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Abstract: Suitable land is an important prerequisite for crop cultivation and, given the prospect
of climate change, it is essential to assess such suitability to minimize crop production risks and
to ensure food security. Although a variety of methods to assess the suitability are available, a
comprehensive, objective, and large-scale screening of environmental variables that influence the
results—and therefore their accuracy—of these methods has rarely been explored. An approach to the
selection of such variables is proposed and the criteria established for large-scale assessment of land,
based on big data, for its suitability to maize (Zea mays L.) cultivation as a case study. The predicted
suitability matched the past distribution of maize with an overall accuracy of 79% and a Kappa
coefficient of 0.72. The land suitability for maize is likely to decrease markedly at low latitudes and
even at mid latitudes. The total area suitable for maize globally and in most major maize-producing
countries will decrease, the decrease being particularly steep in those regions optimally suited for
maize at present. Compared with earlier research, the method proposed in the present paper is
simple yet objective, comprehensive, and reliable for large-scale assessment. The findings of the
study highlight the necessity of adopting relevant strategies to cope with the adverse impacts of
climate change.

Keywords: climate change; maize; land suitability; big data; Kullback–Leibler divergence; law of
the minimum

1. Introduction

The impact of climate change on land use is widely acknowledged: by changing the
suitability of lands for different crops from the current pattern and thus the area under
different crops, climate change poses a threat to food security [1–3]. Although the land
suitability for crop cultivation (denoted as ‘suitability’) is projected to increase at higher
altitudes in the northern hemisphere and to decrease mainly in the tropical regions [4], the
academic community is yet to reach any consensus on the extent and pattern of global
changes. The differences are partly because the current methods of assessment have proved
inadequate, which makes it imperative to develop a method that can accurately predict
the suitability globally—predictions that are vital to ensuring food security, adapting to
climate change, and mitigating its adverse effects.

Land suitability is a measure of how well the properties of a given piece of land satisfy
the requirements of a particular land use form [5]. At present, the methods applied to assess
the suitability can be classified into two based on the approach, namely those based on
the Food and Agriculture Organization (FAO) land-evaluation approach and those based

Land 2021, 10, 295. https://doi.org/10.3390/land10030295 https://www.mdpi.com/journal/land

https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0001-5198-1281
https://doi.org/10.3390/land10030295
https://doi.org/10.3390/land10030295
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/land10030295
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land10030295?type=check_update&version=2


Land 2021, 10, 295 2 of 31

on the species distribution modeling approach. Taking the limiting factor as a principle,
the FAO approach [5], which is also the most widely used, seeks to assess suitability by
matching land attributes or properties to the requirements of specific crops. This approach
uses the evaluation criteria based on crop requirements as applicable to local conditions
by means of empirical analyses [6], literature review [7,8], expert knowledge [9,10], etc.
Technically, considering land suitability analysis as a problem of multicriterion evaluation
with an explicit spatial dimension, geographic information systems integrated with multi-
criteria analysis have been used extensively to improve the evaluation by making it more
efficient and accurate and also by mapping the land to show its suitability to different
crops [11–13]. Although the FAO approach has become the standard for land evaluation
on local, national, or regional scales, the method requires explicit and predetermined
evaluation criteria. However, the criteria obtained through the means mentioned above are
generally applicable only locally and also subjective, making generalizations on a larger
scale less dependable. For a global study, therefore, establishing appropriate criteria for
assessing suitability poses a challenge.

As an alternative to the FAO approach, species distribution models (SDMs), originally
used in ecology and conservation, have recently been applied to modeling the land suitabil-
ity for agriculture [14]. Based on correlations between known geo-referenced crop locations
and data on environmental variables, SDMs can characterize a given environment in terms
of its fit with crop requirements and project such suitable conditions into environmental
scenarios at different times to model current and future suitability [15]. The approach
based on SDMs has been applied successfully in several assessments including those for
maize [15–17] and wheat [18–20]. Nevertheless, the use of SDMs is considered inherently
risky and limited [21], beset with such problems as appropriate selection of the environmen-
tal variables that serve as inputs for the models. More specifically, ensuring the functional
relevance and completeness of the variables and dealing with correlated variables are
some of the key steps in good modeling practice [22]. However, these problems have often
been overlooked by the relevant studies, which have simply used the same influencing
variables as revealed in earlier research. This choice not only affects the application of
SDMs to large-scale studies but leads to overfitting and misrepresentation of the potential
distribution of the crops in question [23].

Overall, one of the most critical shortcomings of research on this topic so far, regardless
of the differences between the two approaches, is lack of rigor and objectivity in selecting
the environmental variables either to establish the appropriate criteria as required by the
FAO approach or to obtain the desired level of performance from the SDM approach—
putting a question mark over the reliability of the assessment. The need for an alternative
method thus becomes especially urgent for large-scale research, in which local knowledge
of crop requirements is no longer sufficient.

In addition, it should be noted that in the context of climate change, existing studies
mostly focus on climate-associated suitability, namely the potential for crop growth under
given climatic conditions, but ignore the effects of nonclimatic factors [24,25]. However,
soil quality and topographic characteristics are equally important in determining land
suitability [26]. For example, on a regional scale, soil fertility can limit suitability even
more than climate can, and incorporating soil-related parameters has made the modeling
of suitability more reliable [27]. Generally, it is the combination of major environmental
factors including climate, soil, and terrain that allows specific crops to be grown in a given
area [28].

Therefore, it is particularly important to take into account both climatic and noncli-
matic factors and select the critical ones objectively for a comprehensive and accurate
assessment of suitability, especially on a global scale.

As one of the world’s most important staple foods, maize (Zea mays L.) sustains
millions of people worldwide [29] and is equally susceptible to the effects of climate
change. Taking maize as the test case, the present study sought to fill the aforementioned
research gaps by proposing a simple yet effective approach to large-scale assessment of
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suitability and applying it to assess the suitability as affected by multiple climate scenarios
comprehensively and on a global scale.

2. Materials and Methods
2.1. Basic Idea and Research Framework

As mentioned above, the core of any accurate and large-scale assessment of suitability
is objective selection of influencing variables and further construction of appropriate
assessment criteria. The suitability of a given site or parcel of land (a specific grid cell)
for a given crop can then be assessed by matching such criteria with the environmental
conditions at the given cell. To achieve this goal, four basic hypotheses are put forward.

Hypothesis 1. Numeric methods can be applied to explore the relationships between existing
environmental conditions and crop distribution and, in turn, to help in establishing suitable criteria.

Hypothesis 2. A grid should be considered suitable for a crop only when every crucial environ-
mental variable is favorable, and less suitable even if a single variable is unfavorable.

Hypothesis 3. On a large scale, three types of environmental variables—climate, soil, and terrain—
are adequate to determine suitability (only these variables are considered in the present study).

Hypothesis 4. In developing and applying the criteria, regional differences in the physical require-
ments of various crop cultivars grown worldwide or potential changes in a crop’s requirements due
to varietal improvement can be ignored.

Each of the four hypotheses are discussed in turn in the following paragraphs.
Hypothesis 1: Criteria for assessing suitability are in essence the characterization of

corresponding relationships between influencing factors and the degree of suitability. On
a large scale, alternative methods are required to design such criteria objectively instead
of simply relying on empirical analyses or expert knowledge. We therefore hypothesize
that numeric methods can be applied to explore the relationships between existing envi-
ronmental conditions and crop distribution and, in turn, to help in establishing suitable
criteria. This should be reasonable if the sample size is large enough, according to the
large sample theory [30], and feasible, given the availability of high-resolution global
datasets together with more sophisticated techniques of data analysis. In the present study,
we use multiple crop distribution records and dozens of environmental variables. The
construction of criteria is described in Section 2.3, which involves generating data on actual
crop distribution (Section 2.3.1), selecting crucial influencing variables (Section 2.3.2), and
setting appropriate thresholds for the chosen variables (Section 2.3.3).

