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Abstract: In the context of China’s recent urbanization, the agglomeration and diffusion of the
strip-city spatial network are gradually being reconstructed. The ways in which the street network
structure affects the underlying logic of economic and social development is worthy of in-depth
consideration. This study takes Lanzhou (a typical strip city in China) as a case study, using dynamic,
geographic, big data and spatial syntactic-theory models to explore the influence of street network
accessibility and structure on the spatial and temporal distribution of strip-city spatial vitality.
We use Hotspot Analysis (Getis-Ord Gi*) to analyze the dispersal characteristics of street space
vitality. In addition, the spatial and temporal heterogeneity characteristics and mechanism of the
influence of street accessibility on spatial vitality are evaluated using the spatial Durbin model (SDM).
The results show that: the temporal and spatial performance of urban vitality on weekdays and
weekends conforms to people’s daily activities, offering similar spatial agglomeration and dispersion
effects; accessibility and pedestrian-friendly streets have better urban spatial vitality clustering;
street network integration significantly affects the reshaping of urban vitality, but there is apparent
temporal heterogeneity in the degree of impact.

Keywords: street network structure; urban vitality; spatial syntax; baidu heatmap; spatial Durbin
model

1. Introduction

China has experienced nearly 40 years of rapid urbanization, attracting many people
into the cities, and high-density urban space has brought unprecedented development
to Chinese towns. With the rapid expansion of urban infrastructure, the road network
density has increased year by year. By 2020, the road network density of 36 major cities in
China will reach an average of 6.1 km/km2 [1,2]. However, the urban traffic conditions
have not been improved significantly. Primarily, it is the city center that generally shows
increasingly severe congestion [3] and reduced road capacity [4], and the contradiction
between urban street network efficiency and vitality reshaping has become more promi-
nent [5]. Belt-shaped cities are restricted mainly by natural conditions such as rivers and
valleys [6]. Most urban streets are distributed horizontally with traffic arteries as the main
skeleton, and various urban functional facilities are distributed along the central axis. The
belt-shaped layout increases the organization of the inner space of the city. The difficult
fragility of the urban transportation network has exacerbated the problem of reconstruction
of the urban spatial network [7,8]. These factors are related to the contradiction between
the city’s spatial efficiency and its vitality [9–16]. As the critical index to evaluate the
sustainable development of a city, the coordination and interaction between the efficiency
and vitality of the street network in city space is helpful in improving the city’s com-
petitiveness and attraction. Discovering and understanding the order of urban spatial
development, and grasping the internal operating mechanism of urban network structure
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characteristics are crucial to activating economic and social vitality and finding the ideal
street network structure.

Spatial vitality is the degree of satisfaction related to humans’ basic movements while
living and producing, and exploring their surroundings [4]. The human’s daily activity
relies on the street spaces. Hence, recognizing residents’ daily spatial movement is an
intense focus that needs attention, in order to rebuild human-oriented spatial vitality.
Many scholars have tried to evaluate the vitality of cities via different aspects of street
spaces. Thorough research has found that crowd gathering mainly relates to street type,
density, variety, and traveling environment, and it complies with Jacob’s vitality framework.
Moreover, many scholars have evaluated the idea that streets impact the distribution of city
vitality from aspects of city features (for instance, street accessibility, landscaping, crossing,
and public transportation stops), travel methods (for example, walking, shared bicycles,
and taxi accessibility), and from a time point of view (such as working day, weekends,
evenings, and mornings) [17–21].

The material space that affects urban vitality is closely related to the network structure
of urban streets. The characteristics are closely related and widely recognized [22]. More-
over, the street network structure differences associated with the urban form and the level
of spatial vitality are also different [23]. It is necessary to explore the reconstruction of urban
space from the relationship between the urban street network structure characteristics of a
specific form and the urban vitality.

The street spatial network not only functions as the carrier to the places of city public
activities and pedestrian flow, having both material and social attributes, but it also posesses
apparent features of adjustability and complexity. It can reveal the position of majority-
component factors of a city and the limitation of population flow in the city to a large
extent. This perspective has been acknowledged in articles [24]. Street accessibility can
effectively measure the location advantage of urban spatial activities through intuitive,
structural feature indicators [25]. The spatial vitality distribution of the nine streets in the
old city of Nanjing, China, have found that efficient and convenient street accessibility is an
essential condition for the formation of street vitality [18,26]. A study on the distribution
of vitality in Johor Bahru and Shenzhen found that people prefer to spend their leisure
time in commercial centers with high accessibility [15,27]. The travel environment is also
a key factor affecting the distribution of urban vitality. According to the travel needs of
urban residents, an exemplary infrastructure configuration can provide the basis for night
city vitality [28]. The spatial characteristics of urban vitality at different times within a
week showed that the vitality distribution has prominent spatial-cluster characteristics,
especially in a bicycle travel environment. This feature will change significantly throughout
the day [29] under different travel scales. Streets with convenient transportation and high
accessibility are more attractive to pedestrians [30]. Under the travel characteristics of a
compact city, the accessibility of public transportation services and parking facilities is
significantly and positively correlated with urban spatial vitality [14]; thus, the complex
network centrality of streets has a positive impact on reshaping of urban vitality [31].
Different modes of travel such as driving, cycling, and walking, show significant differences
in shaping urban vitality. In addition, some studies have verified the conditions for the
vitality of Jacobs’s six cities through geographic-information big data [32]. Further, it has
been confirmed that the urban street network structure during travel time, aggregation
scale, functional mixing degree, and appropriate traffic organization are vital factors
affecting spatial vitality [33,34]. Under the background of sustainable development of the
city in the future, modern planners eagerly need to utilize the city’s complicated network
by profoundly analyzing the city’s spatial structure, to promote the ordered organization
of the lower social–physical environment. Therefore, current research must measure street
network configurations from multiple dimensions in time and space, and compare spatial
vitality related to street network structures at different geographic scales.

