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Abstract: A sustainable bioeconomy would require growing high-yielding bioenergy crops on
marginal agricultural areas with minimal inputs. To determine the cost competitiveness and envi-
ronmental sustainability of such production systems, reliably estimating biomass yield is critical.
However, because marginal areas are often small and spread across the landscape, yield estimation
using traditional approaches is costly and time-consuming. This paper demonstrates the (1) initial
investigation of optical remote sensing for predicting perennial bioenergy grass yields at harvest
using a linear regression model with the green normalized difference vegetation index (GNDVI)
derived from Sentinel-2 imagery and (2) evaluation of the model’s performance using data from
five U.S. Midwest field sites. The linear regression model using midsummer GNDVI predicted
yields at harvest with R? as high as 0.879 and a mean absolute error and root mean squared error
as low as 0.539 Mg/ha and 0.616 Mg/ha, respectively, except for the establishment year. Perennial
bioenergy grass yields may be predicted 152 days before the harvest date on average, except for the
establishment year. The green spectral band showed a greater contribution for predicting yields than
the red band, which is indicative of increased chlorophyll content during the early growing season.
Although additional testing is warranted, this study showed a great promise for a remote sensing
approach for forecasting perennial bioenergy grass yields to support critical economic and logistical
decisions of bioeconomy stakeholders.

Keywords: bioenergy; switchgrass yields; perennial grass; remote sensing; spectral vegetation
indices; green normalized difference vegetation index; yield prediction; Sentinel-2

1. Introduction

Global efforts on the adoption of a biomass-based economy are increasing, partic-
ularly in the European Union and the United States (U.S.), to significantly displace our
dependence on fossil-based energy and products in the coming decade [1]. For instance,
in the U.S., the Biomass Research and Development (BRD) Act of 2000 [2] has paved the
way for the Bioeconomy Initiative, a concerted, inter—federal agency effort that started in
2013, which is geared towards maximizing the utilization of the nation’s abundant biomass
resources for bioenergy and biobased products [3]. In 2014, the biobased products sector
had contributed USD 393 billion and 4.2 million jobs to the U.S. economy [4]. As the
market for bioproducts (renewable biochemicals and biopolymers) and bioenergy grows,
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the demand for biomass is expected to increase significantly in the coming decades. The
U.S. has the potential to produce at least 1 billion dry tons of biomass annually from a wide
range of sources, including agricultural and forest residues, dedicated energy crops, algae,
and municipal solid wastes by 2040 [5]. Dedicated energy crops, along with algae and
additional waste streams, are expected to become a major source of biomass for a thriving
future bioeconomy. The large-scale production of dedicated bioenergy crops in agricultural
landscapes needs to be done both cost-effectively and sustainably in order to meet the
1-billion-ton goal in the U.S. [6,7]. Improved economic and production sustainability can,
in part, be addressed by the selection of advanced bioenergy crop cultivars that have
increased yields yet lower requirements for water and nutrient inputs relative to traditional
row crops [7]. However, a major sustainability challenge of large-scale, monocultural
production systems for bioenergy crops is the associated indirect land-use change that may
compete for land allocated for food, feed, and fiber production [6,8]. Multifunctional land-
scape production systems focusing on the utilization of marginally productive agricultural
lands [9-12] have been proposed to help address this concern.

A multifunctional agricultural landscape involves maximizing the productivity of the
land while minimizing the input requirements and environmental impacts by strategically
placing the bioenergy crops within the agricultural landscape. Placement is based on the
productive capacity of the soil and/or environmental quality degradation potential [9]. In
this production system, food crops will continue to be grown on fertile parts of the land-
scape while perennial biomass crops could be more suited in the marginal areas where row
crop yields are historically low and nutrient leaching and soil erosion are prevalent [9,13].
However, marginal areas primarily comprise groups of relatively small-sized lands that
are spread across the agricultural landscape [13]. Therefore, one of the challenges with this
type of production strategy is the need for rapid, accurate, and cost-effective estimation of
harvestable biomass yield on a small geographic scale (i.e., plot or subfield). Reliable data
on biomass yield at harvest time are critical inputs for relevant meta-analyses, including
technoeconomic and life-cycle greenhouse gas emission analyses, which are necessary
in determining the cost competitiveness and environmental sustainability of bioenergy
production systems. Rapid and large-scale assessment of biomass yield for improved
cultivars may also be important to speed up cultivar evaluation and possible public release
of higher-yielding and more resilient varieties for commercial production. Currently, the
most common method of determining biomass yield for bioenergy grass crops is by weigh-
ing cut and baled aboveground biomass, which would be time-consuming for biomass
production systems, especially at the watershed or regional scales. Although such biomass
measurement would continue to be required for commercial sales transactions, the ability
to estimate yields prior to harvest can assist biomass refineries and other organizations in
forecasting biomass supply both locally and regionally [14,15].

Remote sensing could enable rapid, cost-effective, and reliable estimation of bioenergy
crop yield of biomass production at various growth stages and scales by leveraging the
high correlation between spectral reflectance characteristics and plant properties [15]. For
instance, by utilizing certain optical properties of crops correlated with chlorophyll content
and mesophyll foliage structure, crop yield can be estimated reliably over large production
areas using satellite imagery [16-18]. Spectral vegetation indices calculated using remotely
sensed imagery collected from a range of satellite platform types during the growing
season can provide the basis for estimating crop yields at multiple spatial scales [15]. The
additional benefits of such approaches would include not only estimation of end-of-season
biomass yields, but also timely monitoring of crop conditions influencing yield that could
inform management needs (e.g., nutrients and pest controls) and stand quality (e.g., stand
density and canopy structure) in a spatially explicit manner. Such information would
otherwise require extensive field scouting and direct measurements.

