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Abstract: Cropland abandonment occurs frequently in many countries and regions around the
world, particularly in those with poor environmental conditions, such as mountainous regions. In
Chongqing county, China, over 76% of the total area is mountainous. Due to the lack of reliable
remote sensing monitoring and identification methods, the spatial and temporal distribution of
abandoned cropland areas and its underlying causes are poorly understood. Thus, the extent of
cropland abandonment in Chongqing, since 2001, was estimated using land use trajectories. The
following results were obtained: (1) the cropland abandonment rate was 12.2–15.4% from 2001
to 2020, with an average of 13.3%; (2) hotspots of abandoned cropland were concentrated in the
north and southeast. Cropland abandonment was clustered in the northern, southeastern, and
southwestern areas; (3) socio-economic factors (including gross domestic product density, population
density, and road density) had a greater impact on the spatial distribution of abandoned cropland
than environmental factors. Based on the results, the government should strive to reduce production
costs associated with poor agricultural infrastructure, sporadic cropland, and higher labor costs
by providing grain subsidies, undertaking cropland consolidation, encouraging land transfer, and
improving agricultural infrastructure.

Keywords: spatiotemporal distribution; influencing factors; Chongqing; China

1. Introduction

Against the background of accelerated population growth, providing sufficient food
for a global population of 9 billion people has become a serious challenge for human society
in the 21st century [1,2]. Stable arable land is critical to sustainably provide food for a
growing population [3]. Driven by economic globalization, many parts of the world are
currently experiencing rapid urbanization, mostly at the expense of cropland. It is expected
that, by 2100, 51–63% of new urban land will be derived from arable land, mostly in China,
India, and other countries [4]. The contradiction between future cropland reduction and
population growth and the resulting food security issues have attracted wide attention
and discussion. Especially since 2020, in the context of the COVID-19 pandemic, many
countries importing large amounts of grain have been greatly affected and, currently,
the grain supply chain is seriously affected. Cultivated land is a rare resource in China,
accounting for less than half the global average per capita. China is home to about 19% of
the world’s population, albeit with limited arable land resources [5]. Under the premise of
comprehensively improving the capacity of cropland to continuously increase production,
the overall use of abandoned cropland and the improvement of the cropland use rate are
approaches to ensure food security.
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At present, cropland abandonment is frequent in many countries and regions around
the world [6], making it a hot topic in global land use/cover change research [7]. The emer-
gence of abandoned cropland is strongly linked to the transformation of the socio-economic
development. Cropland abandonment was first noticed in mountainous areas of Europe at
the beginning of the 20th centuries, where it was associated with forest recovery [8]. With
the rapid development of the economy, cropland abandonment spread from developed to
developing countries, especially in areas with poor geographical conditions (e.g., moun-
tainous areas) [9]. This phenomenon is most common in developed countries including
those of Europe, the United States, Australia, and Japan, as well as in mountainous areas
of China, South America, and other regions in Southeast Asia [6]. For example, in Chile,
45.1% of the cropland was abandoned between 1985 and 2007 [10], and 20.7 and 13.9% of
the croplands in Poland and Ukraine in Europe, respectively, were lost in the 1980s [11].
According to a large-scale survey conducted by Li et al. [12], between 2014 and 2015, the
cropland abandonment rate in Chinese mountainous counties was 14.3%.

When extracting the distribution information of abandoned cropland, farmer surveys
or remote sensing monitoring methods are often used. For example, Japan conducted
a national tracking survey of cropland abandonment, whereas in Europe, annual sam-
ple surveys are conducted, with full surveys every 10 years. However, reliable data on
cropland abandonment in other countries are scarce [13]. In recent years, remote sensing
technology has shown advantages in monitoring spatial and temporal changes in land use
and has gradually been applied for the identification of abandoned cropland [14–18]. For
this, MODIS (250 m) and Landsat TM (30 m) image data are commonly used to identify
abandoned cropland. For example, Alcantara et al. [19] obtained the distribution of arable
land in Eastern Europe from 2003 to 2008 using NDVI (Normalized Difference Vegetation
Index) time series and phenological information extracted from MODIS data. Similarly,
Prishchepov et al. [20] used Landsat TM/ETM+ remote sensing data from 1990 and 2000 to
extract abandoned cropland in the European region of post-Soviet Russia. In addition, for
Europe, Corine Land Cover was also an important data source due to the small method-
ological uncertainty. In 2014, Yusoff et al. [21] identified abandoned oil palm areas by a
comparison with background historical cropland data based on SPOT-6 and Landsat OLI
data. With the continuous development of remote sensing technologies, image resolution
has improved to the meter and sub-meter level, providing a better spatial database for
the extraction of abandoned cropland. For example, Alonso-Sarría et al. [22] identified
abandoned cropland in the Murcia autonomous region of southeastern Spain based on
Quick-Bird images and existing land use maps. In previous studies, the extraction of
abandoned cropland was recognized based on comparing vegetation changes or land use
type transfers. However, the extraction of the abandoned cropland by directly comparing
land use changes over a certain period can only determine the land use status during
image acquisition, whereas the period of abandonment is difficult to determine due to the
lack of continuous land use information. In addition, for some plots that were recently
cleared for farming, it is difficult to determine whether they are fallow or abandoned.
With the development of aerial remote sensing technologies, aerial photos with a higher
resolution are also an important data source for the identification of abandoned cropland.
However, one of their disadvantages is the high cost of acquiring images, making it difficult
to implement the real-time monitoring of cropland abandonment in large areas.