Hypothesis 2: With the established criteria, the assessment becomes a question of
finally determining the extent of suitability of a specific area or region as affected by the
chosen environmental variables. Inspired by Liebig’s law of the minimum that emphasizes
the decisive effect of the scarcest resource (limiting factor) on crop growth [31], we assume
that a grid should be considered suitable for a crop only when every crucial environmen-
tal variable is favorable, and less suitable even if a single variable is unfavorable. The
application of this principle to suitability assessment is described in Section 2.4.

Hypothesis 3: Suitability is influenced by both physical and socioeconomic factors [5].
However, on a large scale, it is the combination of environmental factors including the
terrain, climate, and soil that allows specific crops to be cultivated in a given area. The
majority of crops are grown on land with a moderate slope as well as favorable temperature,
precipitation, and soil conditions [28]. Therefore, we hypothesize that on a large scale three
types of environmental variables—climate, soil, and terrain—are adequate to determine
suitability, and only these variables are considered in this study. The limitations of this
assumption are discussed in Section 4.3.

Hypothesis 4: It should be noted that in this study we propose a single set of universal
criteria for global and past-to-future assessment of suitability; in other words, in designing
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and applying the criteria (Sections 2.3 and 2.4) we ignore regional differences in the physical
requirements of various crop cultivars grown worldwide [32] or potential changes in a
crop’s requirements due to varietal improvement [33,34]. Besides, when developing the
criteria, we simply used maize distribution data and no use was made of yield data on
maize. The reasons and limitations of doing so are discussed in Section 4.3.

With maize chosen for the case study, the suitability is assessed in two general steps:
(1) establish the criteria for global assessment of suitability of maize based on statistical
analyses of past data on the distribution of maize and environmental data, involving
selection of critical variables and variable threshold setting (see Section 2.3 for details), and
(2) assess the past and future suitability by combining these criteria with the data on the
environmental variables during three chosen periods and under two scenarios based on
representative concentration pathways (RCPs; see Section 2.4 for details). The research
framework is shown in Figure 1.

Figure 1. Research framework.

2.2. Data Sources

Maize distribution. We used global data on fraction of maize-harvested area (FMHA)
around the year of 2000 as provided by the Center for Sustainability and the Global
Environment (SAGE) at the University of Wisconsin-Madison [35] to design criteria for
maize suitability assessment. The data show the area from which maize is harvested as a
fraction of each latitude-longitude grid measuring 5′ by 5′ (circa 10 km by 10 km). Data for
validating past suitability assessment results were compiled from three sources, namely
(1) past data on maize occurrence processed and provided by Ramirez-Cabral et al. [17]
based on the Global Biodiversity Information Facility and literature resources; (2) data
on the irrigated, rainfed and total maize harvested area for the year 2000 as provided by
MIRCA2000 (global data set of monthly irrigated and rain-fed crop areas around the year
2000) of Goethe University, Frankfurt [36]; (3) productivity-based irrigated, rain-fed, and
total data comprising maize physical and harvested area for the year 2005 as provided by
the SPAM (Spatial Production Allocation Model) of MapSPAM [37].

Environmental data. We used past climate data (WorldClim, mean annual solar radi-
ation, wind speed, water vapor pressure, and 19 bioclimatic variables) [38], terrain data
(FAO, elevation and slope) [39], and soil data (WISE 1.2, 20 soil variables) [40] to construct
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the criteria for past and future maize suitability assessment and then to assess the past
suitability. As a proxy for future data, we assumed that terrain and soil conditions would
not change substantially over the study periods and combined the past data on terrain and
soil with WorldClim future climate data [38] to assess future suitability.

The data sources are listed and described in detail in Table A1 and the definitions of
environmental variables are provided in Table A2.

2.3. Development of Criteria for Evaluating Land Suitability for Maize Cultivation

The procedure for constructing the criteria for the assessment is outlined in Figure 2
and described step by step below.

Figure 2. Designing the criteria for the assessment of land as suitable for growing maize.

2.3.1. Generating Data on Actual Distribution of Maize

To strike the right balance between data reliability and data availability, based on the
SAGE data, we chose those grid cells with FMHA no less than 1% [19] as the data on actual
maize distribution.

2.3.2. Selection of Crucial Variables

Given the many environmental variables available, choosing those really critical to
crop growth and keeping the choice objective is difficult. Correlation analysis is commonly
used for eliminating highly correlated variables and thus minimizing multicollinearity,
avoiding overfitting, and ensuring more accurate predictions [16,41,42]. Nevertheless, prior
knowledge, often locally applicable and possibly subjective, is still required, for example to
choose from among those within the same correlation cluster [16].

We therefore used Kullback–Leibler (KL) divergence [43], a quantity developed in the
field of information theory for measuring differences between two probability distributions,
to help in selecting objectively the critical environmental variables. The idea was to calculate
the probability distribution function (PDF) of each environmental variable within the global
terrestrial grids and the crop grids and then calculate the KL divergence between the two
distributions. The lower the divergence, the smaller the difference between the distributions
and therefore the lower the importance of the variable for crop growth and, in turn, for
suitability assessment, and vice versa.

In the case of maize, based on the data on past maize distribution and environmental
variables, we first calculated two separate PDFs for each variable, except slope, related
to climate, soil, and terrain: one PDF based on global terrestrial grids and the other PDF
based on maize grids (Figure A1). It should be noted that slope is displayed as a categorical
variable, and we used an alternative method (see below). Next, we calculated the KL
divergence between the two PDFs of each variable (details in Table A3) using the following
equation [43]:

DKL(P ‖ Q) = ∑i∈X P(i)×
[

log
(

P(i)
Q(i)

)]
(1)

where DKL(P||Q) is the KL divergence between P and Q, which are the two PDFs of each
environmental variable, one based on the global terrestrial grids and the other on the maize
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grids; X is the range of possible property values, noted as i, for each variable; P(i) and Q(i)
are the probabilities of a specific value corresponding to P and Q, respectively.

To narrow the choice, we retained only those variables with a KL value not less than
1 (marked with asterisk in Table A2). We used alternative approaches to screen crucial
variables for climate, soil, and terrain. As many climatic and soil variables are highly
correlated, we calculated the Pearson correlation coefficient (r) matrix of the variables
chosen initially (Table A4). In each pair of variables with a higher correlation coefficient
(i.e., |r| ≥ 0.8) [42] (highlighted in pink in Table A4), we retained the variable that had a
higher KL value.

Among the terrain variables, elevation was not included initially because it had a low
KL value. As slope is a categorical variable, we calculated and compared the proportion of
area under maize to the total global land area for each slope class, labeled fA(i), and the
distribution of area under maize in terms of each slope class, labeled fB(i):

fA(i) =
Areamaize(i)
Arealand(i)

(2)

fB(i) =
Areamaize(i)

Areamaize
(3)

i = Slope_class(1, 2, . . . , 9) (4)

where Areamaize(i) and Arealand(i) denote the area under maize and land area within a
specific slope class, respectively; Areamaize denotes the global maize harvested area; and i
refers to a specific slope class.

As shown in Table A5, globally, maize is grown on each slope class, and fA(i) is not
notably different from fB(i) in general, indicating that slope does not influence maize
growth greatly. Therefore, we eliminated slope as a crucial variable.