First, the vitality of urban space usually consists of points of interest (POI), social
media comments, etc., such as catering businesses and corporate offices (Yelp, Dianping,



Land 2021, 10, 1107 3 of 17

Weibo sign-in), among others [15,28,35]. The fluidity differences in the gathering and
scattering of urban residents have often been neglected. Over time, the spatial vitality is
consistently maintained in streets with higher levels of population concentrations, which is
associated with appropriate building density and street functions [36,37]. Secondly, most
studies use linear correlation analysis methods, such as the Pearson correlation coefficient,
to test the relationship between street network and spatial vitality [9,38]. Spatial vitality
is a typical, spatial, autocorrelation geographic event, so it is impossible to pinpoint the
influence of street accessibility alone. Thirdly, the existing research on the relationship
between urban-space vitality and streets has a small research scope. Most of the studies
take microscopic streets or residential blocks as the research objects without considering the
city’s overall spatial and temporal heterogeneity [18,26,39]. This research expands the scope
of research based on previous work. It considers the lack of comparison of the vitality of
workdays and weekends, and the lack of human perception in the existing research. Finally,
the difference in the distribution of urban form and spatial vitality is a gap in existing
research. In response to these problems, this study selects Lanzhou, a typical strip city in
China, and uses Baidu heatmap data to express spatial-vitality distribution characteristics
during weekdays and weekends, and constructs a street network accessibility evaluation
index based on spatial syntax. Lastly, we use the spatial Durbin model to explore the
relationship between urban vitality and road network accessibility under different travel
times and modes, to evaluate the impact of accessibility on urban vitality.

This research contributes to the literature in the following three aspects. First of all, this
research aims to measure the spatial vitality of a specific form (strip city) using geospatial
dynamic big data. Secondly, this research applied Axwoman software based on space
syntax theory to measure the accessibility of street network topology. Thirdly, since the
existing research rarely fully considers the effects of time and space when calculating the
street configuration, this study combines the time and space perspective with the street
network to study the time and space correlation between the street network accessibility
and structure and the spatial vitality. We hope to provide helpful information for planning
and design practices, and provide references for future research.

2. Regions and Dataset
2.1. Regional Overview

Lanzhou (92◦13′–108◦46′ E, 32◦11′–42◦57′ N.) City is located in the geometric center
of mainland China’s land area and the central part of Gansu Province. It is an important
provincial capital city in Northwest China and a significant node city along the Silk Road
Economic Belt [7]. Lanzhou has become a modern metropolis with high attractiveness
and international influence as a comprehensive transportation hub for the New Eurasian
Continental Bridge to open Central Asia and West Asia. Lanzhou is the most typical
representative of China’s 43 prefecture-level strip cities. As shown in Figure 1, the city
is located in a mountainous valley with mountains on both north and south sides. The
Yellow River crosses the central city from west to east. The city’s north-to-south expansion
is restricted by the mountain river valley, forming the typical strip city (Lanzhou) that
grows horizontally from east to west along the Yellow River. The length is about 34 km
from east to west, and the width is 7.3 km at the widest point and 2.1 km at the narrowest
point from north to south, also the average length–width ratio is 7.23:1. The characteristic
of the street network in the form of a strip city is that the number of vertical arterial roads
is limited, and the number of horizontal connecting roads is large. The traffic flow of the
perpendicular arterial roads is concentrated, and there is a particular mismatch between the
limited vertical traffic resources and the considerable traffic demand. As of 2020, Lanzhou
has built a skeleton road network system with 1428.68 km, essentially forming a mature
street network covering the central city and also across the Yellow River.
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Figure 1. Location of the study area.

This paper selects the built-up area in the center of Lanzhou as the study area. This
area has the highest population density and urbanization in Lanzhou, with a total area of
about 230.34 square kilometers. As of 2020, the permanent population is 2.676 million, and
the population density is 11,600 per square kilometer.

2.2. Dataset
2.2.1. Dataset of Streets

The network data of the streets in the downtown area of Lanzhou were collected from the
shapefile vector format data of the open OSM platform (https://www.openstreetmap.org/.
Collected on 5 January 2020) [40]. The original street network dataset contains many details
and double-line redundancy. We used ArcGIS 10.8 to convert double-line to single-line
processing, interrupted urban interchanges, and eliminated internal roads in residential
quarters. A total of 668 street data were obtained. Then, based on the topological isolation
check of the street network data, the urban street network dataset was constructed to
calculate the spatial syntax variable value.

2.2.2. Point of Interest Data

The POI dataset contains latitude, longitude, name, and address information and is a
spatial abstraction of geographic entities [41]. The POI data of this study comes from Amap
(https://www.amap.com/. Collected on 15 January 2020), 39,029 valid data are selected at
the street level, and the specific classification is shown in Table 1. The superposition of POI
and streets can accurately reflect the functional diversity of streets [5].

https://www.openstreetmap.org/
https://www.amap.com/
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Table 1. POI Types and Numbers.