Cropland abandonment is a dynamic process that is influenced by a range of com-
plex natural and social drivers that change over time and space [23]. It often occurs in
low-income agricultural areas, where poor natural conditions affect agricultural profitabil-
ity [8,24]; such conditions include steep slopes, extreme weather, soil erosion, poor soil
conditions, and long distances from settlements [23,25]. Socioeconomic conditions also
affect the economic benefits of cropland and are regarded as the major drivers of crop-
land abandonment. Economic expansion and urbanization promote the development of
secondary and tertiary sectors, creating a variety of non-farming jobs. Non-agricultural
sectors can provide considerable income opportunities and widen the gap between urban
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and rural life, resulting in rural depopulation. In contrast, for many countries in Europe
and North America, the share of part-time farms increased significantly, enabling higher
income levels. For some countries with low personnel costs, the reduction in the labor force
increases the opportunity cost of agriculture, leading to the abandonment of low-quality
cropland [26–28].

Identifying cropland abandonment and understanding the influencing factors can help
formulate and improve the relevant policies to reduce the negative impacts of cropland
abandonment on food security. However, because of the relatively late emergence of
cropland abandonment in China, studies on the spatiotemporal patterns and influencing
mechanisms are still scarce. In this context, taking Chongqing in China as an example,
this paper adapted a monitoring method of cropland abandonment based on annual
land use change, tracking and exploring the changes and influencing factors of cropland
abandonment from 2001 to 2020. This study contains three main parts: (1) using remote
sensing data to reconstruct the land use trajectory of Chongqing and to evaluate the degree
of abandoned cropland, (2) revealing the spatial heterogeneity of abandoned cropland, and
(3) detecting the factors influencing cropland abandonment based on the two aspects of the
natural environment and the social economy.

2. Study Area

Chongqing is located in the southwestern part of China and the subtropical inland
area of the Northern Hemisphere, spanning about 5 degrees in longitude and about
4 degrees in latitude (Figure 1). It is situated in the mid-latitude zone, covering an area of
82,400 km2. There are significant spatial differences in elevation, which ranges from 73.1 to
2796.8 m. The area with an elevation of more than 800 m covers 29,600 km2, accounting
for 37.0% of the total area. Elevation gradually increases from the southwest to the east.
Chongqing is often called a mountain city because it is surrounded by numerous hills
and low mountains. The climate is a mid-subtropical, humid monsoon climate with hot
summers and warm winters. The average temperature of the coldest month (January)
is 7.8 ◦C, and the frost-free period is 340–350 days. The annual average precipitation
ranges from 1000 to 1350 mm in most areas. Most of the precipitation is concentrated from
May to September, accounting for about 70% of the annual total precipitation. In recent
years, with the rapid social and economic development, Chongqing’s per capita gross
domestic product (GDP) increased from USD 994.6 in 2000 to about USD 12,130.9 in 2020.
In 2020, Chongqing’s GDP reached USD 388.8 billion, and the three-industry structure
ratio is 7.2:40.0:52.8. The grain cultivation area covers nearly 20,030.7 km2, with an annual
grain output of 10.814 million tons. The annual per capita disposable income of the city’s
residents is USD 4794.6, with USD 6222.8 in urban areas and USD 2544.9 in rural areas.
However, the aging society is one of the most prominent issues of Chongqing. According to
the data of the seventh population census in 2020, the population groups aged 0–14, 15–59,
and over 60 accounted for 15.9%, 62.2%, and 21.9% of the total population, respectively.
Chongqing has the second largest population of those aged over 65 in China, with Hechuan
and Zhongxian having the largest proportion. The proportion of the labor force is below
the national level, whereas the degree of aging is above the national average.
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Figure 1. Map showing the geographic Location of Chongqing, China.

3. Materials and Methods
3.1. Data Source

The following three data types were used to extract abandoned cropland (Table 1):
(1) Remote sensing image data. The MODIS Vegetation Index Dataset MOD13Q1 [29]

was applied for land use classification of long time series from 2001–2020, including
23 images per year with an actual spatial resolution of about 231 m.

(2) Land use data. To accurately select samples on a large scale, it was necessary
to ensure that at least two datasets could be used for intersection each year. The pixels
contained in the candidate samples showed the stable land cover types over several years
and the high consistency in different land use maps. Four land use data types from different
sources were selected to construct a sample database for abandoned cropland training
and validation. The first was the MODIS Land Use Product Data MCD12Q1 [29] with the
time range from 2001 to 2019 and a spatial resolution of 500 m. The MCD12Q1 data were
generated by an integrated decision tree algorithm with an overall accuracy of 75% [30].
The second was the 300-m spatial resolution land use data obtained from the European
Space Agency Climate Change Initiative (ESACCI) [31], with a time range of 2001–2019.
The overall accuracy for the years 2016, 2017, 2018, and 2019 was estimated at 71.1%,
71.1%, 70.8%, and 70.6%, respectively [31]. The third data type was represented by LUCC
data (Land Use and Land Cover) in China with a spatial resolution of 30 m and for the
years 2005, 2010, 2015, and 2020. The LUCC data were obtained through remote sensing
monitoring based on nationwide field surveys; the overall accuracy exceeded 90% [32]. The
data were provided by the Resource and Environmental Science Data Center of the Chinese
Academy of Sciences (RESDC) [33]. The fourth data type was GlobeLand30 [34] images
with a spatial resolution of 30 m for the year 2020. The overall accuracy of GlobeLand30 in
the 2020 data was 85.72%, and the Kappa coefficient was 0.82 [34].
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Table 1. Basic data and sources.