The final choice of the crucial environmental variables is marked with two asterisks in
Table A2.

2.3.3. Variable Threshold Setting

The thresholds for determining the extent of suitability can be obtained by calculating
the percentile values for each environmental variable from the range of its values on a
species’ presence locations [44]. We used the percentile method [45] to set the thresholds.
Specifically, we defined five levels of suitability based on the percentiles: unsuitable,
marginally suitable, moderately suitable, suitable, and optimal (Table 1). Based on these
percentile criteria, we categorized the values of the selected crucial variables into different
suitability classes.

Table 1. Percentiles for grading land suitability for growing maize.

Suitability Class
Percentile Criteria

Both Tails Lower Tail Upper Tail

Unsuitable <1, >99 <1 >99
Marginally suitable 1–2.5, 97.5–99 1–2.5 97.5–99
Moderately suitable 2.5–5, 95–97.5 2.5–5 95–97.5

Suitable 5–10, 90–95 5–10 90–95
Optimal ≥10, ≤90 ≥10 ≤90

Then, to better characterize the influencing mechanisms of the crucial variables on
maize cultivation, we adjusted the specific suitability thresholds by simultaneously consid-
ering Rpct, a judgment parameter calculated based on the PDFs:
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Rpct =


P(X<Qpct)
Q(X<Qpct)

(pct = 1, 2.5, 5, 10)

P(X>Qpct)
Q(X>Qpct)

(pct = 99, 97.5, 95, 90)
(5)

where P and Q are the PDFs of each crucial environmental variable with respect to the
global terrestrial grids and maize grids, respectively. X is the range of possible property
values for a variable, and Qpct is the value of the variable corresponding to a specific
percentile, namely pct, of Q. Rpct denotes the ratio of the probability of terrestrial grids with
variable values fulfilling given conditions to that of maize grids.

For a specific pct, when the calculated Rpct is not less than 2, we adopted the corre-
sponding Qpct as the threshold, otherwise we used the Qpct corresponding to the lower
suitability class, namely, the smaller Qpct on the lower tail, or the bigger one on the upper.
For example, for the variable BIO1, both R99 and R97.5 are more than 2, while both R95 and
R90 are less than 2, so we adopted the Q97.5 value as the threshold between the Marginally
suitable class and the Optimal class. That is to say, on the upper tail we did not distinguish
the Moderately suitable class and the Suitable class, and a specific grid with BIO1 value
less than the Q97.5, but no less than Q10 of BIO1 is considered optimal for maize growth in
terms of BIO1.When each Rpct on one tail is less than 2, we adopted the smallest Qpct on the
lower tail, or the biggest on the upper, as the threshold. Take an example, for the variable
Wind speed, R1, R2.5, R5, R10 are all below 2, so we just used Q1 to divide the Unsuitable
class and the Optimal class on the lower tail.

Through the above steps, we established the criteria for global-scale maize suitability
assessment (see detail in Section 3.1).

2.4. Assessing on a Global Scale the Land Suitability for Growing Maize

For a specific terrestrial grid, we first matched its physical attributes to the established
criteria to determine the level of its suitability for maize in terms of each crucial environ-
mental variable. The lowest level was taken as the result for that grid, keeping in mind
Liebig’s law of the minimum [31]:

Suitabilitymaize = min
{

Suitabilityvar(i)

}
(6)

where Suitabilitymaize denotes the level to which the grid is suitable for growing maize
and is the minimum of the set of Suitabilityvar(i), which denotes the grid’s suitability for
maize in terms of a given crucial environmental variable; in i = 1, 2, 3, . . . n, n represents
the number of crucial variables.

We evaluated the global maize suitability during three periods (the 2000s (1970–2000),
2050s (2041–2060), 2070s (2061–2080)) and under two contrasting RCPs, namely RCP2.6
and RCP8.5, which, respectively, represent a mitigation scenario assuming a very low
radiative forcing level of 2.1 W/m2 and a very high baseline emission scenario assuming
radiative forcing of 8.5 W/m2 by 2100 [46]. Further, we analyzed the spatial–temporal
patterns, statistical characteristics, and the dynamics of suitability under and between
different combinations of the two scenarios and the three periods (Section 3.3).

It should be noted that before analyzing the suitability, we validated our results of
historical maize suitability evaluation using data from multiple sources and compiled using
multiple methods on past maize distribution to ensure the reliability of our methods and
criteria (Section 3.2). Besides, for future climate scenarios, we used a multimodel ensemble
approach to reduce uncertainty in the projected suitability levels. Thus, for a given grid cell,
we adopted the suitability level most frequently obtained under the 13 general circulation
models (GCMs) used in WorldClim projections.
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3. Results
3.1. Variables and Criteria for Global Assessment of Land Suitability for Maize Cultivation

The criteria for assessing, on a global scale, the land suitability for growing maize
comprised a total of 12 crucial environmental variables. The variables and their respective
thresholds for different grades indicating the extent to which a given site is suitable for
maize cultivation are shown in Table 2. Of the 12 environmental variables identified as
critical to maize cultivation, eight were climatic and four were related to soil. This prepon-
derance of climatic variables reflects the probable substantial impact of climate change on
maize cultivation. Of the eight climatic variables, five were related to temperature: BIO1
(annual mean temperature), BIO2 (mean diurnal temperature range), BIO3 (isothermal-
ity), BIO8 (mean temperature of the wettest quarter), and BIO10 (mean temperature of
the warmest quarter); the remaining three were precipitation (BIO16, precipitation in the
wettest quarter), sunlight (solar radiation), and wind (wind speed). The four variables
related to soil were CFRAG (percentage of coarse fragments, that is of diameter larger
than 2 mm), CNrt (carbon-to-nitrogen ratio), GYPS (gypsum content), and ORGC (organic
carbon content). These variables correspond well with the physical requirements of maize
as reported in the literature. For example, climatically, as a summer crop, maize is known
to prefer warm daytime temperatures, high light intensity, and cool nights and to require
adequate moisture during the growing season, especially when close to the tasseling
stage [47,48]. Strong winds can accelerate water loss from plants and make the plants prone
to lodging and to shedding the kernels [47]. As for the soil conditions, maize grows best
on soils with good drainage and aeration (that can be influenced by CFRAG) and needs
sufficient nutrients—mainly organic carbon and nitrogen—in the right proportions (as
reflected in the C/N ratio; [47,49]). Besides, as a soil amendment that has been used over a
long time, gypsum confers many benefits such as providing calcium and sulphur for plant
nutrition and making subsoil less acidic [50]. Thus, the environmental variables that we
chose through statistical analyses can characterize the physiological requirements of maize
adequately and are really critical to its growth.

Table 2. Criteria designed for assessing the land suitability for maize cultivation globally.

