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Abstract: Recurrent Neural Networks (RNNs), including Long Short-Term Memory (LSTM) architec-
tures, have obtained successful outcomes in timeseries analysis tasks. While RNNs demonstrated
favourable performance for Land Cover (LC) change analyses, few studies have explored or quan-
tified the geospatial data characteristics required to utilize this method. Likewise, many studies
utilize overall measures of accuracy rather than metrics accounting for the slow or sparse changes of
LC that are typically observed. Therefore, the main objective of this study is to evaluate the perfor-
mance of LSTM models for forecasting LC changes by conducting a sensitivity analysis involving
hypothetical and real-world datasets. The intent of this assessment is to explore the implications of
varying temporal resolutions and LC classes. Additionally, changing these input data characteristics
impacts the number of timesteps and LC change rates provided to the respective models. Kappa
variants are selected to explore the capacity of LSTM models for forecasting transitions or persistence
of LC. Results demonstrate the adverse effects of coarser temporal resolutions and high LC class
cardinality on method performance, despite method optimization techniques applied. This study
suggests various characteristics of geospatial datasets that should be present before considering
LSTM methods for LC change forecasting.

Keywords: sensitivity analysis; recurrent neural networks; long short-term memory; deep learning;
land cover change modelling

1. Introduction

Land Cover Change (LCC) is a dynamic process with spatial and temporal depen-
dencies. The interactions within and between human and natural environmental systems
propagate LCCs over space and time [1]. These local-level interactions give rise to patterns
observed at global scales [2]. For instance, anthropogenic disturbances such as deforesta-
tion directly and indirectly induce increased CO2 levels and affect local weather changes,
making LCC important to consider as global temperatures rise [3–6]. LCC research is
significant to many disciplines such as geography, urban planning, environmental science,
forestry, agriculture, and resource management [7–9].

Land changes have been previously modeled using methods that capture local-level
interactions occurring over space and time. These include geographic automata approaches,
comprised of Agent-Based Models (ABMs) and Cellular Automata (CA) [10]. For instance,
encoded agents can capture decision-making processes of individuals or groups [11,12].
Such decisions have implications on the environment represented in an ABM. CAs have
also been demonstrated to capture land change over time according to pre-defined transi-
tion rules across a regular [13–15] or irregular-grid environment [16]. Different types of
ML models have also been used in conjunction with CA, including support vector ma-
chines [17,18], random forests [19], neural networks [20], and Markov models [21]. Another
integration considered an ABM, a CA, and a system dynamics model to facilitate interac-
tions across multiple scales that drive land changes [22]. However, limited knowledge of
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individuals or disaggregated system behaviours impose limits on what type of model can
be used [23]. As such, data-driven methods may be used in situations where patterns and
relationships driving land change are unknown.

Given the complexity of LCC, statistical learning approaches have been applied for
analyses in this domain [24,25]. Earlier approaches include regression models that integrate
field measurements alongside classified LC data [26]. Throughout the past decade, data-
driven modeling methods usage has been rising with the unprecedented availability of data,
the Big Data paradigm shift, and the escalating capacity of computational resources [27].
While Machine Learning (ML) algorithms automate pattern recognition with minimal
manual interference, it is important to acknowledge that these techniques are deterministic
approaches to modeling non-linear spatial processes. With increasing dimensionality and
volume of modern datasets, ML algorithms typically perform with great efficacy. Several
ML approaches previously applied for Land Cover (LC) classification and forecasting have
included Neural Networks (NNs) [28], Decision Trees [24,29], Random Forests [24,30], and
Support Vector Machines [24,31].

A subfield of ML characterized by NNs of increasing depth and breadth is called Deep
Learning (DL). DL techniques facilitate automated learning of feature representations and
have demonstrated ability to capture intricate, hierarchical relationships from a dataset [32].
A Recurrent Neural Network (RNN) is a type of NN suitable for sequential data. With in-
ternal memory allocated to each neuron, RNNs are useful for capturing dynamic, temporal
dependencies [33]. RNNs, specifically the Long Short-Term Memory (LSTM) variation,
have exhibited propitious performance in previous LCC analyses [25,34,35]. However,
geospatial input data characteristics conducive to the success of LSTMs have not been fully
studied. This motivates an investigation of the method’s response to varying geospatial
data qualities by means of Sensitivity Analysis (SA).

SA is helpful for assessing the effects of geospatial input data properties on model
outputs [36]. For example, SA approaches applied to ABMs [37] and CAs [38] have been
considered. SA approaches were also employed for super-resolution LC mapping [39] and
LCC modeling [40,41]. Furthermore, perturbations to inputs provided to a decision-tree
modeling approach were explored with respect to overall test accuracy and the number
of cells changed [42]. Prior studies involving ML techniques have also emphasized mea-
suring a model’s capacity to forecast changed cells correctly [43]. Traditional NNs and DL
approaches used for applications besides LCC have been explored for their sensitivity to
input representations [44], introduction of noise [45], and input variables [46]. While exten-
sive numbers of parameters and permutations characterize methods such as geographic
automata and data-driven approaches, it is important to consider what characteristics of
an inputted dataset are conducive to or impede the usefulness of a selected method.

This compels a study to assess the implications of changing geospatial input data
properties on the performance of LSTM models and to evaluate their ability to forecast
localized LCCs using a SA. Facets of LCC processes such as LCC rate, temporal variations,
and local-scale processes are important to consider [47]. Previous work indicated that
when considering four LC classes, the method performance was impacted by fast-changing
phenomena [48]. However, it was unknown whether this trend persisted given LC datasets
with increasing cardinality. As such, the impact of both varying temporal resolution and
number of LC classes is explored in this work. This research considers LCC sequences
extracted along the temporal dimension for each cell within various hypothetical and
real-world datasets featuring different numbers of LC classes as input to LSTM models.
Hypothetical datasets are first created and utilized to reconstruct real-world LCC scenarios
occurring in localized study areas. By reducing the hypothetical data complexity for this
study, it is intended to highlight trends in results generated. Experiments are then con-
ducted on real-world data to observe if trends observed in the hypothetical data trials are
similar. Given the increasing availability of multi-year LC datasets, it is important to better
understand what properties should be present to use this data-driven sequential method.
By exploring results obtained from applying LSTM modeling scenarios to hypothetical
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and real-world datasets, the aim is to guide future real-world data selection for potential
use with the explored method. Similarly, this research work intends to help inform re-
searchers who have already acquired geospatial data whether this method is appropriate
given the temporal resolution, number of timesteps, number of classes, and rates of change
characterizing their dataset.

To explore which data properties should exist to use this method, an SA is evaluated
with a collection of incremental modeling scenarios involving a selection of Kappa metrics.
The main objective of this research study is to explore and evaluate the impact of varying
temporal resolution on LC changes forecasted using LSTM models and datasets featuring
different numbers of classes. The metrics are selected for measuring these effects with
respect to how well the respective modeling scenarios forecast changed cells, since LCC
typically exhibits slow or scarce changes over time. The quantities of interest are the
changed cells forecasted correctly by the model. It is hypothesized that performance of
these sequential DL models will be impeded by low temporal resolutions, which feature
shorter sequence lengths. Likewise, it is expected that greater LCC occurrences will ensure
changes are captured better in all modeling scenarios applied to hypothetical and real-
world datasets. It is also anticipated that experiments considering fewer unique classes
will yield more favourable results.

2. Theoretical Background and Geospatial Applications of RNNs

Traditional feed-forward NN models utilize gradient-based learning methods to update
model parameters as new inputs are provided. The goal is to determine an optimal set of
network weights that allow the model to generalize to new data. Inputs are fed through
the network, a cost function is evaluated, and an error term is computed using the result
obtained from the output layer. Derivatives are computed with respect to each weight in the
network using a process called backpropagation [49,50]. Backpropagation informs adjustments
of network weight parameters with the intent of minimizing the error term.

RNNs are a type of Deep Neural Network (DNN) that are best suited for problems
involving sequential data, including classification and forecasting of timeseries data. By
introducing a recurrence relation to the standard feed-forward neuron, information from
previous timesteps is propagated to inform future cell state changes and outputs. Tradi-
tional RNNs are a specialized variation of traditional neural network neurons that maintain
and update a hidden state value. The hidden state enables a recurrent neuron to maintain
information regarding previously observed data in a sequence to facilitate learning of
temporal correlations [51]. However, RNN structures are impeded by a phenomenon called
a “Vanishing Gradient” [52]. This occurrence inhibits the propagation of previous informa-
tion and is caused by the inability to maintain gradients to backpropagate updates with
respect to the error term. Gradients that are too small (vanishing) or too large (exploding)
prevent any meaningful adjustments of network weights. This required alterations to the
RNN architecture to handle long-term dependencies.