Data Category Type Time Source
Resolution

Spatial Temporal

MOD13Q1 Raster 2001–2020 MODIS [29] 250 m Yearly

MCD12Q1 Raster 2001–2019 MODIS 500 m Yearly

ESACCI Raster 2001–2019 European Space
Agency [31] 300 m Yearly

LUCC Raster 2005, 2010,
2015, 2020 RESDC [33] 30 m Yearly

GlobeLand30 Raster 2020 National Geomatics
Center of China [34] 30 m Yearly

Elevation Raster

2001–2020

RESDC 250 m Yearly
Vegetation type Raster RESDC 1 km Yearly

Soil type Raster RESDC 1 km Yearly
Geomorphological type Raster RESDC 1 km Yearly
Residential distribution Vector RESDC Point Yearly

Average temperature Vector NMSDC [35] Point Daily
Precipitation Vector NMSDC Point Daily

Population Statistics Chongqing Statistics
Bureau [36] County Yearly

Gross domestic product Statistics Chongqing Statistics
Bureau County Yearly

Road length Statistics Chongqing Statistics
Bureau County Yearly

(3) Influencing factors included natural environmental and socio-economical prop-
erties, which were used to explore the factors affecting cropland abandonment in the
study area. Natural environmental data included elevation, vegetation type, soil type,
geomorphological type, residential distribution, temperature, and precipitation. The spa-
tial resolution of elevation was 250 m [33]. Vegetation, soil, and geomorphological types
were raster product data extracted from 1:1,000,000-scale Chinese vegetation, soil, and
geomorphological maps, respectively, with a spatial resolution of 1 km [33]. The resident
distribution was represented by vector point data [33]. Precipitation and temperature
were vector meteorological station data provided by the National Meteorological Science
Data Center (NMSDC) [35]. The socioeconomic data including county-level statistics, such
as population, gross domestic product (GDP), and road length, were derived from the
Chongqing Bureau of Statistics [36].

3.2. Definition of Abandoned Cropland

At present, there is no common definition of cropland abandonment. When agri-
cultural activities are ceased, the land is generally considered to be abandoned [6,37,38].
In 1995, the World Food and Agriculture Organization (FAO) defined abandoned cropland
as “cultivated land that has not been used for agricultural activities for at least 5 years”.
In Japan, the Ministry of Agriculture, Forestry, and Fisheries (MAFF) defines it as “land
that has not been cultivated for more than 1 year, and there is no indication that it will
be cultivated in the following years” [39]. Low et al. [40] defined abandoned cropland
as “permanent arable land not managed for at least 4 years”. From the length of time
taken to abandon an area of cropland, as defined by cropland abandonment, the fallow
period is usually at least 2 years. In the China Statistical Yearbook of 2008–2012, the area of
cropland includes the cultivated area, leisure land, new land reclamation, and cropland,
when abandoned for less than 3 years. Therefore, this paper adopted a time limit of 3 years
or more to identify abandoned cropland. We defined abandoned cropland as cropland
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that lacks farming management, is potentially characterized by vegetation succession, and
where this condition lasts for at least 3 years. Specifically, if the cropland pixels changed to
unused land, forest, and grassland, they were marked as suspected, abandoned cropland
pixels. If the pixel was marked as a suspected, abandoned cropland pixel for 3 consecutive
years, it was defined as an abandoned cropland pixel.

3.3. Research Process

The research process adopted here can be divided into the following four stages
(Figure 2).
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Mapping annual land use maps—Stage 1. The data processing part includes the
splicing, projection, and clipping of the original data. Subsequently, the Savitzky-Golay
filter was used for reconstructing NDVI time series and calculating the annual phenology
metrics. Using existing land use data, at least two datasets were crossed each year to
select training and validation samples. The smooth NDVI value and annual phenology
metrics were entered into the random forest model to classify annual land use for the
period 2001–2020. The resolution of the obtained land use data was 250 m.

Extracting the distribution of cropland abandonment—Stage 2. Taking 2001 as the
initial state for tracking land use changes, the trajectory of land use change within the
cropland boundary since 2001 was detected. Subsequently, the stop farming cycle of each
pixel was calculated. Combined with the definition of cropland abandonment, pixels with
a stop farming period of 3 years or longer were identified as abandoned cropland, with a
spatial resolution of 250 m.

Spatial statistical analysis—Stage 3. Using exploratory spatial data analysis (including
global and local spatial autocorrelation) and emerging hotspot analysis, the temporal and
spatial distribution changes of abandoned cropland were analyzed on a 5 km grid scale.

Analysis of influencing factors—Stage 4. The effects of natural and socio-economic
factors on the spatial distribution of cropland abandonment were studied using a factor
and interaction detector on a 5 km grid scale.

3.3.1. Generation of the Annual Land Use Maps

In China, the land use classification of the Ministry of Land and Resources and others
based on remote sensing do not delimit abandoned cropland as a separate land type.
In addition, there is no accurate definition of abandoned cropland. Although there are
some high-resolution land use data, it is difficult to determine the abandonment time
of a plot due to the lack of continuous land use information. The method of extracting
abandoned cropland, by comparing the changes in land use in a certain interval, may lead
to overestimation or underestimation of the abandoned cropland areas. Therefore, we
performed a series of processes to produce a continuous long-term series of land use maps.
First, the NDVI time series were reconstructed based on the TIMESAT3.3 software to obtain
the smoothed NDVI value and the phenological index. Subsequently, reliable training
and verification samples were selected. These data were classified as the input data of the
random forest classifier. Finally, we obtained the land use maps from 2001 to 2020 with a
resolution of 250 m; the specific processing procedures are described in Appendix A.