Category Type Description Counting

Healthcare Hospitals/Healthcare services/Clinics/Accessible facilities 2331

Recreation Sports and leisure services /Tourist attractions/Cultural facilities/Place name and address information 2729

Life Services Living Services/Car Sales/Public Facilities/Indoor Facilities/Gazette and Address Information 3055

Company Business Office facilities/Place name and address information 3280

Transportation Services Transportation facilities and services/Subway stations/Bus stops/Place name address information 2254

Car Service Auto repair/Parking/Place name address information 2545

Financial Services Financial and insurance services/Security facilities 1929

Catering Services Catering Services 3188

Shopping Service Shopping services/Car or motorcycle sales/Access to facilities/Place name and address information 13,800

Accommodation Services Lodging Services/Hotels 1896

Educational Facilities Elementary School/High School/University/Other Schools 128

Residential areas Business Residence/Apartments 1894

2.2.3. Baidu Heatmap Data

The Baidu heatmaps are based on the geographic data of mobile-phone users on the
LBS platform, which can display the continuous time span and the changes of population
aggregation in different regions. It is considered one of the most effective dynamic expres-
sions of spatial vitality [36]. The heatmap data of this study use the open API interface
called Baidu Map. We used Python programming language to build an ArcGIS model
toolbox to obtain 168 heatmap raster data of the study area from 12 January to 17 January
2021, for one week, with a time interval of 1 h and a spatial resolution of 25× 25 m. Figure 2
shows some examples of Baidu heatmaps on 15 January 2020.
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3. Methods
3.1. Street Network Accessibility Evaluation

As a typical graph-theory-based analysis method, spatial syntax usually constructs an
axis model and line segment model to analyze urban road structures [42,43]. This paper
uses the line segment model of the Arcgis plug-in Axwoman, in order to build a city street
topology network. Street intersections are represented as nodes, and road segments are
represented as edges with lengths connecting the nodes [44,45]. The line segment model
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considers the uninterrupted section of the road as an element in the topology calculation,
and considers the spatial scale for more accurate results. We use Axwoman software to
calculate the Connect, Control, Depth, and aggregation values of each street to measure the
accessibility structure of the street network [46].

Connect value: the better the spatial permeability of the street. The formula of Ci for
street i is:

Ci = k (1)

k is the number of other elements connected to the i street element.
Control Value: indicates the degree of control of the street on the space intersected

with it, reflecting the degree of control of the section on other streets, generally expressed
in ctrli

ctrli =
k

∑
j=1

1
Cj

(2)

where k is the number of direct connections to the i street; Cj is the connection value of the j
street. The higher the control value, the more critical the street is.

Depth value: indicates the minimum number of connection steps for a street to reach
all other streets in the street network. Assuming that the minimum number of connections
is d (d is an integer, 1 ≤ d ≤ s), and the number of connected routes is Nd, the formula is:

Dd =
n

∑
d=1

d× Nd (3)

When d = 1, representing the number of elements directly connected with the specified
street, the depth value is a one-step depth value, namely, the depth value is equal to the
Connect value;

When the step distance increases gradually, the depth value also increases gradually,
and the depth value is the local depth value.

When d = s, the depth value is the TotalDepth value. The specific application of the
MeanDepth value is commonly used. The formula is:

Di =
Di

n− 1
(4)

where n is the number of streets in the network to be examined, and n − 1 reflects
the fact that there are, at most, n − 1 streets connected to the specified streets in the
examined dataset.

Integration value: the degree of aggregation or dispersion between a street and other
street spaces in the road network. It can be divided into global integration value (GIi)
and local integration value (LIi). The international degree of integration represents the
topological relationship between a road and all other roads, while the local degree of
integration represents the interrelationship between a road and the streets within a few
steps (usually three steps) from it, which is calculated as

Ii = (n− 2)/2
(

Di − 1
)

LIi =
n[log2

n+2
3 −1]+1

(n−1)(Di−1)

 (5)

For an urban travel distance, we consider that the number of steps required to traverse
from the origin to the destination is related to the mode of transport. It is evident that
to reach a distance of more than three steps on urban roads, the travel mode will be
more inclined towards car travel, while a distance of less than three steps represents
walking travel. Streets with high local integration facilitate walking when considering the
accessibility of the urban road network [47], while global integration is more appropriate
to explain the mobility characteristics of human driving patterns in the city [48].
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3.2. Spatial Vitality Measurement

According to Jacob’s urban vitality theory [5,16], a vibrant city manifests human
psychological behavior in space and the diversity generated by the interaction between
human activities and metropolitan areas, including streets, diverse functions, a specific
population density, and mixing of environments. We use the population-vitality Baidu
heatmap data to process [49] the heat value, use the grid calculator to calculate it, and then
reclassify the population heat value into 1–7 levels as the quantitative value of urban spatial
vitality. To observe the spatial distribution of characteristics of urban vitality, a block vitality
intensity model was constructed to calculate the urban spatial vitality intensity values
(Block Vitality intensity) at different periods on weekdays and rest days. The calculation
formula is:

Vint =

n
∑

i=1
Vi

n
(6)

Vint represents the vitality intensity value of the block; i represents different moments,
i = 1, 2, 3 · · · , n, n is the number of moments involved in the calculation; Vi represents the
heat value level of a particular spatial unit at the time i.