A notable architecture advancement of the RNN is called Long Short-Term Memory
(LSTM), developed to solve the “Vanishing Gradient” problem [33]. This definition is
characterized by the addition of memory cells to maintain information regarding previous
states and gates to permit or prevent information to be stored within the memory cell.
The idea was to maintain the error term to ensure the error signals were not lost due to
the Vanishing Gradient problem [33]. To further improve the LSTM architecture, it was
suggested that a forget gate be added to enable an LSTM to drop information that has been
maintained if the contents are no longer of use [53]. Gates in a modern LSTM cell include
an input gate, forget gate, output gate, and input modulation gate, which control how much
information is permitted to propagate through the cell [25,35]. Explanations of the updates
of an LSTM cell at timestep t when provided an input can be found at Donahue et al. [54].

RNNs have been used for classification and forecasting tasks in geospatial appli-
cations [9]. To apply RNNs to geospatial datasets, cell-wise (or pixel-wise) temporal
sequences are provided as training data with a corresponding “training label” signifying
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the next data entry in the timeseries at the location being considered. Sauter et al. [55]
utilized snow cover derived from MODIS satellite data with meteorological data to develop
a snow depth forecasting system using an early RNN approach. More recently, an LSTM
model called REFEREE [35] demonstrated the abilities of RNN for binary and multi-class
LCC detection. The transfer learning scenario involved various study areas featuring
urban, water, soil, and agriculture LCs. LSTMs have also been used to forecast sea ice
concentration, with input sequences extracted along the temporal dimension for each cell
in the raster dataset [56]. In addition, RNNs have proven effective in LC classification.
Provided timeseries inputs consisting of 3- and 23-timesteps, an LSTM model showed
improved performance over Random Forest and Support Vector Machine methods [25].

Though it is acknowledged that a multitude of RNN architectures and variants exist,
LSTM has been selected for this study as the primary architecture to be evaluated for
its capacity to model LCC. A prior study compared the performance of LSTM and its
variants, demonstrating insignificant improvements obtained over the traditional LSTM
architecture in applications such as handwriting recognition and music modeling [57]. It
was also demonstrated that traditional LSTM networks have the capacity to reliably obtain
improved performance versus its simplified variant, the Gated Recurrent Unit (GRU) [58],
in large-scale “neural machine translation” tasks [59]. Stacked LSTMs have also been
previously explored for LCC with respect to varying temporal resolutions, rates of LCC,
and errors arising from classification procedures [48]. Considering four LC classes in
experiments, the results indicated the importance of finer temporal resolutions and the
inclusion of more timesteps to increase the capacity of this method to forecast LCCs.

While previous studies have demonstrated the effectiveness of RNNs and variants
for geospatial applications, the performance of these methods with respect to geospatial
data properties remains an open problem. Therefore, this research study explores the
repercussions of temporal resolution and LC class count present in the input dataset.
Changing these characteristics alters the sequence length and rates of LCCs provided as
input to the LSTM models. Using SA applied to three modeling scenarios considering
hypothetical and real-world data, the goal of this study is to explore the response of RNNs
to varying geospatial data inputs.

3. Materials and Methods

The systematic assessment of RNN, specifically LSTM, involves modeling scenarios es-
tablished to represent a typical development progression. The model response to changing
geospatial input is assessed in each scenario. This involves changing the temporal resolu-
tion parameter to the next smallest increment possible while maintaining the comparison
of the same LC data layer across all scenarios. For each change of temporal resolution, the
experiments are performed on one of the different datasets containing a different number
of classes. The aim is to observe if there are trends in model response on changed temporal
resolution despite model optimizations. An overview of the end-to-end methodology used
to generate forecasted maps in each scenario is shown in Figure 1.

1 
 

 

Figure 1. End-to-end methodology for generating and evaluating forecasted maps in each modeling scenario.
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3.1. RNN Model Development

A baseline RNN model undergoes optimizations to create three modeling scenarios.
In this work, a stacked LSTM model comprised of three layers and 32 neurons per layer
forms the baseline RNN model. This is because stacked DL models have proven their
ability to learn increasingly complex relationships [60,61]. The input layer is compatible
with the one-hot encoded sequences. One-hot encoding involves converting LC class labels
to vectors containing zeroes and a single non-zero value (1) at the index corresponding to
the class ID [62]. Each input sequence is a matrix of N ×M dimensions corresponding to
respective cells across the study area, where N denotes the number of timesteps and M
denotes the number of possible categories represented by the one-hot encoded vector. The
output layer of the respective models produces an M× 1 vector containing the probabilities
of each LC class forecasted to occur at the next timestep for a single cell. The position in the
output vector featuring the highest probability is selected, with the position in the vector
corresponding to the forecasted class label.

The configuration of parameters for the baseline RNN model includes pre-set compo-
nents as well as iteratively selected hyperparameters (parameters that are set a priori to
aid the model in achieving the “statistical generalization”). Hyperparameters set before
initiating training procedures affect optimization of the model’s internal parameters, thus
influencing the quality of the model. The number of internal model parameters affected
by the hyperparameters selected prior to model training is 24,567. Using a grid search
approach, two model hyperparameters, the number of epochs and batch size, were deter-
mined for the respective models constructed with respect to each dataset [56]. The number
of epochs refers to how many times the entire dataset is passed through the network and
batch size refers to how many data points are considered when computing the gradient
prior to each update of the model’s internal parameters (weights and biases). The Adam
optimization algorithm [63] is used instead of the traditional stochastic gradient descent
approach due to its proven success and its robustness to model hyperparameters. Cate-
gorical cross-entropy is utilized as the objective function to accommodate the multi-class
data sequences. The Softmax activation function [49] was employed for the output layer
to produce a vector of probabilities corresponding to each class label [25]. This activation
function is commonly used in models designed for multi-class classification and forecasting
tasks [49]. Models were implemented using the Python programming language (v3.6.5) [64]
and the Keras API (v2.2.0) [65]. The Keras API assists developers in prototyping ML and DL
models while providing an interface to the extensive functionality of Google’s TensorFlow
(v1.8.0) [65]. TensorFlow is an open-source ML framework that provides advanced features
to construct and fine-tune data-driven models [66]. Model development took place on a
workstation equipped with an NVIDIA GeForce GTX 1080 Ti GPU.

3.1.1. Modeling Scenarios

Using the baseline stacked RNN model described in Section 3.1, modeling scenarios
were created to assess method sensitivity to varying input data characteristics. These
include (1) a deterministic baseline, (2) a stochastic scenario, and (3) a regularized stochas-
tic scenario, which are referred to as Model A, B, and C, respectively. By emulating a
conventional DL model development pathway, it is intended to reveal whether result-
ing metrics obtained exhibit trends that endure as models are optimized. The scenarios
ensure results are not unique to a specific configuration, as there are infinite arrange-
ments and numerous model optimization techniques that have proven to improve results
various applications [67].

The deterministic baseline modeling scenario (Model A) provides a foundation for
subsequent models. The structure and parameters of this model are equivalent to the
baseline RNN model described in Section 3.1. However, in Model A, a random seed is used
instead of allowing different network weight initializations for each run. This is done to
assure results are reproducible given the same set of input parameters over repeated tests to
form a “deterministic baseline” by which to compare the subsequently optimized models.
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Next, the stochastic scenario (Model B) uses “true” random weight initialization with
the removal of the random seed. Model B has the same structure as Model A, with the
only difference being that initial weights for each run are set randomly. Reintroducing
stochastic weight initialization potentially leads to improved performance, with sets of
initial weights affecting the attainment of optimal model parameters during the batch
gradient descent procedure [68].

Finally, a regularized stochastic scenario (Model C) is developed to improve general-
ization and to prevent overfitting. The baseline LSTM model as described in Section 3.1
is modified by applying dropout regularization between each of the LSTM layers and
the final output layer. The dropout regularization method forces a percentage of neurons
to be ignored [69]. Dropout has been used in previous work involving geospatial data
inputs extracted along the temporal dimension, informing a dropout factor of 0.5 [32].
This means that the probability that a neuron is “dropped” is 50% [69]. When a neuron
is “dropped”, input and output connections to the neuron are also ignored. In addition
to dropout regularization, Model C continues to use the random initialization of weight
parameters, as was characteristic to Model B.

3.2. Sensitivity Analysis

To ensure each modeling scenario was evaluated equally, a collection of test cases was
designed. This research study uses a local SA technique in which one input parameter
or variable is adjusted at a time to explore how small changes to model inputs affects
the model outputs [40,70]. The inputted data sequences provided to train an LSTM are
important because these models exhibit sensitivities to sequential order, with each timestep
or data element considered one at a time [71]. If data are perturbed in the sequence, a
representation learned could be completely altered. In previous studies, focus was placed
on observing changes to model behaviour as a result of initial inputs for other modeling
approaches [72]. For instance, inputted data have proven impactful on the performance of
modeling approaches because changes occurring within a system are highly dependent
on previous states, originating from initial conditions [73]. Therefore, this motivates the
use of a local sensitivity analysis or “one-at-a-time” approach to be considered for this
research study.