Variables Unsuitable Marginally
Suitable

Moderately
Suitable Suitable Optimal Unit

Solar
radiation <10,681 or >20,712 10,681–11,278 or

20,712–20,330 11,278–11,892 11,892–12,687 12,687–20,330 kJ m−2 day−1

Wind speed >5 4.8–5 4.3–4.8 3.8–4.3 1–3.8 m s−1

BIO1 <2.4 or >28.1 2.4–3.8 or 27.6–28.1 3.8–5.5 5.5–7.3 7.3–27.6 ◦C
BIO2 <6.7 or >24.3 6.7–7.2 7.2–7.7 7.7–8.3 8.3–24.3 ◦C
BIO3 <21.5 or >96.7 21.5–23.1 23.1–24.3 24.3–26.1 26.1–96.7 %
BIO8 <4.5 or >29.7 4.5–7.1 or 28.7–29.7 7.1–9.7 9.7–14.4 14.4–28.7 ◦C

BIO10 <13.1 or >33.1 13.1–16.1 16.1–17.3 17.3–18.7 18.7–33.1 ◦C
BIO16 <84 or >5497 84–139 139–167 167–205 205–5497 mm

CFRAG <2 or>24 21–24 19–21 17–19 2–17 %
CNrt <9 or >16 15–16 14–15 14 9–14 %
GYPS <1 or >31 29–31 22–29 18–22 1–18 g kg−1

ORGC <3 or >66 3–5 or 49–66 37–49 5–6 or 31–37 6–31 cmolc kg−1

For setting the threshold values for each variable, both percentile tails were chosen,
which is generally in line with the existing knowledge that the growth and development of
maize is affected adversely when the value of any of the environmental variables becomes
too high or too low [51–55]. However, the variables differ greatly in this respect. For
example, in the case of wind speed and the C/N ratio, the upper percentiles were more
adopted than the lower ones, showing that higher values of these variables were more
important. Carter and Hudelson [56] reported that lodging markedly influences maize
growth and grain yield, and Yusuf et al. [57] reported that a high C:N ratio can immobilize
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the nitrogen in soil and thus lowers maize productivity. In contrast, the lower percentiles
were more used for most of the climatic variables, such as BIO8, BIO16, and Solar radiation,
indicating that maize prefers ample light, warmth, and water. This is also consistent with
what we know of the physiological properties of maize [58]. The percentile settings we
chose, based on statistics, thus accurately reflected the critical values of the factors that
influence maize growth and development.

We therefore concluded that the criteria we established were scientifically reasonable.

3.2. Accuracy of Evaluation of Land Suitability for Maize Cultivation

We examined the accuracy of our assessment by comparing the past suitability (during
the 2000s)—in both qualitative and quantitative terms—with data on the distribution
of maize during the same period from multiple sources and compiled using different
methods. First, we used the data processed by Ramirez-Cabral et al. [17] for validation
and found that 79% of the occurrence records were within the categories modeled as
marginally to optimally suitable. Secondly, we used two sources of downscaled data on
global maize production, namely SPAM and MIRCA2000, for cross validation using the
method described by Stehman [59]: the overall accuracy was around 79% and the Kappa
coefficient was about 0.72 (Table 3, Table 4a). Therefore, we consider our evaluation to be
statistically accurate.

Table 3. Accuracy of evaluating land parcels as suitable for maize as judged by past data.

MIRCA_IR MIRCA_RF MIRCA_TOL SPAM_
HA-IR

SPAM_
HA-RF

SPAM_
HA-TOL

SPAM_
PA-IR

SPAM_
PA-RF

SPAM_
PA-TOL

Overall
accuracy 76.20% 78.80% 78.80% 76.20% 80.30% 80.40% 76.20% 80.20% 80.30%

Kappa
coefficient 0.88 0.6 0.55 0.91 0.67 0.64 0.92 0.68 0.64

Note: MIRCA, MIRCA2000 maize data set; IR, irrigated; RF, rain-fed, and TOL, total area. SPAM; SPAM 2005 ver. 2.0 maize data set; HA,
harvested area; PA, physical area. Overall accuracy: the proportion of grid cells classified as suitable (or unsuitable) for maize cultivation
and with (or without) actual maize cultivation. Kappa coefficient: a parameter to assess the extent to which the classification is superior to
a random classification.

Table 4. Projected total area (mha and percentage) suitable for maize worldwide: present and changes in the future.

Area (mha)
(Percentage of Total Area, %)

Percentage Change in Area (%)
under Future Climate Change

Maize suitability 2000s
RCP2.6 RCP8.5 RCP2.6 RCP8.5

2050s 2070s 2050s 2070s 2050s 2070s 2050s 2070s

Marginally suitable 1795
(30.42)

1718
(32.14)

1666
(31.26)

1502
(32.37)

1324
(33.49) −4.29 −7.19 −16.32 −26.24

Moderately suitable 1538
(26.06)

1482
(27.73)

1495
(28.05)

1286
(27.72)

1073
(27.14) −3.64 −2.80 −16.38 −30.23

Suitable 1283
(21.74)

1196
(22.38)

1214
(22.78)

1079
(23.25)

931
(23.55) −6.78 −5.38 −15.90 −27.44

Optimal 1285
(21.78)

949
(17.75)

955
(17.92)

773
(16.66)

625
(15.81) −26.15 −25.68 −39.84 −51.36

Total 5901 5345 5330 4640 3953 −9.42 −9.68 −21.37 −33.01

Percentage changes relative to the values during the 2000s.

We also examined the spatial consistency (Figure 3) between the predicted suitability
and a map showing the past area under maize (the SAGE historical map; [35]). The overlay
analysis showed that of the area under maize, 71.35% was correctly predicted as suitable for
maize, distributed mainly in China, India, some countries in Europe and Africa, the United
States, Mexico, Brazil, and Argentina. In contrast, sites on which maize had been grown but
were predicted as unsuitable accounted for 28.65% of the total area under maize, distributed
sporadically in north-eastern, north-western, and south-western China, Pakistan, Iraq, Iran,
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Russia, Indonesia, parts of sub-Saharan Africa, western United States, Peru, etc. These
areas are known for environmental factors (e.g., temperature and precipitation) that limit
crop growth and have a mean FMHA of 0.7% according to SAGE data. These areas can be
understandably regarded as unsuitable for maize cultivation, although measures such as
irrigation and stress-tolerant cultivars may have played a role in overcoming environmental
constraints and making maize cultivation possible [60–62].

Figure 3. Spatial consistency between areas predicted to be suitable for maize and those on which maize had been grown
during the 2000s.

On the other hand, maize was never grown on 28.77% of the sites predicted suitable
for its cultivation, probably because of such factors as local land use forms and choice of
the crop. For example, the Amazon basin and Congo basin are known to be covered by vast
rainforests, and cropland has been abandoned on a large scale in northern Kazakhstan [63].
As a result, maize is not grown in these areas although they are physically suitable for it.
These results also confirm our assessment to be spatially reasonable.

To sum up, our predictions of land suitability for maize in the past were in close
agreement with the existing situation in terms of both statistical accuracy and spatial
consistency, suggesting that the methods we used are reliable for large-scale assessment of
maize suitability.

3.3. Worldwide Land Suitability for Maize during Three Periods and under Two RCPs
3.3.1. Spatial–Temporal Patterns

Worldwide distribution patterns of land suitability for maize during the three periods
and under the two RCP scenarios are shown in Figure 4. It can be seen that in the past
(Figure 4a) the areas more suitable for maize were mainly in north-eastern and north-
ern China, South East Asia, eastern Australia, India, southern Europe, Central and East
Africa, eastern United States, and south-eastern parts of South America. Under RCP2.6
(Figure 4b,c), this distribution will change substantially by the 2050s. Specifically, many
areas currently considered highly suitable in Brazil, the Sahel, India, and South East Asia
are projected to become unsuitable, whereas some areas earlier considered unsuitable
in north-eastern China, eastern Mongolia, and southern Canada will become marginally
suitable. The distribution in the 2070s will be mostly the same as that in the 2050s, marked
by an overall decrease in highly suitable areas, mainly in South America, and slight in-
crease in marginally suitable areas along the Russia–Kazakhstan border. Under RCP8.5
(Figure 4d,e), compared with the situation during the 2000s, most of India, South East Asia,
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the Sahel, inland Brazil, many areas of northern China, and costal Mexico are projected
to become unsuitable for maize by the 2050s, whereas north-eastern China, Kazakhstan,
Russia, and southern Canada will be more suitable. A similar trend, albeit with smaller
changes, is projected for the 2070s, during which most of the Congo basin, northern China,
and northern Argentina will also basically cease to be suitable for maize cultivation.