Spectral vegetation indices are used for crop yield estimation or forecasting extensively
across commodity crops such as corn and soybean [19-23], wheat [24-27], and rice [28-30].
A number of applications on perennial grasses have also been conducted, but most of these
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grasses are grown for animal consumption (e.g., open grazing or for forage/harvested as
hay) [31-33]. The differences between forage and bioenergy production systems result in
different needs for biomass estimation from remote sensing models. For example, a forage
production system may include a single or two-cut harvest regime, and harvest timing
(early or midseason) will be based on optimizing nutrient and crude protein concentrations
to improve feed quality [34-36]. Under a sustainable bioenergy production system, peren-
nial grass biomass is typically harvested once after senescence or a killing frost at the end of
each growing season to allow for nutrients to translocate to belowground tissues, thereby
reducing the next season’s nutrient requirements and improving stand longevity [7,37-41].
The differences in harvest timing and harvest frequency for these two applications can im-
pact the crop’s biomass yield and quality. Management practices, such as fertilizer regimes,
herbicide applications, and tillage practices, can also affect the optical properties of the
crops captured in the imagery by influencing the chlorophyll and nitrogen content in leaf
and stem tissues [42—44], the amount of canopy gaps or exposed ground [45], and ground
cover composition (e.g., crop residues and weeds) [44,45]. Additionally, local weather and
climate, soil properties, and genetic modifications in newly developed crops and cultivars
can impact a plant’s physiochemical properties (e.g., chemical and pigment constituents
and abundance, moisture content, internal leaf structure, and canopy architecture) and
therefore their optical properties. Despite the demonstrated success of remote sensing
modeling for crop-yield estimation, changes in the crop’s optical properties require the
models to be evaluated and recalibrated for newly released perennial bioenergy crops for
use in rapid and reliable forecasting of biomass yields.

The objectives of this study were to formulate a parsimonious optical remote sensing
model using spectral vegetation indices and evaluate its predictive power for the dry
biomass yields at-harvest of large-scale switchgrass (Panicum virgatum L.) production
systems on marginal land using five study locations in the U.S. Midwest. The ultimate goal
is to develop a methodology for rapid, reliable, and cost-effective forecasting of bioenergy
crop yields that is spatially resolved at the subfield scale. In this study, biomass yield refers
to the harvested aboveground switchgrass biomass (dry), cut between 10 and 15 cm above
the soil surface.

2. Materials and Methods
2.1. Study Area

This study comprises five field sites in four U.S. Midwest states, including two sites
in Illinois (Brighton (39°3'23.23" N, 90°11'7.62"” W) and Urbana, Illinois (40°4'7.68" N,
88°11'26.78"” W)) and one site each in Iowa (Madrid (41°55'52.17" N, 93°45'49.28"” W)), Ne-
braska (Ithaca (41°8'57.54" N, 96°27'14.07"" W)), and South Dakota (South Shore (45°6'20.30" N,
97°3'42.41” W)) (Figures 1 and 2). All sites selected for this study are considered marginal
based on the landowner’s observation of historical production data. In particular, the
production costs of traditional row crops such as corn, soybean, and wheat have been
generally higher than the income from yields generated, resulting in an economic loss for
the producers. The landowners’ observations also suggest that historical row crop yields
for these sites have been 25-50% lower than the county- or state-reported averages. In most
cases, the reduced yields are a result of poor soil quality due to soil erosion (i.e., loss of
nutrient-rich topsoil) and soil moisture impediments (e.g., too dry, poorly drained, or high
nutrient leaching).
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Figure 1. Field site locations in the U.S. Midwest and the plot layouts across the Brighton, Illinois
(IL); Urbana, IL; Madrid, Iowa (IA); Ithaca, Nebraska (NE); and South Shore, South Dakota (SD) sites.
Plots are labeled by crop/cultivar type (SW = switchgrass, Panicum virgatum L.) and annual nitrogen
application (0, 28, or 56 kg N ha~!). The big bluestem (Andropogon gerardii Vitman) mixture includes
‘Goldmine’ and ‘Bonanza’ big bluestem cultivars. The low diversity mixture includes side-oats grama
(Bouteloua curtipendula (Michx.) Torr.), Indiangrass (Sorghastrum nutans), and big bluestem.
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Urbana, IL

Brighton, IL

Ithaca, NE

Figure 2. Photos of the study sites. The Brighton, Illinois (IL), and Urbana, IL, sites show ‘Independence’ switchgrass
(SW) from July 2020 and September 2020, respectively. The Madrid, Iowa (IA), site shows ‘Shawnee” SW foreground,
Independence SW in the middle, and ‘Liberty” SW in the top right before the tree line (July 2020). The Ithaca, Nebraska
(NE), site shows Independence SW in the foreground and a low diversity mixture in the background (June 2020). The South
Shore, South Dakota (SD), site shows ‘Sunburst’ SW as a border, corn on the left, and ‘Carthage’ SW and a soybean on the
right (July 2020).

