted and
observed values.
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Because SPARROW is a regression model, the results are affected by exceptionally high or low
values of the mean annual flux. The PBIAS was lowest for Model C (3.20%), indicating only minimal
overestimation of the mean annual flux. However, the inclusion of extremely high values of flux may
have introduced non-negligible bias in the other models. Therefore, the inclusion of outliers may
result in an inaccurate understanding of the watershed processes and can ignore actual sources of
contaminants in the model results.

The SPARROW model was applied to each of the alternative sets of monitoring stations.
The coefficients for the sources, land-water delivery, and stream/reservoir attenuation factors were
determined, and then analyzed for significance (Table 2). Based on the selected monitoring locations
and differences in the E. coli flux, some non-point sources were excluded during the calibration of
SPARROW for specific models; for example, forest land use did not contribute E. coli in Models A, B,
or C. Urban land was identified as an E. coli source for all of the models. Pasture land was considered
an E. coli source for all alternative models, but not for Model III. Forest land use was considered a
significant source (p < 0.25) of E. coli for Model III, but not for alternative C. Model C land-water
delivery factor of temperature differed considerably from the other models (Table 2). Reach slope was
only included in Model C, but not in the other models. Rainfall was only included in Model B, with a
negative coefficient; this suggested that a dilution effect may lower the E. coli flux estimation.
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Table 2. Model coefficients and p-values (in) for the source, land–water delivery, and stream/reservoir
attenuation factors.

Model A B C D III

Selected Monitoring Stations 21 20 26 30 21

Sources

Point sources discharge (m3 year−1) - - - - 0.49 (0.22) 0.48 (0.42) - -
Pasture land (m2) 13.98 (0.13) 7.29 (0.19) 0.19 (0.32) 36.74 (0.13) - -
Forest land (m2) - - - - 1.41 × 10−5 (0.50) - - 0.73 (0.06)
Urban land (m2) 3.52 (0.22) 3.23 (0.25) 4.2 × 10−3 (0.32) 9.48 (0.26) 0.94 (0.12)

Delivery Factors

Rainfall (m) - - −5.03 (0.20) - - - - 4.59 (0.24)
Temperature (◦C) 1.75 (<0.01) 1.74 (<0.01) −0.26 (0.23) 1.09 (0.02) 2.41 (<0.01)

Drainage density (km−1) 2.19 (0.01) 1.60 (0.13) 3.03 (<0.01) 2.71 (<0.01) - -
Permeability (cm h−1) - - 0.14 (0.30) - - −0.01 (0.89) −0.08 (0.36)

Reach slope (%) - - - - −12.20 (<0.01) - - - -

Reservoir/Stream Decay Factors

Areal hydraulic load (m·year−1) - - - - 30.18 (0.39) 218.85 (0.47) - -
Medium-sized stream (0.02 < flow ≤ 0.13 m3 s−1) 13.38 (0.02) 14.99 (0.02) 13.52 (1.1 × 10–3) 17.12 (0.02) 13.38 (0.02)

Sum of Square Error 30.45 26.03 14.67 49.87 18.27
Root Mean Square Error (RMSE) 1.34 1.41 0.93 1.50 1.14
Coefficient of Determination (R2) 0.62 0.72 0.86 0.67 0.85

Degrees of Freedom 5 7 9 8 6

Note: - - Source or factor excluded during the calibration of SPARROW because of the locations of the
monitoring stations.

Model C includes point sources as a significant contributor of E. coli. However, Model D did not
include any significant point sources of E. coli. For Models A, B and III, the selected monitoring stations
were not located downstream from point sources with high permitted flows and thus excluded from
the models. Model C had the lowest RMSE and the most degrees of freedom (9). In contrast Model
A had the least degrees of freedom (5), suggesting it was the least complex model. Model C can be
considered a good alternative based on the objective values and statistical indices (Tables 1 and 2).

Because Model C was suggested as the more accurate model among those identified by the
application of the GA, it was chosen for further comparison with Model III (Figure 4). From the
previous study, Model III had the lowest sum of square error and RMSE and also the highest R2.
Unlike Model III, Model C selected a majority of monitoring stations in the highly contaminated
Edwards Aquifer contributing zone and the City of San Antonio; these are critical areas that require
rigorous monitoring.