The selected validation samples were taken as true values to analyze the accuracy of
the classified land use in 2001–2020. Based on the confusion matrix tool in the ENVI5.4
software, the overall accuracy and the Kappa coefficient can be calculated. The overall
classification accuracy is equal to the total number of correctly classified pixels divided by
the total number of pixels. The Kappa coefficient and the overall accuracy can be measured
based on the following equations [41]:

pe =
∑m

i=1 ai ∗ bi

n2 , (1)

k =
po − pe

1− pe
, (2)

where “po” is the overall classification accuracy, “ai” is the true sample number of each land
use type, “bi” is the predicted sample number of each land use type, “m” is the total number
of land use types, “n” is the total number of samples, and “k” is the Kappa coefficient.

3.3.2. Extracting the Distribution of Cropland Abandonment

The map time stack was constructed using the initial state of the 2001 land use map to
obtain the track of each pixel. The annual land type change within the cropland land boundary
since 2001 was detected. Combined with the definition of the abandoned cropland, pixels with
an abandonment period of 3 years or longer were classified as abandoned cropland. In terms
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of the changes in land use type, it takes at least 3 years for cropland to be converted to forest
land, grassland, or unused land. Based on the land use trajectory, we calculated the length
of the fallow period for each cropland pixel. Finally, we obtained the spatial distribution of
cropland abandonment in Chongqing from 2001 to 2020.

3.3.3. Spatial Statistical Analysis

Exploratory spatial data analysis (ESDA, including global and local spatial autocorre-
lation analysis) was employed to intuitively analyze the spatial clustering characteristics
of the abandoned cropland [42]. The purpose of global spatial autocorrelation analysis
is to determine whether a variable is spatially correlated and, if so, to what degree [43].
Global Moran’s I is often applied to quantitatively describe the spatial dependence of
variables [44]. Local spatial autocorrelation describes the similarity between a spatial unit
and its domain, which is often reflected by local Moran’s I [45]. This index can represent
the degree to which each local unit complies with the global general trend. A 5 km grid
was produced to calculate the percentage of abandoned cropland in the base year of the
2001 cropland area, and the spatial aggregation characteristics of abandoned cropland
were analyzed by using two spatial autocorrelation indices obtained from the ARCGIS
10.2 software.

Emerging hot spot analysis (EHSA) was used to describe the temporal and spatial
patterns of abandoned cropland and to analyze its change trend. First, the values of the
abandoned cropland rate (% 2001 cropland area) were integrated into a multidimensional
dataset using the Space-Time Pattern Mining Toolbox in the ArcGIS software, where each
dimension showed the abandoned cropland rate in the 5 km grid squares per year. The
Mann–Kendall trend test and Getis-Ord Gi* are the two main statistical indicators of
EHSA [46,47]. The former was used to measure the time series trend of a specific location,
whereas the latter was applied to determine the distribution of hot and cold clusters of
abandoned cropland. According to the two indicators, EHSA can divide the spatiotemporal
change results into eight categories, namely historical, oscillating, sporadic, diminishing,
persistent, intensifying, consecutive, new hot, and cold spots. A more specific introduction
to EHSA can be found in the ArcGIS help documentation [48].

3.3.4. Analysis of Influencing Factors

By comparing the spatial consistency of cropland abandonment and the influencing
factors, we explored the main factors influencing cropland abandonment, using factor
and interactive detectors of the Geographic Detector Model (GDM). According to Wang
and Xu [49], if the spatial distribution of farmland abandonment is similar to that of the
selected influencing factor index, the variance within the layer is smaller than that between
the layers. The q-statistics were proposed by Wang et al. [49] and applied to assess the
determining effect of each influencing factor on the cropland abandonment rate. The value
of the q-statistics ranges from 0 to 1; larger values indicate that the influencing factor
has a stronger explanatory power for cropland abandonment. The specific calculation
method of the q statistics can be found in Appendix A. The interaction detector was used to
detect the influence of multi-factor interactions on the explanatory power of the results; the
interaction types are shown in Table 2. More information on GDM can be found elsewhere
(http://www.geodetector.cn/, accessed on 10 March 2021).

In the influencing factor analysis, the dependent variable was the abandoned cropland
rate within the 5 km grid, and the independent variables could be divided into two
categories. The first category consisted of natural environmental factors, including digital
elevation, slope, geomorphological type (GT), soil type (ST), vegetation type (VT), farming
conditions (FC), mean annual total precipitation (MATP), and mean annual temperature
(MAT). All data were unified into 5 km spatial resolution data. Based on elevation data,
slope was calculated using the slope tool of the ArcGIS10.2 software. The geomorphological
types included plain, platform, hills, small, medium- and large-sized mountains; and the
soil types included red clay, alluvial, limestone, purplish, skeletal, shajiang black, chao,

http://www.geodetector.cn/
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paddy, lateritic red earth, red earth, yellow earth, urban area, rock, lake, or reservoir.
The vegetation types included coniferous forest, broadleaf forest, shrubs, deserts, steppe,
underbrush, cultivated vegetation, and others. The MAT and MATP were generated
by interpolation, using the AUSPLINE meteorological interpolation software, based on
the daily average temperature and precipitation data of the meteorological stations. The
farming conditions, an indicator of difficulty as steep slopes and long commutes generally
led to an increase in the values of these variables, were calculated by multiplying the related
factors considering the slope of the plot and the farming distance between the plot and the
residential area (including horizontal and vertical distance) [50]. The second category was
composed of socioeconomic factors, including gross domestic product density (GDPD),
population density (PD), and road density (RD). These data were obtained using the
Polygon to Raster (Conversion) tool in the ArcGIS10.2 software. Together, these variables
could illustrate the social and economic situation of Chongqing.