Field site characteristics and crop management are included in Table 1. Precipitation
data were provided by on-site or locally available weather stations. Treatments (three
replicates each) and planting design varied across the site locations based on field (size and
arrangement) and climate (temperature) conditions. The switchgrass cultivars and other
warm-season perennial grasses evaluated are shown in Figure 1. The switchgrass cultivars
included in the study consist of upland (‘Carthage’, ‘Sunburst’, ‘Shawnee’), lowland
('Independence’), and mixed (hybrid: ‘Liberty’) ecotypes. Switchgrass was planted in the
spring of 2019 at three of the five sites (i.e., Brighton, IL; Iowa; and South Dakota). Lowland
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ecotypes such as ‘Independence’” and “W105L" were also planted at the South Dakota site;
however, due to heavy winterkill in 2019, the plots were replanted with soybean and winter
wheat for subsequent years and, therefore, are not included in Table 1. The majority of the
Nebraska site was planted in 2012, including the Liberty switchgrass, big bluestem mixture
(‘Goldmine’ and ‘Bonanza’), and a low diversity mixture (side-oats grama, Indiangrass,
big bluestem), and the exception was a single plot of Independence switchgrass, which
was planted in the spring of 2019. The Urbana site was the most recently established site,
with a spring planting in 2020 (Table 1). All sites were planted with a no-till drill with a
targeted planting rate of 300 seedlings/m? and a 15-18 cm row spacing. Switchgrass stand
establishment was evaluated in the fall of the planting year or the following spring using a
frequency grid [46]. Plots with an average frequency of less than 25% were overseeded the
following season. For the Iowa, South Dakota, and Brighton sites, no large-scale harvest
occurred at the end of the establishment year. Instead, biomass was removed (via burning,
mowing/raking) in early 2020 prior to the start of new growth. Additional management
information and soil data for each site are included in Table S1.

Table 1. Field site characteristics and crop management.

. . Field Size (Plot  Rainfall + Snow Cropping .
Site Coordinates Size) (ha) Melt * (mm) History Planting Date Harvest Date
. 39°3/23.23"" N, € Corn/soybean
Brighton, IL 90°11'7.62" W 8.5(0.4) 1158 rotation 28 May 2019 9 December 2020
Perennial grass
40°4'7.68" N, plots
Urbana, IL 88°1126.78" W 6.1(0.2) 731 Soybean (2018) 30 May 2020 7 December 2020
Corn (2019)
) 41°55'52.17" N, s Corn/soybean
Madrid, TA 03°45/49 28" W 8.5(0.4) 730 rotation 13 June 2019 20 November 2020
ogl " 14 June 2019
Ithaca, NE 41°8'57.54" N, 8.9 (0.4) 167% Corn/soybean (1 jependence’) 16 November 2020
96°27'14.07" W rotation .
18 April 2012
45°6/20.30" N, ¢ Wheat/soybean  (all other grasses)
South Shore, SD 97°3/42. 41" W 3.6 (0.2) 533 rotation 3 June 2019 19 November 2020

* Average of 2019 and 2020. € Data provided by [47]. £ Data provided by [48]. ! Data provided by [49]. 8 Data provided by [50].

2.2. Data

The data used for modeling were (1) switchgrass yields measured at harvest between
November and December 2020 for the five study sites and (2) 10 m resolution Sentinel-2
satellite imagery from the 2020 April-October period. To monitor ground conditions,
plot pictures and field observations including chlorophyll content of upper canopy leaves
using a SPAD-502 chlorophyll meter (Minolta, Konica Minolta Sensing Europe B.V.) were
collected during the growing season. Perennial grass dry yield was collected after a killing
frost (air temperature below —2.2 °C) in the fall of 2020 from each study site. At the Iowa,
Nebraska, and Brighton sites, full plot biomass was measured by cutting the entire plot
with a mower at a cutting height of 10-15 cm. Subsamples of cut biomass were collected
from the windrows for measuring moisture and dry matter contents. The windrows were
then baled and weighed. In South Dakota, the plots were also mowed and baled, but only
a swath (5.5 m in width) up the center of each plot was cut and baled for biomass yield.
Subsamples were also collected from the windrows, but the moisture content of the bales
was directly measured using a moisture probe. Harvested area was measured for each plot
across all field sites. A small-plot combine harvester (Wintersteiger Cibus plot harvester
with 4’ Kemper row independent cutter head, Service Point, IA) was used in Urbana to
collect biomass yield from three areas in each plot (1.2 m x 9 m). We avoided whole-plot
harvest to ensure the stand health during the establishment year. Biomass weight was
directly measured by the harvester for each cut section, and subsamples of the cut biomass
were collected from the combine for measuring moisture content.

The perennial grass yield dataset available for the model development is summarized
in Table 2. The number of data points (or plots) ranged from 12 (Urbana and South Dakota)
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to 19 (Nebraska). Except for the Nebraska site, the ranges of yields were similar, ranging
from 3.16 to 4.66 Mg/ha across the study fields. The low yields at the Urbana site (i.e., 1.16-
4.35 Mg /ha) relative to other sites were expected as 2020 was the establishment year for
this site (Table 2).

Table 2. Summary of perennial grass yield data available for model development.

e Plot Yield (Mg/ha)
Count Min., Max. (Range) Mean Standard Deviation
Brighton, IL 18 2.27,5.75 (3.48) 4.20 1.45
Urbana, IL 12 1.19, 4.35 (3.16) 2.24 0.82
Madrid, TA 18 2.45,7.01 (4.56) 4.62 1.86
Ithaca, NE 191 414,11.1 (6.96) 7.75 1.67
South Shore, SD 12 5.74,10.4 (4.66) 8.16 1.59

! The single ‘Independence’ plot was excluded from the model development; thus 18 plots were used for the
model development. Min. = minimum, Max. = maximum.

Sentinel-2 satellite bottom-of-atmosphere reflectance images from April to October 2020
were obtained from the Copernicus Open Access Hub (https://scihub.coperni-cus.eu/
(accessed on 24 February 2020)). The time period was selected based on warm-season
perennial grass phenology in the Midwest region with green-up period typically occurring
in April or May and senescence occurring between September and October. Images with
apparent cloud cover over the study sites based on visual interpretation were excluded
from the download. Of the 37 images for each site (185 images total), a total of 61 Sentinel-2
multispectral images across the five study sites were obtained (Table 3). The Sentinel-2
multispectral imagery of the five study sites is shown in Figure 3. The optical bands
(i.e., blue, green, red, and near-infrared (NIR) bands) at 10 m resolution and the scene
classification map at 20 m resolution were used for the model development. The spectral
reflectance profiles of each of the five study sites are provided in Figure S1.