For each synthetic dataset, for each temporal resolution, and for each modeling
scenario, a grid search of hyperparameter space was conducted, producing new models
and results at each iteration. Trained models were then tested, generating a forecasted
map output for the next unobserved timestep. While outputs of all test case combinations
were logged, the best performing models were selected based on their ability to forecast
changed cells using the test set. Forecasted and reference maps were compared using a
variety of metrics to assess the method’s sensitivity to varying input data characteristics.
In previous studies, overall accuracy and traditional Kappa metrics have been used when
comparing forecasted and reference LC maps to reason about a model’s usefulness [74]. For
instance, SA methods have involved measuring a model’s forecasting ability by comparing
forecasted maps with reference maps and via Kappa indices and Receiver Operating
Characteristic (ROC) statistics [75]. While overall accuracy, the traditional Kappa measure,
and other overall summary measures provide a means to quantify a model’s performance
based on model output, these typical metrics do not suffice for this study where the
focus is to understand how well the method forecasts LC changes, due to the slowness
or scarcity of LCCs. This motivates the use of accuracy measures considering changed
cells and variations of the traditional Kappa metric that likewise differentiate transitions or
persistence of LC.

In this research study, accuracy with respect to the number of changed cells and a
suite of Kappa metrics were utilized (Table 1). Previous geospatial applications of RNNs
have also relied on traditional Kappa statistics [25,35,76], including Kappa, KHistogram,
and KLocation [74]. The Kappa metric provides a measurement of agreement between two
maps being compared, while KHistogram considers the quantity of similarities between



Land 2021, 10, 282 7 of 29

the two maps being compared [77]. KLocation is another a measurement of agreement
based on similarity of location for each class between two maps compared [74]. However,
traditional Kappa measures provide overall values of quantity-based agreement without
detail regarding categories or types of cells that are in disagreement [78]. Therefore, to
evaluate the method’s ability to forecast changes, KSimulation, KTransition, and KTranslocation
have also been selected [74,77]. These measures are considered “three-map comparisons,”
requiring a reference map, a reference map pertaining to the previous timestep, and
the forecasted map [79]. The formulation of the KSimulation, KTransition, and KTranslocation
equations dismisses the effects of persistent cells, enhancing assessment of the method’s
ability to simulate changed cells [77]. KSimulation is a measure of agreement for changed cells
present in a reference and simulated map. KTransition is a measure of agreement between
the number of transitions occurring for each class between a reference and simulated map.
Lastly, KTranslocation or “Kappa transition location” provides a measure of agreement based
on the similarity of location for transitioned cells in each LC class.

Table 1. Metrics used in this study to determine how well the method forecasts Land Cover (LC)
changes. Kappa metrics have been obtained from [77], where further details regarding these equations
can be found.

Metric Equation

Changed Cell Forecasting Accuracy = # o f changed cells f orecasted correctly
# o f changed cells

Kappa = po−pe
1−pe

KHistogram = pMax−pe
1−pe

KLocation = po−pe
pMax−pe

KSimulation =
po−pe(Transition)
1−pe(Transition)

KTransition =
pMax(Transition)−pe(Transition)

1−pe(Transition)

KTranslocation =
po−pe(Transition)

pMax(Transition)−pe(Transition)

Intermediate Expressions Equation

po =
c
∑

i=1
p(a = i ∧ s = i)

pe =
c
∑

i=1
p(a = i)·p(s = i)

pMax =
c
∑

i=1
min(p(a = i), p(s = i))

pe(Transition) =
j

∑
c=1

p(o = j)·
i

∑
c=1

p(a = i |o = j)·p(s = i |o = j)

pMax(Transition) =
j

∑
c=1

p(o = j)·
i

∑
c=1

min(p(a = i |o = j), p(s = i |o = j))

where Land Cover Class = i, Original Land Cover Class = j, Actual Land Cover Map = a,
Simulated Map = s, Original Map = o

4. Geospatial Datasets and Pre-Processing
4.1. Hypothetical Data

The first set of experiments conducted consider hypothetical data. Hypothetical
datasets are commonly used in geosimulation modeling [37,80] and can be used to reg-
ulate geospatial input characteristics to assess method response to changing inputs [81].
In addition, using synthetic small-area datasets enables localized analyses and reduced
computation time to perform evaluations [82]. In this study, synthetic LC datasets were
created to control the number of unique LC classes and rates of change.

The three datasets developed feature 4, 8, and 16 LC classes, respectively (Table 2). The
LC classes composing the respective datasets have been named as per real-world classes
featured in Homer et al. [83] and Sulla-Menashe and Friedl [84]. The synthetic datasets
have been generated using Esri’s ArcGIS Pro (v2.4.0) in order to control LC changes to
emulate or exaggerate real-world scenarios [85]. That is, the LC classes have been specified
to emerge, grow, or dissipate over time. For instance, in the four-class dataset, forest,
and cropland are shown to transition to low and high intensity developments (Table 3,
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Figure 2). Class membership refers to how many cells belong to each land cover class at
each timestep.

Table 2. LC classes featured in the 4, 8, and 16-class datasets.

4 Class Dataset 8 Class Dataset 16 Class Dataset

C1—Cropland C1—Cropland C1—Cropland
C2—Forest Land C2—Pasture C2—Pasture

C3—High Intensity Development C3—Forest Land C3—Deciduous Forest
C4—Low Intensity Development C4—Barren Land C4—Evergreen Forest

C5—Grasslands C5—Mixed Forest
C6—High Intensity Development C6—High Intensity Development
C7—Low Intensity Development C7—Low Intensity Development

C8—Water C8—Shrubland
C9—Grasslands

C10—Road Surfaces
C11—Barren Land

C12—Lakes
C13—Streams
C14—Wetland
C15—Beaches

C16—Bare Exposed Rock

Table 3. Number of cells belonging to each class at various timesteps (considering 11-year temporal resolution) in the
(a) 4 class, (b) 8 class, and (c) 16 class hypothetical LC datasets.

(a) Timestep 0 11 22 33 44

C1—Cropland 2537 1137 566 325 179
C2—Forest Land 1906 1820 1192 517 0

C3—High Intensity Development 352 1561 2422 3086 3393
C4—Low Intensity Development 105 382 720 972 1328

(b) Timestep 0 11 22 33 44

C1—Cropland 105 412 730 988 1209
C2—Pasture 0 386 301 252 14

C3—Forest Land 2469 1191 747 485 456
C4—Barren Land 166 320 295 214 170
C5—Grasslands 1738 1523 1433 1142 777

C6—High Intensity Development 0 82 95 130 103
C7—Low Intensity Development 352 916 1229 1619 2101

C8—Water 70 70 70 70 70

(c) Timestep 0 11 22 33 44

C1—Cropland 19 176 219 368 502
C2—Pasture 28 35 103 173 245

C3—Deciduous Forest 2725 2365 1961 1726 1550
C4—Evergreen Forest 812 809 814 787 706

C5—Mixed Forest 128 118 114 112 104
C6—High Intensity Development 20 61 83 118 153
C7—Low Intensity Development 49 99 131 135 151

C8—Shrubland 115 160 207 165 161
C9—Grasslands 348 328 367 320 320

C10—Road Surfaces 131 134 235 271 271
C11—Barren Land 68 101 128 148 153

C12—Lakes 186 204 216 223 227
C13—Streams 75 67 68 67 67
C14—Wetland 83 82 84 83 80
C15—Beaches 64 80 86 88 95

C16—Bare Exposed Rock 49 81 84 116 115
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Figure 2. Cont.
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Figure 2. Number of cells belonging to each class at each timestep in the (a) 4 class, (b) 8 class, and (c) 16 class hypothetical LC datasets.
Class membership” shows how many cells belong to each class at each timestep.

Each dataset has identical dimensions, temporal resolution, and number of timesteps.
Datasets feature 76 × 76 cells with 25-meter spatial resolution. A 3-cell buffer is considered
around the entire study area to mitigate edge effects. Edge effects are a conceptual issue
requiring consideration when dealing with geospatial data [86]. This means that points
outside of a geographic dataset will be influenced by points surrounding it. Thus, cells
towards the middle of the study area are likely to be increasingly similar, while cells closer
to the edges will be influenced by nearby phenomena and influences that are excluded
from the dataset. This results in a working study area of 70 × 70 cells. These dimensions
were chosen to expedite the evaluation processes, as small models (where breadth and
depth are relatively small) can be typically expected to fit to small-scale datasets [68]. Each
full dataset features 45 years with one-year temporal resolution.

The number of cells belonging to each LC class at each timestep are shown in Table 3
and Figure 2. Test cases considering all 45 years, including timesteps t0 to t44, are referred
to as full sequence tests. Five full sequence tests feature five different temporal resolutions (1,
2, 4, 11, and 22-year) that ensured t0 and t44 were included in all cases. This guaranteed
equal comparisons of forecasts for t44. Shorter sequence lengths were tested by utilizing
subsets of the 45-year datasets available (Figure 2). Subsets contain 15 timesteps each,
where Subset A includes t0 to t14, Subset B includes t15 to t29, and Subset C includes t30 to t44.
The three 15-year test cases defined feature one, two, and seven-year temporal resolutions.