For Model III, forest and urban lands were significant sources of E. coli, whereas, for Model C,
only point sources were significant sources. Based on the statistical indices, Model III appears to be
a better model than Model C based on lower AIC and higher NSE values. However, if considering
regression error statistics (RMSE and R2), Model C is a better representation than Model III. Based on
percent bias, neither Model III nor Model C showed a systematic tendency to under or overestimate
the mean annual E. coli flux (Table 1).

In the earlier application of SPARROW by Smith, monitoring stations were selected based on the
standard error [14]. The previous study by Puri used only the standard error to flux ratio to determine
monitoring station sets, which resulted in an insufficient number of monitoring stations in the San
Antonio River basin [13]. However, the GA generated alternative sets that adequately represented the
San Antonio River basin. This shows agreement with the previous application of SPARROW which
concluded that the San Antonio River basin required more rigorous monitoring [13]. The application
of the GA ensured the inclusion of the monitoring stations with large values of E. coli flux for the
application of SPARROW.
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not adequately represent highly contaminated areas. However, the best monitoring set (Model C)
from the GA-optimized solutions included adequate coverage for those areas that require rigorous
monitoring, such as the Edwards Aquifer contributing zone and the City of San Antonio. The locations
of monitoring stations play a crucial role in accurately representing the water quality in a basin.
A GA algorithm was successfully used to optimize the selection of monitoring stations in a water
quality network.

Acknowledgments: We acknowledge the technical critique provided by Meghna Babbar-Sebens and Emily
Zeckman when they were associated with Texas A & M University.

Author Contributions: Deepti Puri and Raghupathy Karthikeyan conceptualized the model. Deepti Puri
conducted the analyses. Deepti Puri, Kyna Borel, Cherish Vance, and Raghupathy Karthikeyan wrote and
edited the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Park, S.; Choi, J.H.; Wang, S.; Park, S.S. Design of a water quality monitoring network in a large river system
using the genetic algorithm. Ecol. Model. 2006, 199, 289–297. [CrossRef]

2. USEPA Consolidated Assessment and Listing Methodology: Toward a Compendium of Best Practices; EPA: Zurich,
Switzerland, 2002.

3. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
4. Savic, D.; Khu, S. Evolutionary computing in hydrological sciences. In Encyclopedia of Hydrological Sciences;

John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005.
5. Srivastava, P.; Hamlett, J.M.; Robillard, P.D.; Day, R.L. Watershed optimization of best management practices

using AnnAGNPS and a genetic algorithm. Water Resour. Res. 2002, 38. [CrossRef]
6. Yandamuri, S.R.; Srinivasan, K.; Murty Bhallamudi, S. Multiobjective optimal waste load allocation models

for rivers using nondominated sorting genetic algorithm-II. J. Water Resour. Plan. Manag. 2006, 132, 133–143.
[CrossRef]

http://dx.doi.org/10.1016/j.ecolmodel.2006.06.002
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.1029/2001WR000365
http://dx.doi.org/10.1061/(ASCE)0733-9496(2006)132:3(133)


Water 2017, 9, 704 11 of 11

7. Icaga, Y. Genetic algorithm usage in water quality monitoring networks optimization in Gediz (Turkey) river
basin. Environ. Monit. Assess. 2005, 108, 261–277. [CrossRef] [PubMed]

8. Reed, P.; Minsker, B.; Goldberg, D.E. Designing a competent simple genetic algorithm for search and
optimization. Water Resour. Res. 2000, 36, 3757–3761. [CrossRef]

9. Reed, P.; Minsker, B.S.; Goldberg, D.E. A multiobjective approach to cost effective long-term groundwater
monitoring using an elitist nondominated sorted genetic algorithm with historical data. J. Hydroinf. 2001, 3,
71–89.

10. Riebschleager, K.J.; Karthikeyan, R.; Srinivasan, R.; McKee, K. Estimating Potential E. coli Sources in a
Watershed Using Spatially Explicit Modeling Techniques. J. Am. Water Resour. Assoc. 2012, 48, 745–761.