Table 3. Summary of imagery considered for model development.

Site April May June July August September October Total
Brighton, IL 8,18 23 2,7,12,17 no image 6,16 5,20,25 no image 12
Urbana, IL 5,10, 20 no image 14 14, 24, 29 8, 18,23 no image 7 11
Madrid, TA 1,12 6 6,15,25 10 19 3,13,18 no image 11
Ithaca, NE 9,19 19 3,8,13 8,13,18 17,27 9,16 6 14
South Shore, SD 7,22 2,27 1,11, 16 11,16 10, 25 4,14 no image 13

Field Location Madrid, 1A

B

0 0.1 0.2 Kilometers

Figure 3. Cont.
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Brighton, IL
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Figure 3. Sentinel-2 multispectral imagery of the study sites displayed in true color. Brighton, Illinois
(IL) (day-of-year (DOY) 169); Urbana, IL (DOY 281); Madrid, Iowa (IA) (DOY 177); Ithaca, Nebraska
(NE) (DQY 165); and South Shore, South Dakota (SD) (DOY 193).

2.3. Image Processing and Model Development

The model development consists of image preparation, spectral index calculation, and
linear regression model development. Prior to the index calculation, pixels affected by
cloud and its shadow in each of the Sentinel-2 bottom-of-atmosphere reflectance images
were excluded using the scene classification map layer on the same date, which is a part
of Sentinel-2 products identifying several classes including clouds, cloud shadows, and
saturated and defective pixels in the image (https://sentinels.copernicus.eu/web/sentinel/
technical-guides/sentinel-2-msi (accessed on 7 December 2020)). A total of 20 spectral
indices that are known to correlate with vegetation properties were calculated using the
images (Table 4). The index values of pixels located only well within the boundaries of each
of the plots were extracted to avoid possible spectral contamination from adjacent ground
cover. The correlation between each index on each image date with yield was examined,
and the index on a single date having the highest correlation with yields was identified.
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Table 4. Spectral vegetation indices examined in this study.

Index

Formula Source

Atmospherically resistant vegetation

a1
—_

[NIR — (R — B)]/[NIR + (R — B)]

index (ARVT) [51]
Difference vegetation index (DVI) NIR — R [52]
Enhanced vegetation index (EVI) 25 X [(NIR — R)/(NIR+6 x R—7.5 x B+ 1)] [53]
Enhanced vegetation index 2 (EVI2) 25 x [(NIR — R)/(NIR + 2.4 x R+ 1)] [54]
Green atmospherically resistant index (GARI)  {NIR — [G — 1.7 x (B — R)[}/{NIR + [G — 1.7 x (B — R)]} [55]
Green chlorophyll index (GCI) NIR/G -1 [56]
Green difference vegetation index (GDVI) NIR — G [57]
Green normalized difference vegetation
index (GNDVI) (NIR — G)/(NIR + G) [58,59]
Green red ratio vegetation index (GRVI) G/R [60]
Infrared percentage vegetation index (IPVI) NIR/(NIR + R) [61]
Modified non-linear index (MNLI) [(NIR? — R) x (1 +0.5)]/(NIR? + R + 0.5) [62]
Modified soil-adjusted vegetation 5
index (MSAVI) {2 X NIR+1 —sqrt[(2 x NIR + 1) — 8 x (NIR — R)]}/2 [63]
Modified simple ratio (MSR) [(NIR/R) — 1]/{[sqrt(NIR/R)] + 1} [64]
Normalized difference vegetation
index (NDVI) (NIR — R)/(NIR + R) [65]
Optimized soil-adjusted vegetation
index (OSAVI) (NIR — R)/(NIR + R + 0.16) [66]
Renormalized difference vegetation
index (RDVI) (NIR — R)/[sqrt(NIR + R)] [67]
Soil-adjusted vegetation index (SAVI) (1+0.5) x [(NIR — R)/(NIR + R + 0.5)] [68]
Simple ratio (SR) NIR/R [69]
Visible atmospherically resistant index (VARI) (G—R)/(G+R —B) [70]
Wide dynamic range vegetation (0.2 x NIR — R)/(0.2 x NIR + R) [71]

index (WDRVI)

B = blue band, G = green band, R = red band, and NIR = near-infrared band that correspond to bands 2, 3, 4, and 8 of Sentinel-2 satellite
imagery, respectively; sqrt = square root.

A linear regression model for estimating yields was developed using the values from
one of the index layers having the highest correlation with at-harvest yields. The model
was developed using 75% of the available pixels from each plot and validated with the
measured plot yields using the remaining 25% of the pixels in order to work with the
limited data points. This process was iterated 31 times, and coefficient of determination
(R?), mean absolute error (MAE), and root mean squared error (RMSE) were calculated
to evaluate the accuracy of yield estimates. For each site, each R?, MAE, and RMSE
were averaged over the iterations, and those average values were used as the measure
of predictive power of the model for the at-harvest yields for each site. A single linear
regression model was developed for each site instead of multiple models for each cultivar
due to the limited availability for yield estimates at harvest.