4.2. Real-World Data

The next set of experiments considers real-world data obtained from the “MODIS
Terra+Aqua Combined Land Cover product” [87]. The dataset features annual global
land cover data with a 500-meter spatial resolution for years 2001 to 2019. The land cover
layers used in the experiments are from the subset titled “Land Cover Type 1: Annual
International Geosphere-Biosphere Programme (IGBP) classification.” The classification
system makes available 17 unique LC classes. This study considers a subset of this data,
focusing on the Thompson-Nicola Regional District in the province of British Columbia,
Canada (Figure 3), obtained from the BC Data Catalogue [88]. The largest city in this district
is Kamloops, with a population of 90,280 people as of 2016 [89]. This city is indicated in
Figure 3d and is the focus for qualitative map outputs produced in the modeling scenarios.
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This region was selected for the exhibited diversity in LC, with 15 of the 17 possible LC
classes from the MODIS data present in this region.

Figure 3. Real-world study area for 2001 considering (a) 4 classes, (b) 8 classes, and (c) 15 classes,
focused on the Thompson-Nicola Regional District in British Columbia, Canada (d).

After clipping the MODIS LC data to the regional district boundary, three datasets
were developed to feature 4, 8, and 15 LC classes, respectively (Table 4). This involved
reclassifying the original data featuring 15 classes aggregated to 8 classes first, then to 4
classes (Figure 4). Within this real-world LC dataset, rates of change increase and decrease
according to not only anthropogenic and environmental disturbances but are also affected
by classification errors. These changes are reflected in the increases and decreases of cells
belonging to each class for each of the 19 years considered for these experiments (Table 5,
Figure 4).

Table 4. LC Classes featured in the real-world 4, 8, and 15-class datasets. The class names listed in the Annual International
Geosphere-Biosphere Programme (IGBP) classification shown in the MODIS Data Guide [84].

4 Class Dataset 8 Class Dataset 15 Class Dataset

C1—Forests

C1—Evergreen Forests C1—Evergreen Needleleaf Forests

C2—Deciduous Forests and Mixed Forests

C2—Deciduous Needleleaf Forests

C3—Deciduous Broadleaf Forests

C4—Mixed Forests

C2—Non-Forest

C3—Shrublands and Savannas

C5—Closed Shrublands

C6—Open Shrublands

C7—Savannas

C8—Woody Savannas

C4—Grasslands and Permanent Wetlands
C9—Grasslands

C10—Permanent Wetlands

C5—Permanent Snow and Ice C11—Permanent Snow and Ice

C6—Barren C12—Barren

C3—Anthropogenic Areas C7—Anthropogenic Areas
C13—Urban and Built-up Lands

C14—Croplands, Cropland/Natural Vegetation
Mosaics

C4—Water Bodies C8—Water Bodies C15—Water Bodies
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Figure 4. Cont.
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Figure 4. Number of cells belonging to each class at each timestep in the (a) 4 class, (b) 8 class, and (c) 16 class real-world LC datasets.
Class membership” shows how many cells belong to each class at each timestep.

Table 5. Number of cells belonging to each class at various timesteps (considering three-year temporal resolution) in the (a)
4 class, (b) 8 class, and (c) 15 class real-world LC datasets.

(a) Timestep 2001 2004 2007 2010 2013 2016 2019

C1—Forests 101,419 84,521 67,773 62,591 68,073 71,632 70,457
C2—Non-Forest 107,704 124,502 141,231 146,452 141,034 137,527 137,954

C3—Anthropogenic Areas 604 637 658 641 593 559 496
C4—Water Bodies 1787 1854 1852 1830 1814 1796 2607

(b) Timestep 2001 2004 2007 2010 2013 2016 2019

C1—Evergreen Forests 99,551 83,240 66,792 61,536 66,516 69,462 68,445
C2—Deciduous Forests and Mixed Forests 1868 1281 981 1055 1557 2170 2012

C3—Shrublands and Savannas 75,703 89,976 104,072 104,174 98,973 97,328 97,598
C4—Grasslands and Permanent Wetlands 25,569 28,301 30,869 35,926 35,902 34,120 34,332

C5—Permanent Snow and Ice 2098 1824 1963 1965 1881 2150 2307
C6—Barren 4334 4401 4327 4387 4278 3929 3717

C7—Anthropogenic Areas 604 637 658 641 593 559 496
C8—Water Bodies 1787 1854 1852 1830 1814 1796 2607

(c) Timestep 2001 2004 2007 2010 2013 2016 2019

C1—Evergreen Needleleaf Forests 99,551 83,240 66,792 61,536 66,516 69,462 68,445
C2—Deciduous Needleleaf Forests 1 6 7 7 13 16 15
C3—Deciduous Broadleaf Forests 494 269 153 168 257 343 197

C4—Mixed Forests 1373 1006 821 880 1287 1811 1800
C5—Closed Shrublands 18 27 30 26 18 11 6
C6—Open Shrublands 5 8 11 14 15 17 11

C7—Savannas 2565 2938 3207 2949 3418 4230 4687
C8—Woody Savannas 73,115 87,003 100,824 101,185 95,522 93,070 92,894

C9—Grasslands 25,292 28,030 30,637 35,773 35,756 33,886 34,165
C10—Permanent Wetlands 277 271 232 153 146 234 167

C11—Permanent Snow and Ice 2098 1824 1963 1965 1881 2150 2307
C12—Barren 4334 4401 4327 4387 4278 3929 3717

C13—Urban and Built-up Lands 409 410 411 412 412 412 412
C14 - Croplands, Cropland/Natural Vegetation

Mosaics 195 227 247 229 181 147 84

C15—Water Bodies 1787 1854 1852 1830 1814 1796 2607
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The 4, 8, and 15 LC class datasets have identical dimensions, temporal resolution, and
number of timesteps. Datasets feature 1847 × 832 columns and rows (including the edge
cells) with 500-meter spatial resolution. A 3-cell buffer is considered around the entire
study area to mitigate edge effects for reasons described in Section 4.1. This results in
a working study area of 211,514 cells available per data layer. Each full dataset features
19 years with one-year temporal resolution. Five full sequence tests feature five different
temporal resolutions, including the original temporal resolution (one, two, three, six, and
nine years). Each sequence includes both t2001 to t2019 to facilitate comparisons of forecasts
for t2019. Using all 19 years available was determined to explore if trends found using these
real-world datasets exhibited similar tendencies to those found in the variety of 15-year
subset experiments developed using the hypothetical data while not discarding four of the
available years.

4.3. Creating the Training and Test Sets

Input sequences are extracted from the synthetic datasets and real-world at each cell
along the temporal dimension according to the specified temporal resolution. The sliding
temporal window approach for establishing training and test sets is used [32]. An input
sequence in the training set is denoted as (x0, x1, x2, . . . , xT-3), while the target LC class is
denoted by (yT-2). Input sequences in the test set are denoted as (x1, x2, x3, . . . , xT-2), while
the target LC class is denoted by (yT-1). Each (xT-N-1) and (yT-N), where N = 1 or N = 2,
are one-hot encoded vectors representing the classes at each cell at each timestep. The
data layers used in the model training and testing phases for the experiments involving
real-world data has been shown in Table 6.

Table 6. Years used in real-world data experiments for training and testing.

Model Training Model Testing

Temporal
Resolution (Years)

Years in Input
Sequence Target Year Years in Input

Sequence Target Year

1

2001, 2002, 2003,
2004, 2005, 2006,
2007, 2008, 2009,
2010, 2011, 2012,
2013, 2014, 2015,

2016, 2017

2018

2002, 2003, 2004,
2005, 2006, 2007,
2008, 2009, 2010,
2011, 2012, 2013,
2014, 2015, 2016,

2017, 2018

20192
2001, 2003, 2005,
2007, 2009, 2011,

2013, 2015
2017

2003, 2005, 2007,
2009, 2011, 2013,

2015, 2017

3 2001, 2004, 2007,
2010, 2013 2016 2004, 2007, 2010,

2013, 2016

6 2001, 2007 2013 2007, 2013

9 2001 2010 2010

Accommodating imbalanced datasets is an open issue for ML and DL methods [90].
For geospatial applications, tactics such as random sampling may omit classes that are
underrepresented in the dataset [91]. Previous studies have also considered using fewer
unique classes to increase the number of training samples [22]. Given the disproportionate
percentages of persistent versus changed cells in LC datasets, a balanced sampling strategy
was used following procedures stated in previous works [43]. To balance the training
sets, it was first determined if a change occurred in a training input sequence. If a change
occurred, the sequence was marked as “changed” (otherwise “persistent”). If the number
of sequences marked “changed” exceeded those marked as “persistent,” the entire training
set was considered. Conversely, if more sequences were “persistent,” then equal counts of
“changed” and “persistent” cells were sampled at random according to the original distribu-
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tion. This means that the number of training samples available for each of the datasets and
for each of the respective classes differs according to the number of changes that occurred
to uphold the balanced sampling strategy. For instance, fewer training data are possible for
the 15- or 16-class datasets to ensure all samples are proportionally represented.