The vitality intensity value reflects the clustering degree of people in a certain period
within a spatial unit. The larger the vitality intensity value, the higher the clustering of peo-
ple in the block during the period and the stronger the vitality. The time of participation in
the calculation is different, which characterizes the intensity of vitality at different periods.

3.3. Hotspot Analysis (Getis-Ord Gi*)

Getis-Ord Gi* analysis is essential for geospatial identification of statistically signif-
icant hot and cold spots [50]. It can be better applied to analyze the cluster distribution
characteristics of street vitality intensity, reflect the distribution of hot and cold spots in the
local space of the research object, and accurately identify high-value clusters and low-value
clusters. The positive and negative Gi* statistics with high absolute values correspond to
the high-value aggregation area and low-value aggregation area of spatial vitality, respec-
tively. Negative Gi* indicates an aggregation trend with a shorter duration of vitality. Gi*

values close to 0 show a random distribution of observed spatial events.

3.4. Relevance Exploration

The temporal and spatial patterns of crowd activities determine the continuity and
dynamics of street vitality [51]. We focus on the influencial mechanism of street network
accessibility and structure on spatial vitality changes. First, we convert the data of street
network (line segment) and spatial vitality (surface) into the same analysis cell by creating
a 100 m×100 m square grid network with the fishing net tool in ArcMap. A total of
23,557 spatial grid cells were obtained. Then, we utilized Global Moran’s I test to obtain
the significance of autocorrelation between urban street network structure and urban-
space vitality.

I =

n
∑

i=1

n
∑

j=1
wij(xi − x)

(
xj − x

)
S2

n
∑

i=1

n
∑

j=1
wij

(7)

xi and xj denote the attribute values on grid i and j geographic cells; x is the average
of the attribute values in each region; wij is spatial weight matrix, indicating the proximity
relationship between i and j; n is the number of measured regions; S2 is the sample variance.

Moran’s I > 0 represents a positive spatial correlation, the larger the value, the more
pronounced the spatial correlation. Moran’s I < 0 indicates a negative spatial correlation,
and the smaller the value, the more discrete in space. Moran’s I = 0 means that the space
is random.
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We also used Spearman and Kendall’s tau-b coefficients to explore the preliminary
linear correlation between urban vitality and street centrality to explain the non-normal
distribution of numerical variables.

3.5. Spatial Doberman Model

Linear regression analysis did not consider the spatial autocorrelation of vitality or
the spatial distribution of built environment factors. It is challenging to reveal further the
spatial impact of the street-built environment on urban vitality [52]. This paper uses a
spatial autoregressive model to display the effect of the built environment on urban vitality.
It considers the temporal and spatial impacts of urban vitality. The formula is

y = ρW1y + β1X + µ
µ = λW2µ + ε
ε : N

(
0, δ2 I

)
 (8)

where y is the dependent variable; ρ is the W1y coefficient of the spatial lag term; X is the
independent variable; β is the regression coefficient of the independent variable; µ is the
random error term; ε is the random error subject to a mean value of 0 and a variance of δ2;
W1 and W2 are the weight matrices of the spatial trend of the dependent variable and the
residual, respectively; λ is the regression coefficient of the spatial error term. According
to the different parameter settings in Formula (3), three spatial autoregressive models can
be generated, including the spatial lag regression model, spatial error model, and spatial
Durbin model.

(1) When ρ 6=0 and λ = 0, it is a spatial lag model (SLM). The spatial lag regression
model considers the spatial correlation of dependent variables. In this article, this means the
spatial vitality of the street is not only affected by related driving factors but also affected
by the vitality of the surrounding streets, that is, considering the spatial autocorrelation
of vitality.

(2) When ρ = 0 and λ 6= 0, it is a spatial error model (SEM). The spatial error model
considers the spatial correlation of fitting errors. In this article, this means that the spatial
vitality of the street is not only affected by the relevant driving factors but also affected by
the fitting error of the surrounding street vitality.

(3) When ρ 6=0 and λ 6= 0, it is a spatial Durbin model (SDM). The spatial Durbin model
considers the spatial autocorrelation of the dependent variable and error and incorporates
the independent variable’s spatial trend effect into the model. The formula is:

y = ρW1y + β1X + λW2µ + W3Xβ2 + ε

ε : N
(
0, δ2 I

) }
(9)

The parameters in the formula are consistent with those in Formula (3), thus W3 is
the weight matrix of the spatial trend of the independent variable; β2 is the regression
coefficient of this item.

4. Results
4.1. Street Network Structure Based on Space Syntax

In this paper, the Axwoman software is used to calculate the accessibility index of
each street, as shown in Figure 3.

Table 2 shows the network structure index statistics of Lanzhou streets based on spatial
syntax. The Connect value reflects the number of connections between the street space and
other adjacent streets. The higher the Connect value, the better the spatial permeability of
the street. The street with the largest Connect value, Xijin Road, is connected with 58 other
streets and is the leading traffic road connecting the east–west direction of Lanzhou City.
The standard deviation of the Connect value is 5.17. The control value indicates the degree
of control of the street to the intersecting space; the maximum value is 20.88, the minimum
value is 0.02, and the standard deviation is 1.72. The higher the control value, the more
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critical the street is. The depth value represents the minimum number of connected steps
for a road in the street network to reach all other roads. The calculated standard deviations
of the TotalDepth value and the MeanDepth value are 462.09 and 0.69, respectively. The
standard deviation of the TotalDepth value is too large and does not have statistics. The
academic value is eliminated, and the MeanDepth value is used as the practical value.
The integration value reflects the degree of aggregation or dispersion between a particular
road and other roads in the road network. The higher the integration degree, the better
the accessibility of the road section. The global integration degree (GInteg) represents the
topological relationship between a road and all other roads. However, the local integration
degree (LInteg) describes the relationship between a particular road and the road within
a few steps (usually three steps) away from it. The standard deviations are 0.31 and
1.16, respectively.
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Table 2. Statistics Table of Street Network Structure Accessibility Index.