Figure 4. Cont.
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Figure 4. Cont.
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Figure 4. Areas worldwide suitable for maize: past and future (results from ensemble (CMIP5 GCMs) mode). (a) In the past
(1970–2000); (b) in 2050s (2041–2060) under RCP2.6; (c) in 2070s (2061–2080) under RCP2.6; (d) in 2050s under RCP8.5; (e) in
2070s under RCP8.5. RCP: representative concentration pathway.

Changes in land suitability for maize between different periods under the same RCP
scenarios are shown in Figure 5. It can be seen that under RCP2.6 (Figure 5a,b), compared
with the situation during the 2000s, overall, areas at low altitudes will become less suitable
for maize cultivation by the 2050s, whereas those higher latitudes will become markedly
more suitable and those in some temperate regions will become slightly more suitable.
The overall trend and regional differences seen in the 2050s will remain more or less the
same in the 2070s, although the changes will be smaller and confined to fewer areas. Under
RCP8.5 (Figure 5c,d), compared with the situation during the 2000s, by the 2050s land
suitability for maize will increase mainly at higher latitudes in the northern hemisphere
whereas those in the tropics and even at mid latitudes including the North China Plain
will become markedly unsuitable. This pattern will remain broadly similar, albeit with
relatively small changes, in the 2070s, although the Congo basin may see a marked decrease
in land suitability for maize.

Differences in land suitability for maize cultivation under different RCP scenarios
during a given period are shown in Figure 6. It can be seen that during the 2050s and the
2070s, the suitability for maize cultivation will be less at low and middle latitudes and
more at high latitudes under RCP8.5 than that under RCP2.6; such differences can be much
more dramatic and widespread during the 2070s, although their spatial distribution will
be similar.
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Figure 5. Cont.
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Figure 5. Changes in worldwide land suitability for maize cultivation between different periods under the same RCPs.
(a) 2050s (2041–2060) relative to that in the past (1970–2000), under RCP2.6; (b) 2070s (2061–2080) relative to 2050s, under
RCP2.6; (c) 2050s relative to the past, under RCP8.5; (d) 2070s relative to 2050s, under RCP8.5. RCP: representative
concentration pathway. Note: The numbers indicate increases (positive) or decreases (negative) in the level of suitability.
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Figure 6. Differences in worldwide land suitability for maize cultivation under RCP8.5 relative to that under RCP2.6 during
(a) 2050s (2041–2060) and (b) 2070s (2061–2080). RCP: representative concentration pathway. Note: The numbers indicate
increases (positive) or decreases (negative) in the level of suitability.



Land 2021, 10, 295 17 of 31

3.3.2. Statistical Characteristics

Areas worldwide suitable to different extent for maize cultivation at present and in the
future and their proportions are shown in Table 4. The total area suitable for maize globally
was 5901 mha during the 2000s and will decrease to about 5350 mha, or by approximately
9%, in the 2050s and in the 2070s under RCP2.6; under RCP8.5, the area will decrease
further, to 4640 mha in the 2050s (a 21.37% decrease) and to 3953 mha in the 2070s (a
33.01% decrease). Of the total suitable area, the proportion of marginally suitable areas is
projected to be the largest under various combinations of RCPs and periods, increasing
slowly from 30.42% during the 2000s to 33.49% under RCP8.5 in the 2070s. The proportion
of moderately suitable areas will always be approximately 27% and that of suitable areas,
22%, equivalent to an increase of about 1% and 2%, respectively, from the proportions
during the 2000s to those under RCP8.5 in the 2070s. However, the proportion of the
optimal area shows a marked decrease, from 21.78% during the 2000s to 15.81% under
RCP8.5 in the 2070s. The areas under various suitability grades will also generally decrease
under different combinations of RCPs and periods compared to those during the 2000s,
but with significant differences in the extent of decease: the percentage changes in areas
are similar for marginally suitable, moderately suitable, and suitable, being −5% under
RCP2.6, −16% under RCP8.5 in the 2050s, and −28% under RCP8.5 in the 2070s, whereas
the corresponding decreases in the area optimally suited for maize will be approximately
−26%, −40%, and −50%.

In terms of the effects of the period and the RCP on the changes relative to the values
during the 2000s, the decrease will be markedly greater under RCP8.5 than that under
RCP2.6 both in the total suitable area and in the areas under different suitability grades,
especially in the 2070s. The decrease will be slightly greater in the 2070s than that in the
2050s under RCP2.6 but markedly so under RCP8.5. However, the extent of decrease
between the 2050s and the 2070s will be markedly smaller than that between the 2000s and
the 2050s.

4. Discussion
4.1. Impacts of Climate Change on Global Land Suitability for Maize Cultivation

The results of the present study indicate that, under climate change, the global maize
suitability would decrease in comparison with the 2000s, especially under higher emission
scenario (RCP8.5) and (or) in the longer future (2070s) (Figure 4, Table 4). Spatially, the
suitability is likely to substantially decrease in the low latitudes, even mid latitudes, which
are historically overall highly suitable for maize, while only slightly increase in higher
latitudes. Statistically, the total area of maize suitability will reduce under all the RCP-
period combinations, featured by the remarkable reduction of areas with higher suitability.

These results match those obtained by Ramirez-Cabral et al. [17] and Zabel et al. [4],
namely that as a result of climate change, the tropical regions will suffer the greatest losses
in terms of maize suitability, while poleward regions may experience an increase. This
again confirms latitudinal differences in the effects of climate change on land suitability
for maize. However, the present study is different in that it predicts that not only the low
latitudes, but also the mid latitudes are likely to suffer, as evident in the decrease in the
land suitability for maize in northern China and northern Argentina in the 2070s under
RCP8.5. Besides, our results also show that the areas more suited to maize, especially
those that are ideal or optimal for maize cultivation, may experience a dramatic reduction.
These disparities are probably due to the differences in the climate scenarios, in the GCMs,
and in the modeling methods used, as well as due to the different periods for which
the projections were made. Finally, our results were also in overall agreement with the
climate-based distribution of maize as modeled by Ramirez-Cabral et al. [17], while ours
revealed greater spatial heterogeneity. The difference was probably because we had used
climatic as well as nonclimatic factors for assessing suitability, rather than using climatic
factors alone—the pronounced zonality of the latter may have contributed to making the
results more homogeneous.
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Earlier studies have pointed out that the production of maize can be affected more
by changes in its harvested area than by its yield [64], although substantial reductions are
also predicted in average yields as a result of climate change [65]. Based on our results and
earlier findings, we propose that with the decrease in total area suitable for maize, further
the decrease in the area harvested, and the decrease in productivity of maize, world maize
production is likely to decrease substantially. The decrease in area will be particularly
marked in regions that are highly suited to maize, which account for the lion’s share in
global maize production. Given the critical role of maize as a staple food, and the growing
demand for it due to population growth and socioeconomic development [66], the above-
mentioned changes have serious implications for global food production and threaten food
security, livelihoods, social stability, and sustainable development, especially in the case of
developing countries. Therefore, urgent measures are necessary to mitigate and adapt to
the adverse impacts of climate change and to reduce the risk of failed crop production.

In addition, pairwise comparisons (Figures 5 and 6, Table 4) show that declines in
suitability for maize during the 2050s compared to the situation during the 2000s are
remarkably more widespread and intense than those between the 2050s and the 2070s,
and the declines under RCP8.5 are greater than those under RCP2.6. These observations
further highlight the urgency of early adoption of measures to reduce emissions of green-
house gases.