Table 2. Interaction detector model and interaction types.

Description Interaction Type

q (X1 ∩ X2) < Min(q (X1), q (X2)) Non-linear-weakening
Min(q (X1), q (X2)) < q (X1 ∩ X2) < Max(q (X1), q (X2)) Uni-weakening

q (X1 ∩ X2) > Max(q (X1), q (X2)) Bi-enhancing
q (X1 ∩ X2) = q (X1) + q (X2) Independent
q (X1 ∩ X2) > q (X1) + q (X2) Non-linear-enhancing

Note: q (X1 ∩ X2) represents the q-statistic value of the interaction effect of factors X1 and X2, and q(X1) and q(X2)
represent the effects of X1 and X2, respectively.

4. Results
4.1. Annual Land Use Map

The overall accuracy ranged between 87.5% (in 2014) and 96.7% (in 2006), with an average
value of 92.6% (Figure A1). The Kappa coefficient ranged between 0.84 and 0.95, with an
average value of 0.90. The land use map from 2001 to 2020 is shown in Figure A2. Despite some
variation amongst the years, the overall classification accuracy was high. Figure 3 illustrates
the land use change in Chongqing from 2001 to 2020. In the past 20 years, forest, built-up,
and water areas increased by 7.2%, 2.6%, and 0.2%, respectively; grassland, cropland, and
unused areas decreased by 5.0%, 5.0%, and 0.1%, respectively. From 2001 to 2020, the main
feature of the land use spatial change was the conversion of cropland to grassland, forest,
and built-up areas, with 7633.26, 2224.13, and 1641.82 km2 converted, respectively. The
expansion of the built-up area mainly occurred at the expense of cropland and grassland,
occupying 1641.82 and 589.45 km2, respectively.
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4.2. Spatiotemporal Variations in Cropland Abandonment

The abandoned cropland area ranged from 3824.8 to 4824.0 km2, with an average
of 4185.2 km2 (Figure 4). The cropland abandonment rate was 12.19 to 15.37%, with an
average of 13.33%, representing the percentage of abandoned cropland area in 2001. The
cropland abandonment rate first increased and then decreased, with the lowest and highest
values observed in 2006 and 2013, respectively.
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We accumulated the cropland abandonment frequency of each pixel from 2001 to 2020
(Figure 5). Since 2001, about 11,576.9 km2 of farmland was abandoned, accounting for
36.88% of the total area. All counties in Chongqing experienced cropland abandonment.
There was a significant spatial difference in the distribution of abandoned cropland areas,
with a higher distribution in the north and southeast of Chongqing. In the western regions,
abandoned cropland areas were sparse, and cropland was generally only abandoned once.
In Jiangjin, Fuling, and Fengdu, the cropland abandonment frequency ranged from once to
three times, whereas frequencies higher than twice were found in the following counties:
Youyang, Xiushan, Pengshui, Qianjiang, Wanzhou, Zhong, Kai, and Qijiang.
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From 2001 to 2020, the cropland abandonment rate in most counties of Chongqing
showed an increasing trend, whereas, in some areas, such as Chengkou and Wuxi, it
increased first and then decreased (Figure 6). The areas with values above the average of
the Chongqing average were mainly distributed in the southeast areas, such as Chengkou
and Fengjie, whereas regions with lower values were mainly found in the southwest areas,
such as Tongliang and Bishan. Among them, Chengkou had the highest average cropland
abandonment rate of 47.5%, whereas Rongchang had the lowest rate of 0.6%.
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4.3. Spatial Statistics of Abandoned Cropland

The cropland abandonment rates for the four subperiods (2001–2005, 2006–2010,
2011–2015, and 2016–2020) were 30.56%, 30.57%, 26.87%, and 22.97%, respectively, with an
initial slight increase and a subsequent decrease (Figure A3). The abandonment rates of
mountainous counties in the north and southeast of Chongqing were considerably higher
than those in the west. The global Moran index of the cropland abandonment rate in the
four sub-periods passed the significance test, showing values of 0.661, 0.669, 0.568, and
0.470, respectively (Figure 7). This suggested that the spatial distribution of abandoned
cropland was positively correlated with a high degree of clustering. The overall cluster
trend increased first and then decreased slightly from 2001 to 2020. The local spatial
autocorrelation index values of the four sub-periods showed a similar spatial aggregation
distribution. The spatial agglomeration type was dominated by high–high and low–low
areas, with a wide range of distribution. The high–high type was mainly distributed in
the north and southeast, such as in Chengkou, Wuxi, and Youyang, whereas the low–low
areas were mainly distributed in the southwest, such as Tongnan, Hechuan, Tongliang, and
Dazu. The distribution range of high–low and low–high areas was smaller than that of the
other cluster types. High–high and low–low clustering showed a downward trend; for
example, the proportion of high–high areas decreased from 18% in 2001–2005 to 12% in
2016–2020, and the low–low areas decreased from 25 to 14% in the same period.
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The results of the EHSA show the temporal and spatial patterns of cropland abandon-
ment from 2001 to 2020 (Figure 8). Oscillating, diminishing, sporadic, and persistent cold
spots were the dominant evolutionary patterns of abandoned cropland. The diminishing
cold spots were concentrated in the west, such as in Hechuan and Tongliang County,
whereas the sporadic cold spots were concentrated in central Chongqing, such as Fengdu
County; persistent cold spots were concentrated in the west, such as in Hechuan, Tongnan,
and Rongchang County. In general, the abandoned cropland from the past 20 years was
dominated by cold spots.
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4.4. Determinants and Interactions of Cropland Abandonment