N MAX AVG MIX S.D ANOV

Connect 668 58.00 4.04 1.00 5.17 26.73
Control 668 20.88 1.00 0.02 1.72 2.96

TotalDepth 668 5294.00 3337.73 2187.00 462.09 213,525.55
MeanDepth 668 7.93 5.00 3.27 0.69 0.48

GInteg 668 3.00 1.76 0.98 0.31 0.09
LInteg 668 7.22 2.76 0.21 1.16 1.35

4.2. Temporal and Spatial Distribution Characteristics of Spatial Vitality
4.2.1. Temporal Characteristics of Spatial Vitality

Figure 3 shows the temporal characteristics of spatial vitality. The changing trend of
urban vitality is in line with the rhythm of daily human life. The vitality value rises sharply
during the morning peak time and significantly decreases during sleep time. Vitality
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gathers into a high-value gathering trend. Whether on weekdays or weekends, the city
begins to wake up after 7:00 in the morning, and the city’s vitality drops significantly after
22:00, and people start to stop outdoor activities. On weekdays, during the commute time
from 8:00 to 9:00 in the morning, the vitality builds up and remains stable, forming the
first wave of spatial vitality around noon. It can be inferred that in the morning, as people
commute from home to work, the degree of population concentration increases rapidly,
reaching the first peak of workday gathering, which is coordinated with the commuting
schedule of workdays.

At 1:00 pm, the vitality dropped slightly and formed a trough. It is inferred that part
of the population return home during the lunch break, resulting in a decline in population
concentration. At 3:00 pm and 6:00 pm, there are two peaks of population gathering, and at
6:00 pm, the peak of workday gathering is formed, and it drops rapidly in a short time, as
people return home. After 7:00 am on weekends, the degree of vitality gradually increased,
and the overall vitality was slightly lower than that of working days, reaching a peak at
noon and approaching working days, indicating that people have more free time at their
disposal on weekends. There are apparent fluctuations until 6:00 pm when the vitality of
the population gathering gradually decreases, and there is a small peak of vitality at 8:00
pm showing the city’s night vitality.

By comparing the temporal characteristics of urban spatial vitality on working days
and nonworking days (Figure 4), we find that:

• On weekdays and weekends, based on spatial vitality, the concentration of vitality
during the day is significantly greater than that at night. This is in line with common
sense that the concentration of people in residential areas is lower than that of areas
with public activities, thus providing the facial validity of our research results.

• Regarding the degree of population concentration, the vitality value of the city center
during workdays is generally higher than that on weekends, and the crowd on work-
days is more concentrated than on weekends. After 11:00 pm, the trend of gathering
vitality on weekends is higher than that on weekdays. The vitality of streets at night
mainly comes from weekend activities.

• Comparing the volatility of the vitality aggregation curve, the volatility of most
working days is greater than that of the weekend, which is related to urban commuting.
Comparing the curvature of the morning and afternoon curves shows that people
gather and disperse faster on weekdays than on weekends.
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Figure 4. Characteristics of the Temporal Distribution of Spatial Vitality.

4.2.2. Spatial Characteristics of Urban Vitality

The statistics of Hotspot Analysis (Getis-Ord Gi*) are used to identify the statistically
significant spatial-vitality clusters in the two time periods of weekdays and weekends.
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The classification of high clusters and low clusters uses the average value of street spatial
vitality. Cool and warm colors are used to indicate the degree of vitality gathering, where
warmer colors indicate higher vitality gathering.