4.2. Impacts of Climate Change on Major Maize Producers

According to the FAO [67], the top five producers of maize, in the following order, are
the United States of America, China, Brazil, Argentina, and Ukraine and account for 71% of
the global production. Therefore, we chose these countries to explore the potential effects
of climate change on land suitability for maize cultivation (Table A6). In the past, in most
of these nations, the area suited to maize cultivation at least to some degree accounted for
more than 50% of the total land area—for Ukraine and Brazil, the share was more than
90%. However, these figures can change markedly owing to climate change. Specifically,
compared to the 2000s, the total area suitable for maize is likely to increase on average by
7.64% in China for all the combinations of RCPs and periods but decrease slightly in USA,
Ukraine, and Argentina, the peak decrease, under RCP8.5 in the 2070s, being −10.11%
in USA, −15.21% in Ukraine, and −23.13% in Argentina. The decrease in Brazil will be
approximately −27% under RCP2.6 and as much as 63% under RCP8.5. These findings
are consistent with the earlier ones, which also predict a decrease in Brazil and Argentina
and a slight increase in China [17]. However, our findings for USA, namely a decrease up
to 10%, differ from those of Ramirez-Cabral et al. [17], who predicted an increase of up to
16%. We attribute these differences to the differences in data, the methods used, and the
study periods.

In terms of the levels of suitability, the changes relative to the 2000s can vary across
the producers. However, the common thing is that all these nations are likely to see
sharp decreases in the area considered optimal for maize cultivation, by 17.16–42.91%
for USA, 7.46–16.38% for China, 31.6–71.47% for Brazil, 34.24–53.96% for Argentina, and
73.47–86.39% for Ukraine. Although these findings agree with the earlier ones, namely that
the acreage optimally suited for maize will decrease in Argentina, Brazil, and USA [17], our
findings differ in that we predict larger reductions in such acreage and in all the countries,
the differences being attributable mainly to the methods. To be specific, we applied the
law of the minimum (Section 2.4), which means that to qualify as optimally suitable, each
variable for a given area has to be highly favorable for maize, an obviously more stringent
criterion—and the one more likely to consider a given area as unsuitable because of an
undesirable change even in a single variable.

It can thus be concluded that for the major producers, the total area suitable for maize
will generally decrease in the future, especially at low latitudes, except China, which is
likely to record a slight increase. The crucial insight is that the small gains in areas less
suitable cannot compensate for the larger losses in areas more suitable. Particularly, areas
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optimally suited will be the most vulnerable and will lead to maximum adverse impact,
whereas the increase in area less suitable means little because those areas are also low in
productivity. Therefore, our analyses on the national scale point to a bleak future for maize
cultivation and production.

4.3. Feasibility of Methods and Future Research

The earlier studies on suitability generally lacked a rigorous and objective selection
of the influencing variables; as a result, the results of the assessments were less accurate
especially with large-scale assessments, and were focused mostly on climatic variables,
ignoring the effects of nonclimatic factors. Considering these research gaps, and based on
four assumptions (Section 2.1), we proposed a method for assessing the land suitability
for crop cultivation that was comprehensive as well as accurate even when used for large-
scale assessments (Section 2.3). On the one hand, we included the critical environmental
variables that affect cultivation through statistical analyses of large data sets—a more
objective method—instead of relying on existing literature or expert opinion, which are
often locally applicable and possibly subjective. On the other hand, we also included
nonclimatic factors in addition to the commonly used climatic ones. We then applied the
method to assess on a global scale the degree to which different areas were suited to maize
cultivation and estimated changes in their extent as a result of climate change (Section 2.4).
The criteria we established for maize suitability assessment proved scientifically reasonable,
generally consistent with existing knowledge of physiological requirements of maize in
terms of both critical environmental variables and their thresholds (Section 3.1). We
further tested the accuracy of those predictions in terms of both overall accuracy and
spatial consistency by matching the predictions with data on the distribution of maize
obtained from multiple sources and by multiple methods (Section 3.2). Based on the
extent to which the predictions fitted the data, we concluded that compared to the existing
approaches to assessing suitability, including the FAO land-evaluation approach and the
species distribution modeling approach, our method is more objective, comprehensive,
efficient, and reliable. The rationality and usefulness of our method can be highlighted in
the case of large-scale assessment of suitability for crops with wide geographical range and
great regional differences in cultivars, such as maize.

Our projections of land suitability for maize, a staple food, have major implications
(Sections 3.3, 4.1 and 4.2) for global and regional food production as well as sustainable
development. We also emphasize that for the first time, our research clarified the environ-
mental variables crucial for global-scale maize cultivation. Our method, after appropriate
revisions, can be extended to other crop species. Therefore, our study contributes to re-
search on the assessment of suitability and food security in the context of climate change in
terms of methods as well as data.

We are also aware that the present study has some limitations and can be improved.
First of all, we employed a numerical (statistical) approach to develop key variables con-
trolling land suitability for crop cultivation. This produced generally reasonable results
of variables and criteria for maize suitability assessment, as well as reliable estimations of
global-scale maize suitability. We realized that, however, as pure model work our method
lacks consideration of actual crop growth. As a result, there is no explicit connection of the
chosen variables to maize growth, and some of the resulting thresholds can be inconsistent
with well-known determinants of maize growth. For example, the variable BIO10 (mean
temperature of the warmest quarter) may be related to extremely high temperatures during
anthesis and post-anthesis growth stages that can adversely affect seed set [68,69]. Addi-
tionally, a huge amount of precipitation in the wettest quarter (BIO16) may cause aeration
or flooding problems, delay flowering and reduce grain yield [70,71]. Consideration of
such effects is necessary to ensure the validity of the approach. That is to say, our research
focuses on the data level and seeks to explore the relationships between physical conditions
and crop distribution and further establish criteria for suitability assessment through data
analyses. The method can contribute to the fast and generally reliable estimation of overall
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situations of land suitability for crops on a large scale. However, in future work it is vitally
important to consider the chemical, biological, thermal, and hydrological processes by
which crop productivity is determined, and clearly link the criteria to these processes, to
facilitate more accurate assessments.

Secondly, as mentioned in Section 2.1, in screening the variables for assessment we ig-
nored regional differences [32] or potential changes [34] in the physiological requirements of
maize. This decision may introduce some uncertainties in the choice of variables, which, in
turn, affects the results. Nevertheless, our choice can be justified on the following grounds.

(1) Our research was aimed at proposing a simple yet effective method for large-scale
assessment rather than focusing on a specific case study.

(2) The core of our method is objective and rigorous selection of crucial environmental
variables that influence large-scale assessment of suitability, not the characterization
of regional differences and potential changes in the requirements of maize.

(3) Currently no data are available on regional differences in the physiological require-
ments of maize, which have been neither fully expressed nor characterized. Similarly,
despite the achievements of plant breeding, it is difficult to predict, in fine detail,
what the climatic and other requirements of the newer varieties would be—or even
if the requirements would be different at all. We do not know of any such global
data product.

However, we agree that in future case studies both spatial differences and temporal
changes in physiological requirements of crops should be considered so long as the required
data are available. Incorporating local conditions in selecting the crucial variables and in
assigning appropriate weightings to those variables will help in establishing the criteria for
suitability assessment that are tailored to local conditions and are therefore likely to give
more reliable results.