3. Results
3.1. Analysis of Spectral Vegetation Indices in Relation to Switchgrass Yields

Of the 20 spectral vegetation indices calculated using the 10 m resolution Sentinel-2
multispectral imagery from April to October 2020, the seasonal trajectories of the green
normalized difference vegetation index (GNDVI) [58,59] for the five study sites are shown
in Figure 4 as examples since the trajectory of GNDVI seemed to represent the trajectories
of indices that were highly correlated with harvestable biomass yields, which is described
later in this section. The GNDVI values increased from early May and reached the peak
greenness around mid-June at the Iowa, Brighton, and Nebraska sites. The South Dakota
site, which is the furthest north in latitude, had a later start for greenness increase. The
greenness at the Urbana site, the youngest of the five sites, did not start to increase until
late June to beginning of July and exhibited a unique greenness trajectory.
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Figure 4. Seasonal trajectories of the green normalized difference vegetation index (GNVDI) by switchgrass cultivars and
mixed tallgrass between April and October 2020 across the (a) Brighton, Illinois (IL); (b) Urbana, IL; (c) Madrid, Iowa (IA);
(d) Ithaca, Nebraska (NE); and (e) South Shore, South Dakota (SD), sites. Plot legends are named based on the combination

of plot number, cultivar planted, and nitrogen (N) fertilization rate (kg N ha~'). Switchgrass (SW) cultivars: Lib = ‘Liberty

’

SW, Shaw = ‘Shawnee’ SW, Indp = ‘Independence’ SW, Cart = ‘Carthage’ SW, and Sunb = ‘Sunburst’ SW. Mixed tallgrass:
LD =low diversity mixture, BB = big bluestem mixture. DOY = day-of-year.

In general, the trajectories of index values were very similar across the crops/cultivars
within each site, with some exceptions. In particular, the Nebraska site showed very
uniform trajectories across the crops (Figure 4: liberty switchgrass, big bluestem, and
the low diversity mix). The major exception was the Independence switchgrass plot.
The GNDVI trend was outside the 2 standard deviations from the mean. Although the
stand of Independence switchgrass (height and thickness) at the Nebraska location looked
very different from the other crop plots, due to the lack of plot replication, it is difficult
to verify the cause of this variation. With the current dataset, the exclusion of the plot
increased the R? between GNDVI and the harvested yield from 0.313 to 0.873. Therefore,
the Independence plot was excluded from the model development for the Nebraska site.
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The other observed visual crop difference at the Nebraska site occurred after day-of-year
(DOY) 260. The GNDVI values for Liberty switchgrass declined more quickly than those
for the low diversity mixture and big bluestem plots, resulting in a more defined split
between the crop types by the end of the growing season.

In Brighton, a similar split in GNDVI trends between switchgrass cultivars was
observed until DOY 219 (Figure 4). Shawnee switchgrass maintained higher GNDVI values
than Independence and Liberty switchgrass by the end of the season. At the Iowa site, the
majority of the Independence switchgrass plots had lower GNDVI values for the bulk of
the growing season (DOY 157-247) compared to the other cultivars, resulting in a greater
spread in GNDVI values by cultivar type for this time period. Plot 305, shown in gray in
Figure 4, showed a unique trajectory in GNDVI values across the season. In fact, this plot
was reseeded at the end of August 2020 due to low plant density (i.e., <25% threshold).
In contrast to plot 305, the other two plots in Iowa that required reseeding (i.e., plots 307
(Liberty switchgrass) and 104 (Independence switchgrass)) showed comparable GNDVI
trajectories across the season to other plots of the same cultivar type. Although no distinct
pattern in GNDVI trajectory specific to any switchgrass cultivar type was observed, the
South Dakota and Urbana sites showed variation in late June through the end of the
season. Similar overall patterns in seasonal trajectory were observed for other spectral
vegetation indices.

Correlations between the spectral vegetation indices and dry biomass yield at harvest
are summarized in Table 5. The strength of correlation between the index values and the dry
biomass yields at harvest greatly varied across the sites. For the South Dakota site, 17 out of
the 20 indices showed R? > 0.75, while index-yield correlations were moderate to high for
the Brighton site (e.g., modified soil-adjusted vegetation index (MSAVI) [63], R? = 0.661).
For the Iowa, Urbana, and Nebraska sites, a few indices showed strong correlations with
yields, including the green chlorophyll index (GCI [56], R? = 0.828, 0.739, 0.884, and
0.878 for the Urbana, Iowa, Nebraska, and South Dakota sites, respectively) and GNDVI
(R% = 0.842, 0.776, 0.873, and 0.857 for the Urbana, Iowa, Nebraska, and South Dakota sites,
respectively). The indices based on the soil-adjusted vegetation index (SAVI [68]) were also
correlated with the biomass yields for the lowa site (R% = 0.737,0.738, and 0.737 for SAVI,
MSAVI, and optimized SAVI (OSAVI) [66], respectively) and Brighton site (R? = 0.643 across
SAVI, MSAV], and OSAVI). The modified simple ratio index showed a good correlation for
the Urbana and Nebraska sites as well (R? = 0.743 and 0.827, respectively) (Table 5). The
average switchgrass plant frequencies across cultivars in Iowa and Brighton (30% and 46%,
respectively) in the spring/summer of 2020 were lower than those of the other field sites
(Nebraska 85%, Urbana 50%, South Dakota 100%). These two sites also had the largest
range in switchgrass plant frequency compared to the other sites.

The strongest correlations of the index values with yields also varied by timing
(Table 5). The indices in June (DOY 155-180) showed strong correlation with the dry
biomass yields at harvest for the Brighton, Nebraska, and lowa sites. For the Urbana site,
the index—yield correlations were strong in the late growing season (i.e., early October).
For the South Dakota site, the correlations varied across the indices.

Of the 20 indices examined, indices utilizing the green and NIR spectral bands such as
GCI and GNDVI were consistently identified as those strongly correlated with the yields
across the sites (Table 5). The correlations of the indices using the green and NIR spectral
bands were stronger than those of indices based on the red and NIR bands (e.g., NDVI) that
are commonly used for vegetation studies. Based on the observation of a nearly consistent
strong correlation of GNDVI with at-harvest biomass yields across the study sites, the
subsequent modeling was carried out exclusively using GNDVL

Scatter plots of the harvested dry biomass yields and the average GNDVI values
corresponding to each of those plots on the date of highest correlation for each study site
are presented in Figure 5. All sites except for the Brighton site showed strong correlations
between GNDVI and yield (R? > 0.75). The GNDVI-yield correlation was moderate for the
Brighton site, but index—yield correlations across the indices examined were lower than
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those of the other sites. Thus, modeling yield using GNDVI was reasonable for this study;
GNDVI was calculated using Equation (1):

GNDVI = [NIR — G]/[NIR + G] = [B8 — B3]/[BS + B3], 1)

where NIR and G are bottom-of-atmosphere reflectance values of the NIR and green
spectral bands, which correspond to the spectral band 8 (B8) and band 3 (B3) of Sentinel-2
satellite imagery, respectively.