As shown in Figure 5, the spatial distribution of urban vitality in the study area is
highly consistent with the gathering features on weekdays and weekends, and the spatial
distribution is highly uneven. Superimposed comparison with POI core density shows
that the streets with a high concentration of vitality in the main urban area are mainly
concentrated in shopping malls, commercial office areas, leisure and entertainment areas
in Chengguan District (such as Dongfang Hong Square, Wuquan Square, Ruide Avenue,
Wanda Mall, and Yan Tan High-Tech Zone), Lanzhou Center, Xiguan Cross, etc., squares
and shopping malls in Qilihe District, and commercial areas and parks in Xigu District.
Anning District, the main university gathering area, is not a prominent gathering vitality
area. It is worth noting that obvious gathering vitality is created on both sides of the urban
traffic beehive belt in Qilihe District and Chengguan District, while the beehive itself forms
a cold zone, and the heavy traffic and busy streets are not conducive to the formation and
gathering of vitality. Through the clustering of hotspots, it is found that the urban areas
with high urban vitality in Lanzhou are distributed in a “multi-center cluster”, mainly close
to the intersections of the main streets. In addition, the streets along the Yellow River are
connected through bridges and streets with high levels of vitality form vitality clusters that
cross the river. However, most river-crossing areas are limited by the number and scale of
bridges and other connections, and they do not provide any high vitality clustering areas.
The blocking effect of the river on the urban spatial vitality distribution is noticeable. It is
inferred from this that good traffic accessibility is conducive to the formation and gathering
of vitality around street facilities.
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To explore the influence of street network functions on the distribution of urban
vitality, we conducted regression analysis on the urban vitality on weekdays and week-
ends and the vitality of POI (points of interest) facilities, in order to reveal the impact of
street-function accessibility on spatial vitality. Because of the mixed nature of each street
type, we regard the POI facility type with the most significant cumulative number as the
primary street-function type. There are apparent differences in the intensity of the influence
of various street function elements on city vitality on weekdays and weekends. When
considering street accessibility under the characteristics of working day trips, the top five
rankings are: shopping services (0.2572) > company businesses (0.2356) > catering services
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(0.2084) > life services (0.1754) > transportation services (0.1689). When considering street
accessibility under weekend travel characteristics, the top five rankings are: shopping
services (0.2338) > catering services (0.1976) > corporate businesses (0.1855) > life services
(0.1792) > leisure and entertainment (0.1754). The results show that shopping, employment,
services, and traffic factors are essential variables for street accessibility. They affect the
spatial distribution of urban vitality to a large extent. In contrast, educational facilities
(schools/universities), residential areas (houses/apartments), and accommodation service
facilities (hotels) have relatively little impact on urban vitality.

4.3. Correlation Analysis of Street Accessibility and Spatial Vitality

The Baidu heat value of urban spatial vitality is a quantitative variable, and the street
network accessibility index is a categorical continuous variable. This article analyzes two
sets of variables. The global Moran index tests the index, and the values are 0.663, 0.675,
0.826, 0.821, and 0.735, which are all greater than 0, indicating that the accessibility of the
urban street network structure has the characteristics of aggregation correlation with the
level of urban vitality. Through the p-value test, both are found to be significant at the
0.001 level and pass the hypothesis test. Therefore, the accessibility of the street network
structure can affect the distribution of spatial vitality to a certain extent. In terms of the
existence of urban spatial vitality hotspots, there is a significant difference between street
grid units with high accessibility and street grid units with low accessibility [26]. At
different times, streets with increased accessibility and network units with high urban
vitality appear simultaneously in space.

Although the Moran Index test reflects the correlation between urban spatial vitality
and street network accessibility, it cannot quantitatively explain its correlation from a
statistical point of view. We need further statistical analysis to reflect the relationship
between urban spatial vitality and street accessibility. The correlations between the results
are shown in Table 3. The correlation coefficients of Pearson, tau-b, and Spearman show
consistent directions and similar amplitudes. The five street network accessibility indexes
are significantly correlated with urban vitality at the 0.05 level, and the MeanDepth value
is significantly negatively associated with spatial vitality. Specifically, for street accessibility
under the characteristics of urban working days, the positive correlation between integra-
tion degree and spatial vitality is the most significant, followed by the Connect value and
Control value, and the average depth is significantly negatively correlated with spatial
vitality. On weekends, integration and Connect values are positively associated with spa-
tial vitality, while MeanDepth values and Control values negatively correlate with urban
vitality. The correlation of the Control value under the correlation test at different periods
is inconsistent, and the maximum absolute value of the correlation coefficient is only 0.125,
indicating that the Control value does not have a significant effect on the distribution of
spatial vitality, but people are more affected by the travel demand at different periods.

Table 3. Correlation of Spatial Syntactic Variables With Vitality.

Connect Control MeanDepth GInteg LInteg

workday
pearson 0.145 ** 0.006 ** −0.256 ** 0.321 ** 0.333 **

tau-b 0.182 ** 0.023 ** −0.308 ** 0.208 ** 0.310 **
Spearman 0.220 ** 0.106 ** −0.263 ** 0.363 ** 0.466 **

weekend
pearson 0.024 * −0.012 ** −0.231 ** 0.194 ** 0.411 **

tau-b 0.273 ** −0.015 * −0.394 ** 0.094 ** 0.398 **
Spearman 0.107 ** −0.125 * −0.245 ** 0.345 ** 0.450 **

Note: *. Significant correlation at 0.05 level. **. Significant correlation at 0.01 level.

4.4. The Influencing Mechanism of Street Accessibility on Space Vitality

To obtain a more reliable estimate of the significance and direction of the impact of
street network accessibility on urban vitality, we conducted a further spatial autoregressive
analysis. Ordinary Least Squares (OLS) is a classic regression model, but it cannot solve
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the spatial autocorrelation effect [29]. Therefore, spatial autoregressive model analysis
is used to fill this deficiency. To better compare the results of different spatial autore-
gressive models, we use the spatial Durbin model (SDM), spatial lag model (SLM), and
spatial error model (SEM) for analysis. Considering the characteristics of the horizontal
distribution of the strip-city street network along the main roads, and the influence of
street accessibility under different travel time environments on the spatial vitality [8], we
carried out two sets of variable spatial regression analyses on weekdays and weekends,
respectively. Tables 4 and 5, respectively show the spatial relationships between street
network accessibility and urban vitality distribution during weekdays and weekends. The
model’s variance expansion coefficient was verified, and the largest variance expansion
factor (VIF) of all parameters was 4.95, which was within the acceptable range, and there
was no serious multicollinearity. According to the Log-likelihood function value of the
variable index, Akaike information criterion and R2 comparison, it was found that for the
likelihood function value and R2, the higher the value, the better the performance; for
the Akaike information criterion, the lower the value, the better the performance. What
is essential is that the components of the urban street network are organically connected,
and the street accessibility of a block is likely to be related to the street network of its
neighboring blocks. In view of the potential exogenous and endogenous spatial interaction
effects, the comparison of the log-likelihood function values and R2, and the results of the
robust Lagrangian multiplier test, prove that SDM is more suitable for our research.