In this study, the GDM method was used to identify the determinants and interaction
effects of cropland abandonment in Chongqing. The dependent variables were the cropland
abandonment rates in 2005, 2010, 2015, 2020, and for the entire period of 2001–2020, and
the independent variables were the socio-economic and environmental factors. Based on
the factor detector in GDM, the q-statistics representing the explanatory power of each
independent variable for abandoned cropland were obtained (Table 3). The q-statistics of
environmental factors from 2001 to 2020 ranged between 0.04 and 0.43, with an average
value of 0.27. Among these factors, the highest explanatory power in 2005 was found for the
mean annual temperature (MAT), with q-statistics of 0.46. The highest explanatory powers
in 2010, 2015, and 2020 were found for the geomorphic type (GT), and the q-statistics values
were 0.27, 0.22, and 0.22, respectively. The weakest explanatory power was observed for
farming conditions (FC). These results lead us to infer that the geomorphological type and
climatic characteristics are important determinants of the spatial distribution of abandoned
cropland, whereas the effect of farming practice was relatively weak. The q-statistics values
of socio-economic factors from 2001 to 2020 varied between 0.20 and 0.38, with a mean
value of 0.31 (Table 3). Among these factors, the highest explanatory powers in 2005, 2010,
and 2015 were found for GDP density (GDPD), with q-statistics values of 0.43, 0.29, and
0.15, respectively. The highest explanatory power in 2020 was found for population density
(PD), with q-statistics of 0.12. Based on this, PD and GDP can significantly explain the
pattern of cropland abandonment in Chongqing compared to road density (RD). Based on
the q-statistics values from 2001 to 2020, the average contribution of socio-economic factors
to cropland abandonment was 0.31, higher than that of the environmental factors (0.27).

Table 3. Values for q-statistics for the different factors and years.

Factors
q-Statistics

2005 2010 2015 2020 2001–2020

DEM 0.41 0.24 0.19 0.18 0.38
Slope 0.20 0.14 0.11 0.12 0.22

ST 0.28 0.16 0.11 0.12 0.26
GT 0.36 0.27 0.22 0.22 0.40
VT 0.22 0.13 0.09 0.07 0.20
FC 0.04 0.02 0.02 0.04 0.04

MATP 0.11 0.22 0.00 0.00 0.24
MAT 0.46 0.26 0.20 0.21 0.43

GDPD 0.43 0.29 0.15 0.11 0.38
PD 0.40 0.26 0.14 0.12 0.36
RD 0.27 0.15 0.05 0.10 0.20

The influence of the interaction between the independent variables on the dependent
variables was also explored. Based on the results, the interactions between two independent
variables exceeded those of individual variables (Figure 9). The interaction types were
non-linear-enhanced and bi-enhanced. Among them, bi-enhanced was the main interaction
type, indicating that the explanatory power of the interaction effect was stronger than
that of a single factor. In 2015 and 2020, MATP and other factors showed a non-linear-
enhanced effect, indicating that they exceeded the combined effects of their individual
factors. Although the q-statistics values of the environmental factors were small, the
interaction between the environmental factors and the other variables also had a strong
impact on cropland abandonment. In terms of the time change, the interaction between
most determinants showed a decreasing trend. Clearly, the most significant interaction
effects occurred in 2005, when the effects of the MAT and GDPD interaction were most
significant, with q-statistics of 0.56. In 2010 and 2015, the interaction between GDPD and
GT had the greatest explanatory power, and the q-statistics values were 0.38 and 0.28,
respectively. In 2020, the q-statistics of the interaction between MAT and MATP were
highest, with a value of 0.28. Based on these results, the interaction between GDPD and
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the other determinants was weakening. Generally, GDP, topographic factors, and climatic
factors are the dominant interactive effects influencing cropland abandonment.
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5. Discussion
5.1. Estimation of Abandoned Cropland Area

The traditional methods to extract abandoned cropland are generally farmer surveys,
interviews, questionnaires, etc. The greatest advantage of farmer surveys is that first-
hand information can be obtained, enhancing our understanding of the causes of cropland
abandonment from the perspective of farmers [51]. For example, by tracking farmer surveys
from 2011 and 2018, Wang et al. [52] could determine that urbanization was the main
factor influencing land marginalization, which increased labor costs and made agriculture
unprofitable. However, the distribution of abandoned cropland could only be inferred
and estimated through existing sample data, and it was difficult to determine continuous
changes in the spatial distribution of abandoned cropland via investigation [6,53]. The
methods of extracting abandoned cropland information based on remote sensing were
mostly based on comparing the vegetation changes of the plots or the transfer of land
use types [17,21]. For example, Shi et al. [54] extracted abandoned farmland parcels from
farmland distribution maps, between 2002 and 2011, and calculated the abandonment rates
for each township in three countries. This method required access to historical farmland
data, and single-stage images could only determine the land use status during the time
when the images were acquired. Due to the lack of process information on land use
changes, even if the land use type was non-cultivated land at the time of image acquisition
(unused land, grassland, etc.), it was difficult to determine whether the cropland had
actually been abandoned or whether it was fallow or returned farmland. In this study, we
derived a series of land use trajectories based on MODIS NDVI data and then used this
information to assess the distribution of the abandoned cropland and the frequency of
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cropland abandonment. More detailed information can be obtained, such as abandonment
scope, time, and duration.