Table 5. Summary of the highest coefficient of determination (R?) values between spectral vegetation indices and perennial

grass dry biomass yields measured at harvest and the corresponding date of image collection for each study site *.

Spectral SPeCtE;IIiZI;i Used Brighton, IL Urbana, IL Madrid, IA Ithaca, NE Sout};Shore,
Index
B G R NIR DOY R? DOY R? DOY R? DOY R? DOY R?
ARVI X X X 154  0.660 281 0559 177 0713 230 0718 248  0.813
EVI X X X 154  0.640 281 0633 177 0715 230 0728 248  0.839
EVI2 X X 154 0624 281 0706 177 0728 165 0.810 223  0.802
GARI X X X X 154 0614 281 0696 177 0649 165 0.840 193  0.909
GCI X X 169 0515 281 0.828 192 0.739 165 0.884 193  0.878
GDVI X X 229 0451 281 0626 192 0636 165 0.869 208  0.932
GLI X X X 154  0.622 9 0614 177 0648 165 0576 238  0.428
GNDVI X X 169 0605 281 0.842 177 0776 165  0.873 193  0.857
GRRVI X X 154  0.553 9 0614 177 0620 165 0638 238  0.628
IPVI X X 154  0.643 281 0.681 177 0737 165 0.803 223  0.800
MNLI X X 154 0637 281 0659 177 0725 195 0772 208  0.887
MSAVI X X 154  0.661 281 0647 177 0738 165 0795 223  0.797
MSR X X 154 0532 281 0743 262 0070 165 0.827 248  0.820
NDVI X X 154  0.643 281 0.681 177 0.731 165  0.803 223  0.800
OSAVI X X 154  0.643 281 0.681 177 0737 165 0.803 223  0.800
RDVI X X 154 0527 281 0716 177 0680 165 0.841 208  0.910
SAVI X X 154  0.643 281 0.681 177 0737 165 0.803 223  0.800
SR X X 154 0484 281 0752 177 0648 165 0.826 248  0.829
VARI X X X 154  0.593 9 0617 177 0685 165 0641 238  0.639
WDRVI X X 154 0597 281 0727 177 0723 165 0818 223  0.805

* Three indices having the highest R? with the switchgrass dry biomass yields are shown in boldface. More than three indices are indicated
for the Brighton site because of the equal R? values. DOY = day-of-year.
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Figure 5. Scatter plots of perennial grass yield measured at harvest and the green normalized difference vegetation index
(GNDVI) on the dates having the highest correlation with yields across the (a) Brighton, Illinois (IL); (b) Urbana, IL;
(c) Madrid, Iowa (IA); (d) Ithaca, Nebraska (NE); and (e) South Shore, South Dakota (SD), sites.

3.2. Prediction of Switchgrass Dry Biomass Yields at Harvest

The overall performance of the linear regression models using GNDVI for predicting
perennial grass dry biomass yields at harvest for the five sites is summarized in Table 6,
along with the characteristics of dry biomass yield data used for the model development.
Based on the 31 iterations, the yields predicted using the GNDVI linear regression model
showed moderate to strong correlations with at-harvest yields ranging from R? = 0.592
(Brighton) to R? = 0.879 (South Dakota). The average of MAE ranged from 0.377 Mg/ha
(Urbana) to 0.589 Mg/ha (Brighton), and the average of RMSE ranged from 0.399 Mg/ha
(Urbana) to 0.685 Mg/ha (Brighton). The average MAE and RMSE indicated that the yields
predicted by the GNDVI linear regression model had comparable errors across the five sites,
except for the Urbana site, which is characterized by the lowest minimum and maximum
measured yields and the smallest measured yield range (Tables 2 and 6).
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Table 6. Performance of linear regression models using the green normalized difference vegetation
index ! and characteristics of perennial grass dry biomass yield data used for model development.

Site Imgf)%ate R? MAE RMSE
Brighton, IL 169 0.592 0.589 0.685
Urbana, IL 281 0.694 0377 0.399
Madrid, IA 177 0.835 0.555 0.645
Tthaca, NE 165 0.870 0.539 0.616
South Shore, SD 193 0.879 0.579 0.653

1 The summary was generated from 31 iterations for each site. DOY = day-of-year; R? = coefficient of determina-
tion; MAE = mean absolute error; RMSE = root mean squared error.

The yields predicted by the GNDVI linear regression model showed stronger corre-
lations for the sites having higher minimum and maximum measured yields at harvest
(i.e., Nebraska and South Dakota) than for those having lower minimum and maximum
yields (i.e., Urbana and Brighton) (Tables 2 and 6). The predicted yields also correlated more
strongly with the measured yields for the sites having the greater range of measured yields
(i.e., Nebraska and South Dakota) than those with the limited yield range (i.e., Urbana
and Brighton).

Examples of scatter plots of the measured switchgrass yields at harvest and predicted
yields are presented in Figure 6. Each scatter plot was selected from the iteration resulting
in the median R? for each site. Specific performance measures would vary across iterations,
but the predicted yields showed a strong linear relationship with the measured yields
across the five sites. The model showed the lowest median R? for the Brighton site with a
greater difference between RMSE and MAE (Figure 6), which is also suggested in Table 6.
The model appears less robust for the Urbana site than other sites, as indicated by the
slope and intercept deviating from 1 and 0, respectively, in the example (slope = 6.904,
intercept = 9.134, Figure 6).
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Figure 6. Examples of scatter plots of measured switchgrass yields and switchgrass yields predicted based on the linear
regression model output using the green normalized difference vegetation index across the (a) Brighton, Illinois (IL);
(b) Urbana, IL; (c) Madrid, Iowa (IA); (d) Ithaca, Nebraska (NE); and (e) South Shore, South Dakota (SD), sites.