Thirdly, we used the maize distribution data (grid cells with FMHA no less than 1%) to
establish criteria for maize suitability assessment based on the idea that such grids should
be physically suited to maize cultivation at least to some degree. However, we realize
that other data, such as maize yield can also be indicative for the suitability. Areas with
high maize yields generally have favorable physical conditions for its growth. The single
consideration of maize distribution and ignorance of differences in maize yield worldwide
could possibly bias the development of suitability assessment criteria. Nevertheless, actual
maize yield can be determined by various factors, including physical suitability, and
socioeconomic conditions such as fertilization, irrigation, technology. Therefore, we argue
that in future work yields should be considered but carefully used to provide further insight
into physical requirements of maize, and promote the detection of suitability parameters.

Last but not least, we considered simply physical factors in designing the criteria for
assessing suitability. These factors are sufficient to determine suitability on a large scale;
however, ignored anthropogenic factors such as infrastructure, technology levels, crop
production practices (tillage, crop rotation, etc.) can also influence the properties of soil and
the effect of some environmental factors and thus affect suitability on a local scale [72–75].
Although taking such factors into account may make the assessment more accurate, it will
be possible only if the data at sufficient temporal and spatial resolution are available and
so long as their impacts are clear and quantified.

5. Conclusions

Accurately assessing the land suitability for cultivating a given crop can provide a
scientific basis for ensuring food security and becomes urgent in the context of climate
change. The present study proposed a simple yet reliable method for large-scale, objective,
and comprehensive assessment of suitability and applied it to global cultivation of maize.
The suitability was assessed in two steps: (1) developing the appropriate criteria and
(2) assessing the suitability for three periods (the 2000s, the 2050s, and the 2070s) and under
two RCP scenarios (RCP2.6 and RCP8.5).
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As a result of climate change, the area suitable for maize will decline sharply at low
latitudes and even at mid latitudes, although some high-latitude areas that are currently un-
suitable will become more suitable. The total area considered suitable will keep shrinking,
with a marked decrease in area particularly suited to maize cultivation. The current major
maize-producing nations will generally experience significant reductions in the area suited
to maize, such reductions being greater under RCP8.5 in the 2070s than under RCP2.6 in
the 2050s. We therefore warn that climate change poses a serious threat to global maize
production, and it is imperative to take actions to cope with that threat, including not only
mitigation of climate change, but adaption measures such as variety breeding, shifting
cultivated areas, and improved management practices.

The predictions were generally consistent with actual data on worldwide distribution
of maize in the past and also with future projections on global and regional scales, proving
the reliability of our method for large-scale assessment of suitability. However, incorporat-
ing regional differences and potential changes in the physiological requirements of crop
varieties, as well as the influences of socioeconomic factors, will make such assessments
even more accurate.
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Appendix A

Table A1. List of data employed in this study.

Category Name (Content) Source and Reference Resolution Unit Usage

Maize
distribution

data

Maize harvested
area

Center for Sustainability and
the Global Environment
(SAGE), University of

Wisconsin-Madison [35]

5′ × 5′,
2000s %

Development of criteria
for maize suitability

assessment

Maize occurrence
data [17] 2014,

point N/A

Validation of historical
maize suitability

assessment results

Maize harvested
area (irrigated,

rainfed and total)

The global data set of monthly
irrigated and rainfed crop
areas around the year 2000
(MIRCA2000), Institute of

Physical Geography,
Goethe University Frankfurt

[36]

5′ × 5′,
2000s %

Maize physical and
harvested area

(irrigated, rainfed
and total) based on

productivity

(Spatial Production Allocation
Model) SPAM 2005 V2.0,

MapSPAM
[37]

5′×5′,
2005 %

Environmental
data

Historical climate:
WorldClim

1.4 variables

Geospatial and Farming
Systems Research Consortium

(GFC)
[38]

5′ × 5′,
1970–2000 N/A

Development of criteria
for maize suitability

assessment;
historical maize

suitability evaluation

Future climate:
WorldClim

1.4 downscaled
(CMIP5) climate

data

Geospatial and Farming
Systems Research Consortium

(GFC)
[38]

5′ × 5′,
2050s (2041–2060),
2070s (2061–2080);

13 climate models *

N/A Future maize suitability
evaluation

Soil:
WISE derived soil
properties (V1.2)

International Soil Reference
and Information Centre (ISRIC)

[40]

5′ × 5′,
2012 N/A

Development of criteria
for maize suitability

assessment;
Historical and future

maize suitability
evaluation

Terrain:
Global Median

Elevation

Food and Agriculture
Organization (FAO)

[39]

30” × 30”,
2000 m

Terrain:
Global Terrain

Slope

Food and Agriculture
Organization (FAO)

[39]

5′ × 5′,
2000 N/A

* The 13 CMIP5 (Coupled Model Intercomparison Project 5) GCMs (general circulation models) used for future projections: ACCESS1-0;
BCC-CSM1-1; CCSM4; CNRM-CM5; GFDL-CM3; INMCM4; IPSL-CM5A-LR; MIROC5; MIROC-ESM; MIROC-ESM-CHEM; MPI-ESM-LR;
MRI-CGCM3; NorESM1-M.
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Table A2. The original and selected environmental variables.

Category Name Definition

Climate

BIO1 ** Annual mean temperature

BIO2 ** Mean diurnal range (mean of monthly (max temp-min temp))

BIO3 ** Isothermality (BIO2/BIO7) (* 100)

BIO4 * Temperature seasonality (standard deviation * 100)

BIO5 * Max temperature of warmest month

BIO6 * Min temperature of coldest month

BIO7 Temperature annual range (BIO5–BIO6)

BIO8 ** Mean temperature of wettest quarter

BIO9 * Mean temperature of driest quarter

BIO10 ** Mean temperature of warmest quarter

BIO11 * Mean temperature of coldest quarter

BIO12 * Annual precipitation

BIO13 * Precipitation of wettest month

BIO14 Precipitation of driest month

BIO15 Precipitation seasonality (coefficient of variation)

BIO16 ** Precipitation of wettest quarter

BIO17 Precipitation of driest quarter

BIO18 Precipitation of warmest quarter

BIO19 Precipitation of coldest quarter

Solar radiation **

Wind speed **

Water vapor pressure *

Soil

ALSA Exchangeable aluminum percentage (% of ECEC)

BSAT Base saturation (% of CECs)

BULK Bulk density

CECC Cation exchange capacity of clay fraction (corrected for organic C)

CECS Cation exchange capacity

CFRAG ** Coarse fragments % (>2 mm)

CLPC Clay %

CNrt ** C/N ratio

ECEC Effective CEC

ELCO Electrical conductivity

ESP Exchangeable Na percentage (as % of CECs)

GYPS ** Gypsum content

ORGC ** Organic carbon content

PHAQ PH in water

SDTO Sand%

STPC Silt%

TAWC Volumetric water content (−33 to −1500 kPa, cm m−1)

TCEQ Carbonate content

TOTN * Total nitrogen content

TEB Total exchangeable bases

Terrain
Elevation

Slope

Note: * denotes initially selected variables; ** denotes finally selected variables.
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Table A3. KL values and rankings of all the environmental variables (except for slope).