5.2. Cropland Abandonment Rate and Its Temporal Trend in Chongqing

The cropland abandonment map shows that about 13.3% of cropland within the study
region was abandoned between 2001 and 2020, suggesting that cropland abandonment
is widespread in Chongqing. Compared with other parts of the world, the values here
were lower than those found for Chile (45.1% of cropland) [10], Poland and the Ukraine
(20.7% and 13.9%) [11], and other mountainous areas of China, such as Guizhou Province
(26%) [37], but slightly higher than those observed for Central Asia, where abandoned
cropland accounts for 13% of the arable land area [40]. The overall cropland abandonment
rate showed an initial increase, followed by a slight decrease, most likely as a result of
the implementation of the “Grain for Green Program” (GGP), which was launched in
2002. The objectives of this program are to convert marginal farmland into forest land by
compensating farmers for planting trees on retired farmland [55]. As the program comes
to an end, the government will pay more attention to maintaining the stability of cropland
and will reduce subsidies for long-term fallowed cropland, thereby reducing the direct
benefits of farmers cultivating mountainous land with harsh environmental conditions.
This will cause farmers to recultivate their land. In contrast, due to agricultural subsidies,
farmers in other countries have abandoned cropland. For example, in the western and
southern areas of Russia, due to the collapse of the former Soviet Union, the issuing of
agricultural subsidies stopped, which resulted in widespread cropland abandonment [56].

5.3. Effects of Environmental and Socioeconomic Factors on Cropland Abandonment in Chongqing

According to a previous study, socio-economic development is an intrinsic factor
affecting land use change [20]. The lack of labor and the aging of the agricultural labor
force has a significant impact on cropland abandonment [20,57,58]. For example, cropland
abandonment in the mountainous areas of Europe was considered to be closely related
to the large migration of the rural population to the cities [59,60]. Although the total
population has rapidly increased in the study area since 2001, with an accelerating GDP,
the rural population generally declined. Urbanization and economic development lead to
an increase in the employment transfer of rural labor, which potentially leads to a labor
shortage and to increasing rural labor costs. This eventually leads to the marginalization
and abandonment of cropland. The reform of the political system is also one of the
reasons affecting cropland abandonment. For example, in eastern Europe and the former
Soviet Union, land use intensity decreased significantly after the collapse of the USSR, and
cropland abandonment and forest expansion became widespread [11,61,62]. In terms of the
specific factors influencing cropland abandonment, previous studies showed that plots with
poor soil quality, inconvenient transportation, and incomplete field infrastructure are more
prone to abandonment [10,63–65]. However, the impact of natural factors on abandonment
varies by region. For example, cropland abandonment in eastern Europe is mainly affected
by location, whereas in western Europe, it is largely affected by land quality [63,65]. In
Slovakia, the possibility of abandonment increases with the increasing distance from the
capital, decreases with the increasing average annual temperature, and is generally higher
near the forest edge and on steep slopes [66]. The geomorphological type and the climatic
characteristics are the main environmental factors affecting cropland abandonment in the
study area, which is consistent with the findings obtained elsewhere [25]. Unfavorable
farming conditions and climate change reduce cropland yield and increase the cost of
farming, thereby increasing the possibility of cropland marginalization [67].

5.4. Policy Impacts

The Chinese government proposed the “farmland red line” (at least 1.2 million km2)
to ensure national food security. China has experienced a rapid urbanization over the past
few decades, but urban expansion has often increased at the expense of arable land, leading
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to increasing pressure to maintain the red line. Moreover, low grain planting profits turned
farmers to growing large numbers of fruit trees and other cash crops. The high costs of
growing grain often exceed the benefits, whereas the income obtained from cash crops is
often significantly higher [68]. To mitigate this issue, the Government must develop a series
of agricultural policies, such as grain subsidies, to promote grain cultivation. The LFAs
(Less Favored Areas) policy, implemented in Europe, seeks to improve the vulnerability of
agriculture through subsidies. In mountainous areas of Europe, LFAs can help reduce the
risk of cropland abandonment [6]. In addition, by increasing subsidies for the purchase of
agricultural machinery, farmers can be encouraged to make full use of modern machinery
to improve productivity and reduce costs. Furthermore, modern information technologies,
such as satellite remote sensing, are required for the long-term monitoring and evalua-
tion of cropland, and some countries have built remote sensing monitoring systems for
agricultural conditions, such as the agriculture and resources inventory surveys through
aerospace remote sensing (AgRISTARS) and Monitoring Agricultural ResourceS (MARS).
The formulation of scientific planning measures needs to distinguish different land con-
ditions and reasons for abandonment. For large areas of abandoned cropland with good
geographical locations but an insufficient labor force, the government needs to establish a
withdrawal mechanism for the land contract rights, especially for original farmers who
have settled in cities. In the case of scattered cropland distribution, the promotion of con-
centrated cropland areas and the rebuilding of land production units are crucial to mitigate
cropland fragmentation. Spatially, China’s abandoned cropland is mostly concentrated
in mountainous areas, such as Chongqing. Yield-increasing technologies can be used to
increase the intensification of high-quality arable land while, at the same time, reducing the
dependence on mountainous cropland and promoting the restoration of forest vegetation
on marginal lands [69].