Examples of the switchgrass dry biomass yields for the five study sites that were
predicted using the GNDVI linear regression model are shown in Figure 7. The maps were
generated by applying the model developed using plot-level data to image pixels. Overall,
the relative yield (i.e., high and low yields) and variation of predicted yields reflect the
amount and range of the measured yields across the sites (Table 2). For example, the Urbana
site, which has the lowest minimum and maximum measured yields (i.e., 1.19-4.35 Mg/ha)
and the smallest yield range (i.e., 3.16 Mg/ha) of all sites, showed the lowest predicted
yields and the most limited variation across the site. In contrast, the Nebraska site, which
has the largest measured yield range (i.e., 6.96 Mg/ha) of all sites, exhibited the greatest
variation in the predicted yields (Table 2 and Figure 7). Across crop types at the Ne-
braska site, the highest yields occurred in plots fertilized with 56 kg N ha~! compared to
28 kg N ha~!. Relationships between the predicted yields and fertilizer application were
also observed for some plots in other sites (Figures 1 and 7). For the South Dakota site,
the model predicted relatively homogeneous yields within each of the high-yielding plots



Land 2021, 10, 1221 16 of 22

but predicted noticeable internal variation for the plots having moderate to low yields.
The difference between higher- and lower-yielding plots was not always associated with
fertilizer rate (Figures 1 and 7). For the Brighton and Iowa sites, switchgrass cultivar type
can be seen contributing to yield variation (Figures 1 and 7).
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Figure 7. Examples of switchgrass dry biomass yield (Mg/ha) for the five study sites.

4. Discussion

Despite the limited data available, the simple linear regression model using GNDVI
showed promise for predicting harvestable switchgrass dry biomass yields at a plot
scale (i.e., 0.2-0.4 ha). Except for the Urbana site, calculated index values in midsum-
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mer (i.e., DOY 165 through 193) were often strongly correlated with the perennial grass
yields at harvest for all sites across the spectral vegetation indices examined (R? as high as
0.879; MAE and RMSE as low as 0.539 Mg/ha and 0.616 Mg/ha, respectively, except for the
establishment year). Switchgrass and other warm-season perennial grasses often accelerate
their growth in June followed by flowering, which was observed to start by the middle to
end of July for most cultivars. Because plants shift their energy allocation from vegetative
growth to flowering at that time, the greatest correlation between vegetation index values
is around the same time, which indicates the maximum green biomass of the season, and
at-harvest biomass yield is understandable. This suggests that yields may be fairly reliably
predicted a few months before harvest. In this study, the harvestable dry biomass yields
were predicted 152 days prior to harvest on average. Factors that could influence the
prediction accuracy when using midsummer spectral index values include the amount
of precipitation, such as prolonged droughts that would influence soil moisture status.
Sources of uncertainty in predicted yields could also include timing of harvest as observed
in our previous study (not published) and cultivar variation in physiology and chemistry as
they determine plant spectral responses [72]. Because fertilizer and herbicide applications
and tillage practices influence the nitrogen status of crops [42—44], the amount of exposed
ground within the stands [45], and the composition of exposed ground (e.g., crop residues
and weeds) [44,45], these factors should also be carefully considered when modeling yields
using spectral vegetation indices.

Another source of uncertainty in predicting switchgrass yields is associated with
image availability. The availability of Sentinel-2 imagery for switchgrass yield prediction
is constrained by periods of high cloud cover, which is a common limitation for satellite
imagery. In this study, a total of 185 images were available for the study sites from April
to October 2020. However, only 61 images were obtained and utilized in subsequent
analyses across the sites (Table 3). For many of the sites, satellite imagery around the time
of flowering (mid to end of July for most grasses and switchgrass cultivars, except for
Independence switchgrass which flowers closer to the end of August) was not available due
to cloud cover. This raised a question on the likelihood of satellite image availability that
could provide sufficient predictive power for at-harvest biomass yields for each site. Even
though the GNDVI seasonal trajectories show fairly comparable values around the selected
image dates across the sites, the impact of image dates on yield prediction is uncertain.
Furthermore, due to cloud cover, the availability of imagery during the summer months
in subsequent years for multiyear studies is also not guaranteed. Although unmanned
aerial vehicles and other technologies have been utilized to mitigate the issue of cloud
cover, these technologies can be time-consuming and costly and could require rigorous
data processing for proper analysis. Technologies that could increase satellite image
availability or methodologies for simulating seasonal trajectory would greatly help in
reducing such uncertainty.

The comparison of 20 spectral vegetation indices showed that the NIR spectral band
is the key to predicting biomass yields, which is consistent with a number of existing vege-
tation studies using remote sensing [15,73]. The index comparison also indicated a greater
information value of the green spectral band for predicting at-harvest yields of switchgrass
and other warm-season perennial grasses than the red band. Gitelson et al. [58,59] found
that spectral reflectance in the green spectral region is more sensitive to plant chlorophyll
content than that in the red spectral region. As a result, GNDVI showed a stronger cor-
relation with chlorophyll contents across the plants examined than NDVI, which utilizes
the NIR and red bands [59]. Switchgrass aboveground biomass is accumulated through
vegetative growth or elongation of stems from emergence in the spring through flower-
ing, with the growth period (green-up to anthesis) dependent upon geographic location
(temperature and daylength) and ecotype [74-76]. During the vegetative growth period,
plant chlorophyll content increases [75]. This pattern was observed in the Iowa, Brighton,
and Nebraska sites with green-up observed in imagery to occur in late April/early May
and continue into June and July, which corresponded to the measured chlorophyll con-
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tent in the field during this time. In mid- to late summer, the GNDVI values plateaued,
which appeared to coincide with flowering. Then, GNDVI values gradually decreased as
switchgrass began senescing.