5. Results

All modeling scenarios (A, B, and C) were run to generate results using the hypo-
thetical and real-world datasets. This means that one run of a modeling scenario for the
hypothetical datasets considers one of the 4, 8, or 16 class datasets, one of the full sequence
or subset sequences, one of the temporal resolutions, and varying numbers of epochs
to obtain one model and subsequent output. Considering the real-world datasets, each
experiment considered one of the 4, 8, or 15 class datasets, one of the temporal resolutions,
and varying numbers of epochs to obtain one model and the respective output. For each
of the outputs generated by the respective models trained on either the hypothetical or
real-world datasets, the various measures such as accuracy of changed cells and the suite
of Kappa measures were computed. Additional to map comparison metrics, qualitative
outputs were also produced for each model evaluation. These include simulation maps
and maps featuring misses produced in the forecast. Overall, it was found that results from
all three modeling scenarios were similar. Consequently, the results have been indicated by
the regularized stochastic scenario (Model C) to explore the effects of temporal resolution
and LC class cardinality on model performance.

5.1. Results of Experiments with Hypothetical Data

The results for full sequence tests featuring 45 years indicate models perform better with
finer temporal resolutions (Table 7, Figure 5). Kappa, KHistogram, KSimulation, and KTransition
measures exhibited distinct decreases as temporal resolution becomes coarser (i.e., fewer
data layers) and as the number of classes increases. As the number of classes characterizing
the study area increases, the number of errors in the forecasted map increase, demonstrated
in Figure 6. The KSimulation measures decrease as temporal resolution becomes coarser and
cardinality increases. For instance, KSimulation measures obtained using one-year temporal
resolution data with 4, 8, and 16 LC classes are 0.99, 0.74, and 0.73, respectively. In almost
all configurations, high agreements of persistent cells within the reference and forecasted
map outputs were achieved. Simulation maps using the full sequence datasets are depicted
in Figure 7.

The results for 15-year sequence tests show the KSimulation and KTransition metrics
exhibiting sharp decreases as temporal resolution becomes coarser (Tables 8–10). With
respect to the number of LC changes occurring, the overall map comparison metrics
including Kappa, KHistogram, and KLocation are typically higher when the number of LC
changes is lower. As the number of changed cells increases, these measures of map
agreement decrease. It is also observed that these shorter sequence lengths used for input
to the sequential models result in lower performance metrics than in the 45-year sequence
tests in most cases. Results obtained using the 15-year sequences have been shown in
Tables 8–10.

5.2. Results of Experiments with Real-world Data

The results of the real-world data experiments considering each of the respective
classes are shown in Table 11. All measures exhibited decreases as temporal resolution
became coarser, except for the changed cell forecasting accuracy and KLocation measures
produced using the four-class dataset as input. Likewise, when the number of LC classes
increases, it is observed that the capacity of the models to forecast changed cells decreases.
This is observed in the error maps focused on the City of Kamloops (Figure 8). The
increasing number of errors in changed or persistent cells is reflected partially in the
traditional Kappa metric, showing the agreement between the simulated and reference
maps slightly decreasing from approximately 0.91 for the four-class dataset to 0.88 for
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the 15-class dataset. Larger differences between these two are exhibited in the KSimulation
measure, indicating a greater presence of errors attributed to changed cells in the 15-class
dataset as temporal resolution becomes coarser. The simulation maps focused on the City
of Kamloops demonstrate this aspect of the outputs, showing an increasing number of
cells that wrongly changed or remained persistent as the temporal resolution increases
(Figure 9). While the KTransition measure indicates a high agreement of the quantity of
transitions in each of the outcomes, the KTranslocation measure indicates that such transitions
did not meet quite as high agreement of correct locations for these forecasted LC transitions.
This is the case across all temporal resolution options except for those considering the
nine-year temporal resolution.

Table 7. Metrics obtained using 45-year hypothetical LC datasets featuring 4, 8, and 16 classes.

Performance
Metric

Temporal
Resolution 4 Classes 8 Classes 16 Classes

Changed Cell
Forecasting
Accuracy

1 99.50% 76.20% 71.50%
2 99.10% 76.30% 68.60%
4 98.60% 67.60% 66.10%
11 90.10% 79.20% 57.30%
22 78.50% 64.90% 16.40%

Kappa

1 0.991 0.775 0.837
2 0.982 0.777 0.826
4 0.973 0.701 0.817
11 0.812 0.797 0.783
22 0.58 0.538 0.605

KHistogram

1 0.992 0.813 0.846
2 0.983 0.793 0.837
4 0.979 0.729 0.839
11 0.918 0.825 0.829
22 0.721 0.583 0.624

KLocation

1 0.999 0.953 0.989
2 0.999 0.98 0.987
4 0.994 0.961 0.975
11 0.885 0.966 0.945
22 0.804 0.923 0.97

KSimulation

1 0.989 0.744 0.731
2 0.979 0.746 0.713
4 0.968 0.661 0.694
11 0.778 0.768 0.627
22 0.526 0.477 0.307

KTransition

1 0.989 0.773 0.733
2 0.979 0.764 0.721
4 0.976 0.693 0.718
11 0.88 0.8 0.682
22 0.628 0.528 0.326

KTranslocation

1 1 0.963 0.998
2 1 0.977 0.989
4 0.992 0.954 0.966
11 0.884 0.96 0.919
22 0.837 0.903 0.942
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Figure 5. Trends in performance metrics versus increasing temporal resolution in results obtained with the 45-year
hypothetical LC datasets with 4, 8, and 16 classes. The changed cell forecasting accuracy (a–c), Kappa (d–f), and KSimulation

(g–i) measures have been depicted for each number of LC classes.
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Figure 6. Forecasting errors in results of experiments run with the 45-year hypothetical LC datasets with 4, 8, and 16 classes.

Figure 7. Simulation maps generated from using the 45-year hypothetical LC Datasets with 4, 8, and 16 classes.
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Table 8. Performance metrics obtained using Subset A of the hypothetical dataset (including timesteps
0 to 14), featuring 15-year LC datasets with 4, 8, and 16 classes.

Performance
Metric

Temporal
Resolution 4 Classes 8 Classes 16 Classes

Changed Cell
Forecasting
Accuracy

1 89.37% 77.26% 83.13%
2 94.91% 75.61% 78.51%
7 45.85% 35.50% 57.73%

Kappa
1 0.927 0.859 0.973
2 0.964 0.85 0.966
7 0.3 0.567 0.933

KHistogram

1 0.938 0.887 0.977
2 0.964 0.91 0.969
7 0.387 0.752 0.944

KLocation

1 0.988 0.969 0.997
2 1 0.934 0.997
7 0.776 0.754 0.988

KSimulation

1 0.91 0.813 0.898
2 0.956 0.801 0.868
7 0.222 0.423 0.712

KTransition

1 0.921 0.838 0.898
2 0.956 0.844 0.868
7 0.318 0.544 0.712

KTranslocation

1 0.989 0.971 1
2 1 0.948 1
7 0.697 0.776 1

Table 9. Performance metrics obtained using Subset B of the hypothetical dataset (including timesteps
15 to 29), featuring 15-year LC datasets with 4, 8, and 16 classes.

Performance
Metric

Temporal
Resolution 4 Classes 8 Classes 16 Classes

Changed Cell
Forecasting
Accuracy

1 89.83% 72.93% 95.31%
2 84.71% 67.01% 82.18%
7 61.74% 37.23% 54.97%

Kappa
1 0.944 0.862 0.994
2 0.917 0.864 0.976
7 0.803 0.713 0.939

KHistogram

1 0.944 0.878 0.994
2 0.917 0.921 0.976
7 0.815 0.845 0.939

KLocation

1 1 0.982 1
2 1 0.938 1
7 0.985 0.844 1

KSimulation

1 0.9 0.697 0.973
2 0.85 0.703 0.891
7 0.629 0.365 0.693

KTransition

1 0.9 0.699 0.973
2 0.85 0.724 0.893
7 0.652 0.416 0.693

KTranslocation

1 1 0.998 1

2 1 0.972 0.999
7 0.964 0.877 1
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Table 10. Performance metrics obtained using Subset C of the hypothetical dataset (including
timesteps 30 to 45), featuring 15-year LC datasets with 4, 8, and 16 classes.