Table 4. Workday spatial autocorrelation regression results.

Variable
Model

OSL SLM SEM SDM

ρ - 0.8932 **(0.0046) 0.8936 **(0.0047)
λ - - 0.9053 **(0.0044) 0.9053 **(0.0025)

Constant 7.3714 **(0.8896) 0.2718(0.4240) 2.6146*(0.5973) 1.1332*(0.6215)
Connect 0.1498 **(0.0110) 0.0155 *(0.0052) 0.0095 **(0.0066) 0.1423 **(0.0085)
Control −0.5270 **(0.0276) −0.0856 **(0.0132) −0.0713 **(0.0174) −0.1514 **(0.0205)

MeanDepth −0.7167 **(0.1034) −0.0539 *(0.0492) −0.0667 * (0.0715) −0.1264 *(0.0707)
GInteg −1.0927 **(0.1988) −0.0689(0.0946) −0.0390 *(0.1333) −0.1476 *(0.1381)
LInteg 0.2241 **(0.0341) 0.1411 **(0.0162) 0.1848 **(0.0247) 0.0191 *(0.0252)

Log-likelihood −21,314.4 −14,534.5 −14,522.97 −14,641.9
Mean dependent var 2.64167 2.64167 2.641669 2.64167
Akaike info criterion 42,640.7 29,083 29,057.9 29,297.8

R2 0.0769 0.7914 0.7940 0.7872
Robust Lagrange

multiplier test 13,559.76 (p: 0.000) 13,582.77 (p: 0.000) 13,011.02 (p: 0.000)

Breusch–Pagan test 88.5621 (p-value: 0.000) 64.50 (p: 0.000) 65.7735 (p: 0.000) 102.93 (p: 0.000)

Note: *. Significant correlation at 0.05 level. **. Significant correlation at 0.01 level. Standard error in parentheses.

4.4.1. Overall Spatial Effect

Tables 4 and 5 show the analysis results of the influence of street network accessibility
and structure on spatial vitality intensity during weekdays and weekends. The R2 of the
four models are all high, and the constants of the two periods are 0.9053 and 0.9231, respec-
tively, showing a clear positive correlation, indicating that streets with high connectivity
have a positive impact on the vitality of the city. From the well-fitted spatial Durbin model
(SDM) analysis, there are differences in the main factors affecting the vitality of the street
accessibility index. The Connect value and the LInteg value have influence coefficients
of 0.1423 and 0.0191 on weekdays and weekends. They are significantly positively cor-
related, with 0.1409 and 0.0125 at the 0.05 level, indicating that street intersections and
pedestrian-friendly streets positively impact urban vitality. The two indexes of Control
value and MeanDepth value are significantly negatively correlated with urban vitality
at the 0.05 level, and the influence coefficients are 0.1514, 0.1264 and 0.1446, 0.1562, re-
spectively. It can be inferred that the main roads in cities with a high degree of control
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over the surrounding streets are more dependent on pedestrians. Vehicles, bicycles, and
other means of transportation cross these streets and do not stay for a long time, proving
that streets with insufficient travel convenience are not conducive to urban formation and
continuation of urban vitality [14]. The above results show that other streets connected to
the street itself impact the vitality of the city. The magnitude of the impact is significantly
positively correlated with street network connectivity and pedestrian-friendly streets, and
significantly negatively correlated with controlled traffic streets.

Table 5. Weekend Spatial Autocorrelation Regression Results.

Variable
Model

OSL SLM SEM SDM

ρ - 0.8966 ***(0.0045) 0.8965 ***(0.0046)
λ - - 0.9074 ***(0.0044) 0.9231 ***(0.0038)

Constant 7.7901 ***(0.8715) 0.2493(0.4093) 2.1232 ***(0.5777) 1.4183 *(0.5995)
Connect 0.1456 ***(0.0107) 0.0133 **(0.0050) 0.0052(0.0064) 0.1409 ***(0.0081)
Control −0.5089 ***(0.0271) −0.07843 ***(0.0128) −0.0607 ***(0.0169) −0.1446 ***(0.01971)

MeanDepth −0.7514 ***(0.1013) −0.04548(0.0476) −0.0107(0.0692) −0.1562 *(0.0682)
GInteg 1.2782 ***(0.19475) −0.07140(0.0913) 0.0155(0.1289) 0.2252 *(0.1332)
LInteg 0.2124 ***(0.0334) 0.1312 ***(0.0157) 0.1807 ***(0.0239) 0.0125 *(0.0243)

Log-likelihood −21,093.7 −14,173.3 −14,168.6 −14,254.5
Mean dependent var 2.5086 2.5086 2.5086 2.5086
Akaike info criterion 42,199.4 28,360.6 28,349.1 28,523.1

R2 0.071 0.7961 0.7982 0.793
Robust Lagrange

multiplier test 13,840.81 (p: 0.000) 13,850.29 (p: 0.000) 13,338.72 (p: 0.000)

Breusch–Pagan test 83.94 (p: 0.000) 54.78 (p: 0.000) 54.06 (p: 0.000) 100.67 (p: 0.000)

Note: *. Significant correlation at 0.05 level. **. Significant correlation at 0.01 level. ***. Significant correlation at 0.001 level. Standard error
in parentheses.