6. Conclusions

In this study, the MODIS NDVI time series and phenological parameters were used to
obtain the land use trajectory of each pixel. Subsequently, the extent and spatial patterns of
abandoned cropland were mapped using a set threshold length of farming cessation. From
2001 to 2020, the cropland abandonment rate ranged from 12.2 to 15.4%, with an average
of 13.3% (4185.2 km2). This rate initially increased and then decreased. There was a large
spatial difference in the distribution of abandoned farmland, and the overall distribution
pattern showed a gradually increasing trend from the southwest to the north and southeast.
Moreover, the spatial distribution of abandoned cropland was clearly clustered, with
high-value areas being concentrated in the north and southeast and low-value areas in
the southwest.

The spatial distribution of abandoned cropland was mainly influenced by socioeco-
nomic factors, following the order GDPD, PD, and RD. Based on the q-statistics from 2001
to 2020, the average contribution of socio-economic factors to cropland abandonment is
greater than that of the environmental factors. The q-statistics followed the order MAT, GT,
DEM, ST, MATP, Slope, VT, and FC. The two-factor interaction is mainly manifested as
bi-enhanced, with a lower nonlinear enhancement effect. The interaction between the two
factors exceeds the effect of a single factor.

The findings obtained in this study can serve as a basis for the development of
adequate policies to control cropland abandonment, such as providing grain subsidies,
undertaking cropland consolidation, encouraging land transfer, and improving agricultural
infrastructure, while reducing the dependence on mountainous cropland and promoting
the restoration of forest vegetation on marginal lands. Modern information technologies
are required for the long-term monitoring and evaluation of cropland.
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Appendix A

Appendix A.1 The Specific Process of Generating the Annual Land Use Maps

(1) Reconstructed NDVI Time Series:
The discrimination accuracy of cultivated land and abandoned areas in low-resolution

remote sensing images can be effectively improved by using NDVI time series and the
corresponding phenological characteristics of the growth period [41]. The NDVI values
of each pixel were first arranged in chronological order from 2001 to 2020, with each
time series comprising a total of 460 values. The NDVI time series may be affected by
background noise caused by atmospheric changes, snow, and clouds, leading to inaccurate
NDVI values. The NDVI smoothing time series was reconstructed with a Savitzky-Golay
filter for noise reduction, using the TIMESAT3.3 tool. Subsequently, the NDVI smoothed
time series were processed to obtain 13 annual phenological indicators for each pixel [42].
These metrics were season length, mid-season time, maximum value, base value, amplitude,
small integrated values, large integrated values, start and end of the season value, as well
as the beginning and end of a season.

(2) Selecting Training and Validation Samples:
The training and validation samples were selected according to the land use data,

including MCD12Q1, ESA, LUCC, and GlobeLand30. First, land use types were divided
into cropland, forest, grassland, water, built-up areas, and unused land. All land use
data were projected into the same Albers_WGS_1984 coordinate system and then masked
to the same spatial boundary with the study area. Subsequently, the spatial resolution
was unified to 250 m using the resampling method. A series of steps were used to select
and label the yearly samples. Specifically, through image stacking processing of land
use data, the pixels that remained stable from 2001 to 2020 in different land use data
were selected, and the stable pixels of each land use type were collected to generate
a sample database. This method was used to reduce sample uncertainty and improve
sample selection accuracy. After that, in the sample database, a stratified random sampling
method was adopted to select training samples for each land use type, and finally, about
10,000 training samples were obtained each year. In the remaining sample database,
approximately 2000 independent random points were selected as verification samples for
each year.

(3) Land Use Classification:
We applied the random forest classification for mapping the annual land use type.

The classifier was composed of multiple decision tree models and worked effectively in
land cover classification [43]. Overall, 36 features were imported for each year for the
random forest classification, including 23 smooth NDVI values and 13 phenological indices
collected in each growing season from 2001 to 2020. The random forest models used in
this analysis were simulated using the Scikit-learn machine learning library in Python and,
subsequently, the land use map for each year (from 2001–2020) was generated.
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Appendix A.2 Specific Calculation Procedure of the q-Statistics Values

The calculation method is as follows [49]:

q = 1− ∑L
h=1 Nhδ2

h
Nδ2 , (A1)

where “q” is the explanatory power of the influence factor on the cropland abandonment
rate, “N” is the sample size, “L” is the classification number of the index factors, and
“Nh” and “δ2

h” represent the variances of the sample size in layer “h” and the cropland
abandonment rate, respectively. The value of the q-statistics was in the range of (0,1). The
larger the value, the stronger the explanatory power of the influencing factor on cropland
abandonment, and its spatial distribution is consistent with the cropland abandonment rate.
When the q-statistics are equal to 0, the given impact factor has no significant relationship
with the cropland abandonment situation. At a value of 1, the impact factor can fully
explain the spatial variation in abandoned cropland.
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