Performance
Metric

Temporal
Resolution 4 Classes 8 Classes 16 Classes

Changed Cell
Forecasting
Accuracy

1 98.25% 87.17% 86.34%
2 95.88% 72.56% 73.79%
7 82.30% 71.92% 38.33%

Kappa
1 0.992 0.928 0.985
2 0.982 0.888 0.971
7 0.924 0.887 0.932

KHistogram

1 0.992 0.948 0.986
2 0.983 0.949 0.975
7 0.926 0.909 0.942

KLocation

1 1 0.979 0.999
2 0.999 0.936 0.996
7 0.999 0.975 0.99

KSimulation

1 0.97 0.76 0.919
2 0.93 0.627 0.835
7 0.688 0.574 0.533

KTransition

1 0.97 0.772 0.919
2 0.93 0.727 0.845
7 0.688 0.574 0.545

KTranslocation

1 1 0.985 1
2 1 0.862 0.989
7 1 1 0.979

Table 11. Metrics obtained using the 19-year real-world LC datasets featuring 4, 8, and 16 classes.

Performance
Metric

Temporal
Resolution 4 Classes 8 Classes 16 Classes

Changed Cell
Forecasting
Accuracy

1 89.17% 85.50% 83.93%
2 82.45% 77.55% 75.62%
3 78.39% 72.17% 70.00%
6 71.54% 64.10% 61.50%
9 79.52% 66.04% 62.89%

Kappa

1 0.908 0.888 0.879
2 0.860 0.835 0.822
3 0.829 0.803 0.788
6 0.773 0.748 0.733
9 0.049 0.327 0.319

KHistogram

1 0.971 0.977 0.976
2 0.988 0.982 0.981
3 0.987 0.990 0.987
6 0.967 0.974 0.954
9 0.052 0.443 0.425

KLocation

1 0.935 0.909 0.901
2 0.871 0.851 0.838
3 0.839 0.812 0.798
6 0.799 0.768 0.768
9 0.938 0.737 0.751



Land 2021, 10, 282 21 of 29

Table 11. Cont.

Performance
Metric

Temporal
Resolution 4 Classes 8 Classes 16 Classes

KSimulation

1 0.865 0.830 0.818
2 0.791 0.746 0.730
3 0.743 0.693 0.675
6 0.652 0.601 0.582
9 0.003 0.111 0.103

KTransition

1 0.957 0.956 0.955
2 0.933 0.940 0.937
3 0.918 0.929 0.925
6 0.888 0.895 0.874
9 0.005 0.242 0.224

KTranslocation

1 0.904 0.868 0.856
2 0.848 0.794 0.779
3 0.809 0.746 0.730
6 0.735 0.671 0.666
9 0.597 0.461 0.459

Figure 8. Forecasting errors in simulated outputs from models considering the real-world LC data
featuring 4, 8, and 15 classes. The area shown focusses on the City of Kamloops.
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Figure 9. Simulation maps generated outputs from models considering the real-world data. The area
shown focusses on the City of Kamloops.

6. Discussion

The aim of this research study was to explore the implications of varying temporal
resolutions and LC classes. When analyzing results obtained from the SA conducted
using the hypothetical and real-world datasets, it was observed that the methods are
highly affected by temporal resolution. For instance, models trained on the hypothetical
data performed better with finer temporal resolutions in most test cases. Changes that
appear over coarser resolutions may appear more abrupt, impacting model performance.
Considering the real-world datasets, the number of persistent cells incorrectly forecasted as
changed also exhibits a sharp increase when considering nine-year temporal resolution data.
This type of error is attributed to the observed class membership changing more rapidly
from 2001 to 2010, as shown in Figure 4. The model would not have been provided sufficient
data to forecast that the rapid changes had ceased from 2010 to 2019, a consequence of the
sampling strategy used to form the training datasets.

In addition, the hypothetical scenario features no cells that transition back to a previous
class. However, the real-world dataset features many cells that transition back to a previous
class because of anthropogenic or environmental disturbances or classification errors. This
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is exacerbated by reclassification procedures applied to aggregate the original 15-class
dataset. As such, the vast LC changes attributed to temporal resolution and increasing LC
class cardinality are expected. LCC processes typically occur gradually over long periods of
time and finer temporal resolutions preserve more detail. Thus, finer temporal resolutions
are typically associated with higher changed cell forecasting accuracy.

Using one input feature with one input label for training and testing sequences,
respectively, produced poor performing models for the respective datasets, aligning with
the initial assumptions. This response to using the coarsest resolution indicates this type of
model may not be appropriate for geospatial input datasets featuring only three timesteps
available for training and testing. Using finer temporal resolutions with more timesteps
produced the best results. Datasets with higher rates of change or variability also appeared
to benefit from finer temporal resolutions. For example, the tests conducted considering
the 19-year datasets show that despite rapid changes occurring between 2001 to 2010
for the Evergreen Needleleaf Forest and Woody Savanna LC classes, the models could
still forecast changed cells with approximately 83% accuracy when using finer temporal
resolutions (Table 11). An exception to this trend is shown in Table 8, where the four-
class, 15-year hypothetical dataset including timesteps 0 to 14 is considered. Abrupt
changes occurring between each timestep from timesteps 0 to 14 are expected to have
impacted performance metrics. That is, considering the four-class synthetic dataset at
two-year temporal resolution, cell transition rates are observed as less erratic. This further
exemplifies the method’s sensitivity to increased or inconsistent rates of LCC.

Results showed that increasing sequence length improved a model’s capacity to
forecast changes. For example, as the hypothetical data input sequence length decreased,
models exhibited poorer performance. This is indicated by the overall map comparison
metrics including Kappa, KHistogram, and KLocation. In cases where the smallest hypothetical
data sequence lengths are used in both 45-year and 15-year test cases, KSimulation and
KTransition indicate that models are hindered from learning LCCs. No model trained on
the 15-year, four-class datasets exceeded performance measures of models trained on all
45 timesteps with one- and two-year resolution, indicating improved performance can be
attributed to greater sequence length. This aligns with the experimental results conveyed
by Ienco et al. [25], where outcomes obtained with a dataset featuring a greater number
of timesteps consistently exceeded performance measures computed with respect to the
dataset featuring fewer timesteps.

Overall, the four-class dataset was associated with the best performance metrics of all
the tests conducted using the hypothetical and real-world datasets. This confirms the initial
assumption that fewer unique classes would have a positive impact on the model outcomes.
The SA indicates that dataset cardinality also affects method performance. Considering
the hypothetical 16-class dataset, low accuracies were obtained when forecasting changed
cells. Finer temporal resolutions and increased sequence lengths also improved model
performance as LC cardinality increased. The four-class dataset was associated with models
that forecasted LC transitions with greater accuracy. Considering the real-world 15-class
dataset, changed cell forecasting accuracies produced differed less vastly from the four
and eight-class data experiments. However, the capacity of the models to forecast changed
cells decreased more rapidly as the temporal resolution became coarser despite model
optimizations described in Section 3.1.1. This is attributed to the greater number of classes
exhibiting changes that are not captured in detail using the coarser resolution. The results
correspond with those communicated by Sun et al. [92], which indicated that experiments
conducted using all classes yielded lesser accuracies versus those obtained with a fewer
number of classes. It might also be observed as a repercussion of the potential decreasing
sample size per class as the sampling strategy used to form the training datasets is upheld.
This may lead to undersampling in cases where there are more classes, which can remove
potentially important training samples [90].

Contrary to initial expectations, the SA demonstrated that the LSTM models were
most effective when rates of LCC were more gradual. This coincides with the findings
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of Chi and Kim [56], where it was found that increased melting of sea ice in summer
months impeded their LSTM model forecasts. The hypothetical 16-class subsets where few
changes occurred enabled models to obtain improved performance measures despite high
cardinality. As the number of changes increased, model performance suffered, especially
when using coarse temporal resolutions and when considering the hypothetical 16-class
dataset. This was also observed in results produced with the real-world dataset featuring
15 classes. With coarser temporal resolutions, the 15-class dataset experiments demon-
strated decreasing performance observed in all metrics. The less dramatic decrements of
performance measures observed considering the real-world dataset versus those obtained
using the 16-class hypothetical dataset may be attributed to the larger dataset available.

While overfitting to smaller datasets may be an issue, many of the overall trends
observed across the hypothetical and real-world datasets were present in both sets of results.
Results of this SA correspond to previous findings indicating that the number of classes
undergoing changes and coarser temporal resolutions were detrimental to the method’s
performance [48]. Overall, cells featuring persistent LC were typically forecasted correctly
with fine temporal resolutions across hypothetical and real-world experiments. This
indicates that modifications or an alternate approach to the sampling strategy procedure
used in this research study should be considered to obtain improved results that are less
biased toward the majority class of cells, whether they be persistent or rapidly changing.

7. Conclusions

The primary objective of this study was to examine the impact of temporal resolutions
and the number of LC classes on LSTM model performance via a SA. This SA involved
measures focused on quantifying the capacity of the method to forecast LC changes explic-
itly rather than focus on overall accuracy measures as reported. These experiments were
conducted using hypothetical and real-world datasets to observe whether trends persisted
across experiments. The systematic SA identified similar responses across Modeling Sce-
narios A, B, and C, with inconsequential differences between them. As a result, measures
reported and explored were those obtained from the optimized Model C (described in
Section 3.1.1) for this research study. Overall, similar trends in results were obtained with
respect to the hypothetical and real-world datasets.