11. Shirmohammadi, A.; Chaubey, I.; Harmel, R.D.; Bosch, D.D.; Muoz-Carpena, R.; Dharmasri, C.; Sexton, A.;
Arabi, M.; Wolfe, M.L.; Frankenberger, J. Uncertainty in TMDL models. Trans. ASABE 2006, 49, 1033–1049.
[CrossRef]

12. McMahon, G.; Alexander, R.B.; Qian, S. Support of total maximum daily load programs using spatially
referenced regression models. J. Water Resour. Plan. Manag. 2003, 129, 315–329. [CrossRef]

13. Puri, D.; Karthikeyan, R.; Babbar-Sebens, M. Predicting the fate and transport of E. coli in two Texas river
basins using a spatially referenced regression model. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 928–944.
[CrossRef]

14. Smith, R.A.; Schwarz, G.E.; Alexander, R.B. Regional interpretation of water-quality monitoring data.
Water Resour. Res. 1997, 33, 2781–2798. [CrossRef]

15. NHDPlus Texas Data (Vector Processing Unit 12). Available online: https://www.epa.gov/waterdata/
nhdplus-texas-data-vector-processing-unit-12 (accessed on 12 September 2017).

16. Clean Rivers Program. Available online: http://gbra.org/crp/default.aspx (accessed on 12 September 2017).
17. Clean Rivers Program. Available online: https://www.sara-tx.org/environmental-science/clean-rivers-

program/ (accessed on 12 September 2017).
18. USGS Surface-Water Data for USA. Available online: https://waterdata.usgs.gov/nwis/sw (accessed on

8 July 2007).
19. USEPA, Envirofacts. Available online: https://www3.epa.gov/enviro/ (accessed on 12 September 2017).
20. Center for Environmental Informatics. Available online: http://www.cei.psu.edu/ (accessed on

12 September 2017).
21. The SPARROW Surface Water-Quality Model: Theory, Application and User Documentation.

Available online: https://pubs.usgs.gov/tm/2006/tm6b3/ (accessed on 12 September 2017).
22. Eiben, A.E.; Smith, J.E. Natural Computing Series. In Introduction to Evolutionary Computing; Springer:

New York, NY, USA, 2003; Volume 53, pp. 36–51.
23. Grefenstette, J.J. Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern.

1986, 16, 122–128. [CrossRef]
24. Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial.

Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [CrossRef]
25. Zitzler, E.; Deb, K.; Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results.

Evol. Comput. 2000, 8, 173–195. [CrossRef] [PubMed]
26. Sarker, R.; Liang, K.; Newton, C. A new multiobjective evolutionary algorithm. Eur. J. Oper. Res. 2002, 140,

12–23. [CrossRef]
27. Schwarz, G.E.; Hoos, A.B.; Alexander, R.B.; Smith, R.A. The SPARROW surface water-quality model: Theory,

application and user documentation. In US Geological Survey Techniques and Methods Report; USGS: Reston, VA,
USA, 2006.

28. Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation
guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50,
885–900. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10661-005-4328-z
http://www.ncbi.nlm.nih.gov/pubmed/16160791
http://dx.doi.org/10.1029/2000WR900231
http://dx.doi.org/10.13031/2013.21741
http://dx.doi.org/10.1061/(ASCE)0733-9496(2003)129:4(315)
http://dx.doi.org/10.1111/j.1752-1688.2009.00337.x
http://dx.doi.org/10.1029/97WR02171
https://www.epa.gov/waterdata/nhdplus-texas-data-vector-processing-unit-12
https://www.epa.gov/waterdata/nhdplus-texas-data-vector-processing-unit-12
http://gbra.org/crp/default.aspx
https://www.sara-tx.org/environmental-science/clean-rivers-program/
https://www.sara-tx.org/environmental-science/clean-rivers-program/
https://waterdata.usgs.gov/nwis/sw
https://www3.epa.gov/enviro/
http://www.cei.psu.edu/
https://pubs.usgs.gov/tm/2006/tm6b3/
http://dx.doi.org/10.1109/TSMC.1986.289288
http://dx.doi.org/10.1016/j.ress.2005.11.018
http://dx.doi.org/10.1162/106365600568202
http://www.ncbi.nlm.nih.gov/pubmed/10843520
http://dx.doi.org/10.1016/S0377-2217(01)00190-4
http://dx.doi.org/10.13031/2013.23153
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Study Area and Data Sources 
	Genetic Algorithm Overview 
	Objectives and Constraints 
	GA Application 
	Statistical Indices 

	Results and Discussion 
	Conclusions 