The pattern observed between the predictive power of the GNDVI linear regres-
sion model measured by R? and the characteristics of measured yields (i.e., minimum,
maximum, and range) may be explained by the strength of spectral signal associated
with switchgrass/perennial grass biomass in the field during the image collection. Dense
switchgrass growth, which would indicate greater biomass volume than sparse growth, is
likely represented by pixel values in the image. In contrast, spectral signals from sparse
switchgrass growth likely contain noise from background such as soil or plant residue
and obscure true signals of switchgrass in pixel values. Although it is out of scope for the
present study, the influence of vertically projected cover and height of switchgrass and
presence of other materials on remote sensing-based yield prediction could be examined
with field observations of plant height, canopy photos, and weed cover during the peak
growing season.

Phenological variations observed in the GNDVI seasonal trajectories can reflect the
age of switchgrass or perennial grass stands and geographic location. The later start of
the greening at the South Dakota site compared to the other sites can be explained by its
higher latitude and colder temperatures later in the spring compared to the other sites.
The unique greenness pattern of cultivars for the Urbana site can be explained by the
stand age. Because the study year (2020) was the establishment year for this site, the
timing of biomass accumulation was expected to be different from the other sites. The
delayed increase in GNDVI can in part be due to the planting date (DOY 141) and the slow
establishment, which is typical of perennial crops. Additionally, literature has shown that
switchgrass flowering during the establishment year can occur later than what is observed
in the following years after establishment [77].

At the Nebraska site, the difference in GNDVI seasonal trajectory between Indepen-
dence switchgrass and the other perennial grasses may also be associated with differences
in stand age. The Independence plot was established in 2019 while the other plots were
established in 2012. The differences may also be associated with phenological characteris-
tics such as canopy structure and leaf chlorophyll. The Independence stand was taller and
thicker than the other perennial grasses and Liberty switchgrass cultivar in 2020. It also
has a bluer leaf coloration with a waxy coating compared to the other switchgrass cultivars
and perennial grasses used in this study. However, due to the lack of plot replication at
the Nebraska site along with other phenological data, it is difficult to determine the causes
of variation at this time. Additional years of data, collection of phenological data across
cultivars, and observing trends between cultivar types across the other field locations may
shed light on these seasonal trends. The GNDVI trajectory showed patterns specific to
cultivar types at some sites, which suggests that cultivar-specific yields may be modeled
using optical imagery with a sufficient number of replicate plots for each cultivar type.
This could help the selection of high-yield cultivars.

5. Conclusions

This paper presented the initial investigation on the predictive power of spectral
vegetation indices derived from optical satellite imagery, more specifically GNDVI, for
at-harvest switchgrass and other warm-season perennial dry biomass yields using a linear
regression model. The study utilized 10 m resolution Sentinel-2 multispectral imagery
that was collected from April to October 2020 over the five study sites located in the U.S.
Midwest states—lowa, Illinois, Nebraska, and South Dakota. The key findings of the study
were as follows:

1. The linear regression model using midsummer GNDVI predicted at-harvest perennial
grass yield with R? as high as 0.879 and MAE and RMSE as low as 0.539 Mg/ha and
0.616 Mg/ha, respectively, except for the establishment year. The selection of image
date in this study was based on image availability; thus, there is a possibility that the
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GNDVI linear regression models has a greater predictive power for at-harvest yields
than presented in this study.

2. The GNDVlI linear regression model predicted at-harvest switchgrass yields as early
as 152 days before the date of harvest on average, except for the year of establish-
ment. More frequent cloud-free imagery than used in the present study or simu-
lated seasonal trajectories of spectral vegetation indices could allow us to answer
more precisely how early and accurately at-harvest yields can be predicted using
remote sensing.

3. While the NIR spectral band was found to be one of the key spectral bands, the green
band appeared to have a greater contribution for predicting at-harvest switchgrass
and other perennial grass dry biomass yields than the red band. This is consistent
with existing studies [58,59] demonstrating that the sensitivity of the green spectral
reflectance to plant chlorophyll content, which is indicative of green biomass volume,
is greater than that of the red spectral reflectance.

The model formulated in this study will be further tested using additional datasets
from 2021. Downscaling of the model should also be explored to estimate switchgrass
and other warm-season perennial grass yields at a 10 m scale, which would enable the
integration of the data into a predictive model for marginal lands. Additional future
studies will include determining (1) if a single-date spectral vegetation index from the
optimal available image would provide satisfactory at-harvest switchgrass yield prediction,
(2) if simulated seasonal trajectories of a spectral vegetation index could improve accuracy
and robustness of switchgrass yield prediction, (3) how early switchgrass yields can be
predicted using remote sensing, (4) if remote sensing models developed for a limited
number of sites using one year could be applicable for predicting switchgrass yields of
other years and other sites, and (5) how vertically projected cover and height of switchgrass
and presence of other materials would influence remote sensing-based yield prediction.
Additional areas of research include the uniqueness of establishment year for estimating
harvestable switchgrass yields and potential impacts of herbicide and fertilizer treatments
and tillage practices on biomass yield estimate using remote sensing.

In addition to biomass yields, an ability to predict biomass moisture and nutrient
content at harvest in advance would provide actionable information to biorefineries in
planning storage, transport, and adjustment to conversion formulas or preprocessing.
Thus, predictive modeling for biomass moisture and nutrient content using remote sensing
should also be explored.
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