Results indicated that LSTM models are sensitive to the change of temporal resolution
in all experiments conducted by forecasting different LCC outcomes as model outputs.
These experiments included datasets featuring a different number of classes in both the
hypothetical and real-world datasets and resulted in the same conclusions. Based on
this sensitivity analysis, it was found that LSTM models perform best when datasets
feature finer temporal resolution and fewer LC classes. Based on these results, it would
be advisable to aggregate LC classes in cases where only coarser temporal resolution LC
data is available. These findings also imply that if more input data layers were given at
the shortest temporal intervals possible, this would enable LSTM models to be used for
more gradual LCCs forecasting. Similarly, this study shows that RNNs become even more
suitable for forecasting LCC as more timesteps and finer resolutions becomes available.

Since this study considered changes occurring at each cell over the temporal dimen-
sion, explicit spatial dependencies within or between samples were neglected. Instead,
this work considers spatial dependencies implicitly due to the training procedure being
influenced by all training samples. However, explicit spatial dependencies and spatial
autocorrelation present between geographic data samples is neglected in both temporal
and spatiotemporal DL approaches. As a result of ML and DL methods inherently con-
sidering samples as independent and identically distributed, repercussions such as “salt-
and-pepper” noise arise in resulting maps [93]. Therefore, there is a need to investigate
how leveraging explicit spatiotemporal dependencies and relationships both within and
between samples may affect the performance. In addition, future work should continue to
explore the capacity of spatiotemporal DL methods such as ConvLSTM for modeling LCC.
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The models designed for this study were intended to focus on local changes and con-
trol input variations to assess model response given hypothetical and real-world datasets.
However, it is recognized that producing categorical forecasts also has implications on
results. Future work should consider the uncertainties in model outcomes attributed to
the changing geospatial data characteristics examined in this work [94]. Given the proba-
bilistic outputs produced by the various models for each cell, it would also be possible to
highlight areas of uncertainty produced in forecasts. Furthermore, this could accommodate
gradual changes present in each coarse-resolution cell, rather than portraying only full
LC class transitions taking place at each cell [47]. An assessment of how well an LSTM
model could forecast emerging phenomena or dissipating phenomena should also be
conducted. While uncertainties present in model outputs can be compared and assessed,
uncertainty quantification of RNN architectures such as LSTM could be considered under
Bayesian treatment [95,96].

As cell-based LSTM models are fit to accommodate variation occurring across an
entire study area, future work could examine the implications on method performance
when using larger datasets with increased spatial heterogeneity along with appropriate
metrics to consider this property. Additionally, the real-world dataset considered in this
study features coarse spatial resolution and fine temporal resolution with respect to the
phenomena under investigation. At present, finer resolution data typically exhibits coarser
temporal resolution. For instance, the USGS National Land Cover Database provides
30-meter spatial resolution LC data every five years since 2001 [97]. As finer spatial
resolution data becomes available at finer temporal resolutions, the effects of increasing
or decreasing spatial resolution should be considered with LSTM and its spatiotemporal
variants. The large number of optimizations and configurations of LSTM models also
provides opportunities for future exploration.

This research study aimed to evaluate the repercussions of varying geospatial data
characteristics, including temporal resolution and LC class count. Changing these factors
affected sequence length and rates of LCC present in the hypothetical and real-world input
datasets. It is acknowledged that the measures obtained hinge upon the method and data
combinations used in this work. Considering hypothetical and real-world data as LSTM
model input, similar trends were observed in the method’s capacity to forecast LCCs. While
it is often stated that “more data is always better” for DL methods, it is rarely quantified.
Thus, this research study contributes to the quantification of how much data is required
to forecast this phenomenon with this modeling approach, along with the geospatial data
characteristics that would characterize a favourable or compatible dataset.
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16. Stevens, D.; Dragićević, S. A GIS-Based Irregular Cellular Automata Model of Land-Use Change. Environ. Plan. B Plan. Des. 2007,

34, 708–724. [CrossRef]
17. Yang, Q.; Li, X.; Shi, X. Cellular automata for simulating land use changes based on support vector machines. Comput. Geosci.

2008, 34, 592–602. [CrossRef]
18. Rienow, A.; Goetzke, R. Supporting SLEUTH—Enhancing a cellular automaton with support vector machines for urban growth

modeling. Comput. Environ. Urban. Syst. 2015, 49, 66–81. [CrossRef]
19. Kamusoko, C.; Gamba, J. Simulating Urban Growth Using a Random Forest-Cellular Automata (RF-CA) Model. ISPRS Int. J. Geo

Inf. 2015, 4, 447–470. [CrossRef]
20. Azari, M.; Tayyebi, A.; Helbich, M.; Reveshty, M.A. Integrating cellular automata, artificial neural network, and fuzzy set theory

to simulate threatened orchards: Application to Maragheh, Iran. GISci. Remote Sens. 2016, 53, 183–205. [CrossRef]
21. Samat, N.; Mahamud, M.A.; Tan, M.L.; Tilaki, M.J.M.; Tew, Y.L. Modelling Land Cover Changes in Peri-Urban Areas: A Case

Study of George Town Conurbation, Malaysia. Land 2020, 9, 373. [CrossRef]
22. Liu, D.; Zheng, X.; Wang, H. Land-use Simulation and Decision-Support system (LandSDS): Seamlessly integrating system

dynamics, agent-based model, and cellular automata. Ecol. Model. 2020, 417, 108924. [CrossRef]
23. Noszczyk, T. A review of approaches to land use changes modeling. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1377–1405. [CrossRef]
24. Otukei, J.; Blaschke, T. Land cover change assessment using decision trees, support vector machines and maximum likelihood

classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S27–S31. [CrossRef]
25. Ienco, D.; Gaetano, R.; Dupaquier, C.; Maurel, P. Land Cover Classification via Multitemporal Spatial Data by Deep Recurrent

Neural Networks. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1685–1689. [CrossRef]
26. Mertens, B.; Lambin, E.F. Land-Cover-Change Trajectories in Southern Cameroon. Ann. Assoc. Am. Geogr. 2000,

90, 467–494. [CrossRef]
27. Li, S.; Dragicevic, S.; Anton, F.; Sester, M.; Winter, S.; Çöltekin, A.; Pettit, C.; Jiang, B.; Haworth, J.; Stein, A.; et al. Geospa-

tial big data handling theory and methods: A review and research challenges. ISPRS J. Photogramm. Remote Sens. 2016,
115, 119–133. [CrossRef]

28. Maithani, S. Neural networks-based simulation of land cover scenarios in Doon valley, India. Geo. Int. 2014, 30, 1–23. [CrossRef]
29. Boulila, W.; Farah, I.; Ettabaa, K.S.; Solaiman, B.; Ben Ghézala, H. A data mining based approach to predict spatiotemporal

changes in satellite images. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 386–395. [CrossRef]

http://doi.org/10.1007/BF00188373
http://doi.org/10.1016/S0034-4257(02)00078-0
http://doi.org/10.1038/s41467-017-01038-w
http://www.ncbi.nlm.nih.gov/pubmed/29057878
http://doi.org/10.1073/pnas.0704119104
http://doi.org/10.1016/j.envsoft.2016.10.006
http://doi.org/10.1016/j.jag.2018.06.015
http://doi.org/10.1007/s10661-018-6877-y
http://www.ncbi.nlm.nih.gov/pubmed/30066225
http://doi.org/10.1007/s10661-017-6272-0
http://doi.org/10.1109/MGRS.2017.2762307
http://doi.org/10.1080/13658810512331325139
http://doi.org/10.1080/17474230600605202
http://doi.org/10.1016/j.jenvman.2004.02.008
http://doi.org/10.1068/b21S031
http://doi.org/10.1016/S0198-9715(00)00012-0
http://doi.org/10.1007/s40808-016-0210-y
http://doi.org/10.1068/b32098
http://doi.org/10.1016/j.cageo.2007.08.003
http://doi.org/10.1016/j.compenvurbsys.2014.05.001
http://doi.org/10.3390/ijgi4020447
http://doi.org/10.1080/15481603.2015.1137111
http://doi.org/10.3390/land9100373
http://doi.org/10.1016/j.ecolmodel.2019.108924
http://doi.org/10.1080/10807039.2018.1468994
http://doi.org/10.1016/j.jag.2009.11.002
http://doi.org/10.1109/LGRS.2017.2728698
http://doi.org/10.1111/0004-5608.00205
http://doi.org/10.1016/j.isprsjprs.2015.10.012
http://doi.org/10.1080/10106049.2014.927535
http://doi.org/10.1016/j.jag.2011.01.008


Land 2021, 10, 282 27 of 29

30. Patil, S.D.; Gu, Y.; Dias, F.S.A.; Stieglitz, M.; Turk, G. Predicting the spectral information of future land cover using machine
learning. Int. J. Remote Sens. 2017, 38, 5592–5607. [CrossRef]

31. Marondedze, A.K.; Schütt, B. Dynamics of Land Use and Land Cover Changes in Harare, Zimbabwe: A Case Study on the
Linkage between Drivers and the Axis of Urban Expansion. Land 2019, 8, 155. [CrossRef]

32. Kong, Y.-L.; Huang, Q.; Wang, C.; Chen, J.; Chen, J.; He, D. Long Short-Term Memory Neural Networks for Online Disturbance
Detection in Satellite Image Time Series. Remote Sens. 2018, 10, 452. [CrossRef]

33. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
34. RuBwurm, M.; Korner, M. Temporal Vegetation Modelling Using Long Short-Term Memory Networks for Crop Identification

from Medium-Resolution Multi-spectral Satellite Images. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1496–1504.