4.4.2. Temporal Heterogeneity Effect

Looking at the longitudinal comparison of SDM regression results in Tables 4 and 5,
the general results of the Connect value, Control value, MeanDepth value, and local
integration value of urban street accessibility have similar correlation results on weekdays
and weekends. Among them, traffic streets with high Control values have higher transfer
steps. Highstreets are not conducive to the gathering of vitality, showing a consistent
negative correlation. The relationship between the GInteg and city vitality in the two
time periods of weekdays and weekends is manifested as temporal heterogeneity. It is
mainly reflected in the positive correlation of the GInteg on weekdays, with a correlation
value of −0.1476, and a weekend correlation of 0.2252. This is significant at the 0.05 level,
further verifying that the temporal and spatial distribution of urban vitality is related to
the accessibility of the street network and is closely related to residents’ travel. Secondly,
there is a slight difference in the size of the β coefficient of the SDM model on weekdays
and weekends. The travel scale of the overall street network is more densely distributed
on weekdays than on weekends, indicating that street accessibility structure and leisure
time have a greater impact on urban vitality. People who commute are more inclined to
work nearby to avoid long-distance traffic travel. The global accessibility of the city is more
likely to affect the gathering of urban vitality.

We deconstructed the urban vitality duration of weekdays and weekends (9:00 am to
6:00 pm) into a regression of accessibility indicators during peak hours within a day, and
the results are consistent with existing studies [34,36]. Nevertheless, we can observe more
detailed changes in the relationship between street network accessibility and urban spatial
vitality at different times in a day. The city is composed of interactions that flow through
a network of streets. The degree of influence in different periods reveals the potential
interaction between street accessibility and population flow, which is worthy of further
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exploration. In addition, this article does not clearly distinguish the values in walking and
vehicle travel environments. Furthermore, it only indicates the GInteg and the LInteg.

5. Discussion and Conclusions

Urban streets are public open areas. They function as transportation facilitators
for society and provide spaces for civilians’ daily activities, such as recreation, exercise,
communication, and information exchanging. This research explores reshaping the network
structure and spatial vitality of strip-city streets. This study is based on human street space.
It is assumed that the built environment of the street can attract people to the street to a
certain extent. At the street level, it can meet citizens’ social and economic needs such as
communication, shopping, walking, and entertainment. We used heatmaps to explore the
temporal and spatial distribution characteristics of urban population vitality. Secondly,
based on tests of correlation between street-network structure and accessibility and the
spatial vitality of Lanzhou, a typical strip city, it is determined that street accessibility can
affect urban vitality. Finally, the spatial Durbin model is used to evaluate the mechanism
and direction of the influence of street accessibility indicators on urban vitality. We provide
a theoretical basis and guidance for the optimization of the strip-city street structure.

The main findings of this study can be summarized as follows:

• The temporal distribution of urban vitality is consistent with the law of crowd ac-
tivities, showing highly similar spatial aggregation and dispersion, and the spatial
distribution of vitality mostly coincides with the location of street intersections.

• At the level of urban spatial neighborhoods, the better the connectivity of the street
network, the more vibrantly the city gathers. For streets with high controllability,
and with more transfer steps, the more scattered the urban vitality is. Certain factors,
for instance shopping and services in the spatial dimension, have influenced urban
vitality to a large extent.

• According to travel habits on weekdays and weekends, the GInteg and LInteg are
significantly related to urban vitality, but there is a temporal heterogeneity effect.

This research has significance for policymaking, as the network configuration of re-
lated streets plays a crucial role in city distribution. The accessibility of the city is related
to the distribution of the city’s spatial vitality. It also reflects that the characteristic of
population aggregation of citizens’ travelling on working days and weekends is essential to
scientific city planning. City planners and city administrators can conduct environmental
design by using the advantages of accessibility of the street network, leading strip-city
gathering from single-center to multicenter. Further, according to the pattern of population
aggregation and distribution, increasing the density of branchways and alleys, apply-
ing sidewalks or bike routes to streets, and utilizing the bus-stop and parking-facility
layouts are effective measures to promote street accessibility and vitality. This research
also provides a new exploration idea and rational basis for quantitative optimization of
constructing the urban “narrow roads and dense road network” structure.

Although this study has stated the influence and relationship between the accessibility
structure and spatial vitality of the street network of a strip city, some limitations need to be
addressed subsequently. First, this article used the space syntax description to describe the
accessibility of the street topology network, which is feasible at a macro level. In contrast,
there is a gap between the simplified street network and the existing street network, and
less consideration is given to travel direction, meaning there is a certain tolerance for the
spatial movement of people. Secondly, for the built environment factors, this research
only considered the street-related material environment. Other factors also affect the
spatial vitality, for instance, the city square which draws crowds, the accessibility of public
service areas and presence of green land. Future research can use big data, such as Weibo
signing-in, street-view images, and night lighting to resolve this problem. Furthermore, the
complexity of characteristics of the street network can finely depict the geometric details
of the street network. In the meantime, revealing the relationships between the street
configuration and spatial vitality is worth studying further.
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