35. Lyu, H.; Lu, H.; Mou, L. Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change
Detection. Remote Sens. 2016, 8, 506. [CrossRef]

36. Van Vliet, J.; Bregt, A.K.; Brown, D.G.; Van Delden, H.; Heckbert, S.; Verburg, P.H. A review of current calibration and validation
practices in land-change modeling. Environ. Model. Softw. 2016, 82, 174–182. [CrossRef]

37. Ligmann-Zielinska, A.; Sun, L. Applying time-dependent variance-based global sensitivity analysis to represent the dynamics of
an agent-based model of land use change. Int. J. Geogr. Inf. Sci. 2010, 24, 1829–1850. [CrossRef]

38. Kocabas, V.; Dragicevic, S. Assessing cellular automata model behaviour using a sensitivity analysis approach. Comput. Environ.
Urban. Syst. 2006, 30, 921–953. [CrossRef]

39. Li, X.; Ling, F.; Foody, G.M.; Ge, Y.; Zhang, Y.; Wang, L.; Shi, L.; Li, X.; Du, Y. Spatial–Temporal Super-Resolution Land Cover
Mapping with a Local Spatial–Temporal Dependence Model. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4951–4966. [CrossRef]

40. Boulila, W.; Ayadi, Z.; Farah, I.R. Sensitivity analysis approach to model epistemic and aleatory imperfection: Application to
Land Cover Change prediction model. J. Comput. Sci. 2017, 23, 58–70. [CrossRef]

41. Shafizadeh-Moghadam, H.; Asghari, A.; Taleai, M.; Helbich, M.; Tayyebi, A. Sensitivity analysis and accuracy assessment of the
land transformation model using cellular automata. GISci. Remote Sens. 2017, 54, 639–656. [CrossRef]

42. Huang, Z.; Laffan, S.W. Sensitivity analysis of a decision tree classification to input data errors using a general Monte Carlo error
sensitivity model. Int. J. Geogr. Inf. Sci. 2009, 23, 1433–1452. [CrossRef]
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80. Bone, C.; Dragićević, S. Defining Transition Rules with Reinforcement Learning for Modeling Land Cover Change. Simulation
2009, 85, 291–305. [CrossRef]

81. Burlacu, I.; O’Donoghue, C.; Sologon, D.M. Hypothetical Models. In Water Science and Technology; Emerald Group Publishing
Limited: Bingley, UK, 2014; Volume 45, pp. 23–46. ISBN 0273-1223.

82. Hermes, K.; Poulsen, M. A review of current methods to generate synthetic spatial microdata using reweighting and future
directions. Comput. Environ. Urban. Syst. 2012, 36, 281–290. [CrossRef]

83. Homer, C.; Huang, C.; Yang, L.; Wylie, B.; Coan, M. Development of a 2001 National Land-Cover Database for the United States.
Photogramm. Eng. Remote Sens. 2004, 70, 829–840. [CrossRef]

84. Sulla-Menashe, D.; Friedl, M.A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product; USGS: Reston,
VA, USA, 2018; pp. 1–18. [CrossRef]

85. Esri. ArcGIS Pro: 2.0; Esri: Redlands, CA, USA, 2017.
86. Fotheringham, A.S.; Rogerson, P.A. GIS and spatial analytical problems. Int. J. Geogr. Inf. Syst. 1993, 7, 3–19. [CrossRef]
87. Sulla-Menashe, D.; Friedl, M. The Terra and Aqua Combined Moderate Resolution Imaging Spectroradiometer (MODIS) Land

Cover Type (MCD12Q1) Version 6 Data Product. Available online: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_
products_table/mcd12q1_v006 (accessed on 30 January 2019).

http://doi.org/10.5120/ijca2017915495
https://keras.io/
https://www.Tensorflow.org
http://doi.org/10.18564/jasss.4201
http://doi.org/10.1145/2647868.2654889
http://doi.org/10.18564/jasss.4136
http://doi.org/10.1080/13658810410001713399
http://doi.org/10.1111/tgis.12016
http://doi.org/10.3390/ijgi7040129
http://doi.org/10.1016/j.ecolmodel.2011.01.017
http://doi.org/10.1007/s10661-016-5179-5
http://www.ncbi.nlm.nih.gov/pubmed/26884356
http://doi.org/10.1007/s00168-007-0138-2
http://doi.org/10.1177/0037549709103510
http://doi.org/10.1016/j.compenvurbsys.2012.03.005
http://doi.org/10.14358/PERS.70.7.829
http://doi.org/10.5067/MODIS/MCD12Q1
http://doi.org/10.1080/02693799308901936
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1_v006


Land 2021, 10, 282 29 of 29

88. Ministry of Municipal Affairs and Housing Regional Districts—Legally Defined Administrative Areas of BC. Available online:
https://catalogue.data.gov.bc.ca/dataset/d1aff64e-dbfe-45a6-af97-582b7f6418b9 (accessed on 3 October 2020).

89. Venture Kamloops Kamloops Population Data. Available online: https://www.venturekamloops.com/why-kamloops/
community-profile/demographics (accessed on 8 October 2020).

90. Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 2016,
5, 221–232. [CrossRef]

91. Li, X.; Yeh, A.G.-O. Neural-network-based cellular automata for simulating multiple land use changes using GIS. Int. J. Geogr. Inf.
Sci. 2002, 16, 323–343. [CrossRef]

92. Sun, Z.; Di, L.; Fang, H. Using long short-term memory recurrent neural network in land cover classification on Landsat and
Cropland data layer time series. Int. J. Remote Sens. 2018, 40, 593–614. [CrossRef]

93. Jiang, Z. A Survey on Spatial Prediction Methods. IEEE Trans. Knowl. Data Eng. 2019, 31, 1645–1664. [CrossRef]
94. Saltelli, A.; Aleksankina, K.; Becker, W.; Fennell, P.; Ferretti, F.; Holst, N.; Li, S.; Wu, Q. Why so many published sensitivity

analyses are false: A systematic review of sensitivity analysis practices. Environ. Model. Softw. 2019, 114, 29–39. [CrossRef]
95. McDermott, P.L.; Wikle, C.K. Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in

Spatial-Temporal Data. Entropy 2019, 21, 184. [CrossRef] [PubMed]
96. Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Prabhat Deep learning and process understanding

for data-driven Earth system science. Nat. Cell Biol. 2019, 566, 195–204. [CrossRef]
97. USGS EROS Center National Land Cover Database (NLCD). Available online: https://www.usgs.gov/centers/eros/science/

national-land-cover-database?qt-science_center_objects=0# (accessed on 10 October 2020).

https://catalogue.data.gov.bc.ca/dataset/d1aff64e-dbfe-45a6-af97-582b7f6418b9
https://www.venturekamloops.com/why-kamloops/community-profile/demographics
https://www.venturekamloops.com/why-kamloops/community-profile/demographics
http://doi.org/10.1007/s13748-016-0094-0
http://doi.org/10.1080/13658810210137004
http://doi.org/10.1080/01431161.2018.1516313
http://doi.org/10.1109/TKDE.2018.2866809
http://doi.org/10.1016/j.envsoft.2019.01.012
http://doi.org/10.3390/e21020184
http://www.ncbi.nlm.nih.gov/pubmed/33266899
http://doi.org/10.1038/s41586-019-0912-1
https://www.usgs.gov/centers/eros/science/national-land-cover-database?qt-science_center_objects=0#
https://www.usgs.gov/centers/eros/science/national-land-cover-database?qt-science_center_objects=0#

	Introduction 
	Theoretical Background and Geospatial Applications of RNNs 
	Materials and Methods 
	RNN Model Development 
	Modeling Scenarios 

	Sensitivity Analysis 

	Geospatial Datasets and Pre-Processing 
	Hypothetical Data 
	Real-World Data 
	Creating the Training and Test Sets 

	Results 
	Results of Experiments with Hypothetical Data 
	Results of Experiments with Real-world Data 

	Discussion 
	Conclusions 
	References