Ranking Variable KL Ranking Variable KL

1 BIO1 111.71 22 TAWC 0.96
2 BIO11 72.32 23 ESP 0.91
3 BIO6 51.45 24 BIO7 0.82
4 BIO10 49.13 25 BIO15 0.79
5 BIO5 48.62 26 CECS 0.63
6 BIO8 45.11 27 CLPC 0.57
7 BIO9 19.64 28 BIO18 0.48
8 Wind speed 18.06 29 PHAQ 0.35
9 Solar radiation 5.20 30 TCEQ 0.28

10 Water vapor pressure 4.98 31 SDTO 0.20
11 ORGC 3.97 32 BIO19 0.19
12 CNrt 2.01 33 BIO14 0.18
13 TOTN 1.85 34 BULK 0.17
14 BIO16 1.74 35 ECEC 0.15
15 BIO12 1.74 36 ELCO 0.15
16 BIO13 1.68 37 BIO17 0.13
17 BIO3 1.64 38 CECc 0.12
18 BIO4 1.46 39 ALSA 0.12
19 GYPS 1.34 40 TEB 0.10
20 BIO2 1.17 41 STPC 0.09
21 CFRAG 1.13 42 BSAT 0.09

43 Elevation 0.09
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Table A4. The absolute values of the correlation coefficients of initially selected environmental variables.

|RHO| Solar
Radiation

Water
Vapor

Pressure

Wind
Speed BIO1 BIO2 BIO3 BIO4 BIO5 BIO6 BIO8 BIO9 BIO10 BIO11 BIO12 BIO13 BIO16 CFRAG CNrt GYPS ORGC TOTN

Solar radiation 1.00 0.50 0.32 0.70 0.46 0.61 0.54 0.66 0.59 0.47 0.65 0.59 0.68 0.08 0.33 0.30 0.16 0.12 0.04 0.26 0.34
Water vapor

pressure 0.50 1.00 0.55 0.91 0.21 0.74 0.78 0.55 0.92 0.63 0.81 0.68 0.90 0.64 0.62 0.64 0.13 0.12 0.10 0.14 0.23

Wind speed 0.32 0.55 1.00 0.57 0.1 0.46 0.53 0.3 0.51 0.36 0.52 0.37 0.56 0.4 0.51 0.51 0.14 0.12 0.02 0.13 0.23
BIO1 0.70 0.91 0.57 1.00 0.06 0.78 0.83 0.71 0.89 0.64 0.90 0.79 0.95 0.46 0.55 0.55 0.16 0.08 0.04 0.22 0.34
BIO2 0.46 0.21 0.1 0.06 1.00 0.15 0.04 0.39 0.12 0.08 0.05 0.13 0.03 0.35 0.18 0.19 0.04 0.12 0.09 0.18 0.19
BIO3 0.61 0.74 0.46 0.78 0.15 1.00 0.92 0.28 0.85 0.34 0.79 0.31 0.89 0.46 0.45 0.47 0.25 0.13 0.06 0.12 0.21
BIO4 0.54 0.78 0.53 0.83 0.04 0.92 1.00 0.24 0.83 0.30 0.82 0.31 0.90 0.52 0.48 0.51 0.25 0.20 0.07 0.11 0.22
BIO5 0.66 0.55 0.3 0.71 0.39 0.28 0.24 1.00 0.48 0.71 0.56 0.96 0.55 0.09 0.31 0.28 0.01 0.12 0.04 0.29 0.36
BIO6 0.59 0.92 0.51 0.89 0.12 0.85 0.83 0.48 1.00 0.58 0.84 0.59 0.96 0.53 0.58 0.59 0.17 0.11 0.08 0.14 0.23
BIO8 0.47 0.63 0.36 0.64 0.08 0.34 0.30 0.71 0.58 1.00 0.35 0.74 0.56 0.24 0.44 0.41 0.01 0.07 0.04 0.19 0.23
BIO9 0.65 0.81 0.52 0.90 0.05 0.79 0.82 0.56 0.84 0.35 1.00 0.63 0.91 0.43 0.47 0.48 0.19 0.11 0.03 0.17 0.29

BIO10 0.59 0.68 0.37 0.79 0.13 0.31 0.31 0.96 0.59 0.74 0.63 1.00 0.63 0.20 0.39 0.36 0.00 0.09 0.01 0.26 0.33
BIO11 0.68 0.90 0.56 0.95 0.03 0.89 0.90 0.55 0.96 0.56 0.91 0.63 1.00 0.50 0.57 0.58 0.19 0.13 0.07 0.17 0.29
BIO12 0.08 0.64 0.4 0.46 0.35 0.46 0.52 0.09 0.53 0.24 0.43 0.20 0.50 1.00 0.80 0.85 0.12 0.29 0.15 0.07 0.00
BIO13 0.33 0.62 0.51 0.55 0.18 0.45 0.48 0.31 0.58 0.44 0.47 0.39 0.57 0.80 1.00 0.98 0.14 0.18 0.10 0.04 0.13
BIO16 0.30 0.64 0.51 0.55 0.19 0.47 0.51 0.28 0.59 0.41 0.48 0.36 0.58 0.85 0.98 1.00 0.15 0.22 0.11 0.02 0.12

CFRAG 0.16 0.13 0.14 0.16 0.04 0.25 0.25 0.01 0.17 0.01 0.19 0.00 0.19 0.12 0.14 0.15 1.00 0.20 0.09 0.06 0.02
CNrt 0.12 0.12 0.12 0.08 0.12 0.13 0.20 0.12 0.11 0.07 0.11 0.09 0.13 0.29 0.18 0.22 0.20 1.00 0.12 0.41 0.30
GYPS 0.04 0.10 0.02 0.04 0.09 0.06 0.07 0.04 0.08 0.04 0.03 0.01 0.07 0.15 0.10 0.11 0.09 0.12 1.00 0.07 0.07
ORGC 0.26 0.14 0.13 0.22 0.18 0.12 0.11 0.29 0.14 0.19 0.17 0.26 0.17 0.07 0.04 0.02 0.06 0.41 0.07 1.00 0.88
TOTN 0.34 0.23 0.23 0.34 0.19 0.21 0.22 0.36 0.23 0.23 0.29 0.33 0.29 0.00 0.13 0.12 0.02 0.30 0.07 0.88 1.00
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Table A5. The distribution of global maize harvested area in terms of slope.

Slope Class (i) fA(i) fB(i)

1 3.8% 1.4%
2 8.6% 9.8%
3 12.3% 24.2%
4 12.0% 19.9%
5 11.7% 19.4%
6 11.5% 15.0%
7 12.1% 7.4%
8 12.7% 2.4%
9 2.9% 0.4%

Note: fA(i) denotes the proportion of area under maize to the total global land area for each slope class, and fB(i)
denotes the distribution of area under maize in terms of each slope class.

Figure A1. Cont.
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Figure A1. PDFs of initially selected environmental variables. Note: For each environmental variable, the blue line denotes
its probability density function based on all of the global terrestrial grids and the red line is that based on the grids defined
as the maize distribution area. The two vertical dotted lines are the 5th and 95th percentile lines, respectively.
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Table A6. Projected area (mha and percentage) suitable for maize in the top five producers: present and changes in the future.

Producer Maize Suitability Level

Area (mha)
(Percentage of Total Suitable Area, %)

Percentage Change in Area (%)
under Future Climate Change

2000s
RCP2.6 RCP8.5 RCP2.6 RCP8.5

2050s 2070s 2050s 2070s 2050s 2070s 2050s 2070s

USA

Marginally suitable 169.6 (30.35) 155.25 (28.11) 154.08 (27.7) 154.69 (28.7) 138.64 (27.6) −8.46 −9.15 −8.79 −18.26
Moderately suitable 165.68 (29.65) 174.38 (31.58) 175.68 (31.58) 169.05 (31.37) 166.74 (33.19) 5.25 6.03 2.03 0.64

Suitable 117.07 (20.95) 135.43 (24.52) 138.29 (24.86) 148.13 (27.49) 136.18 (27.11) 15.68 18.12 26.52 16.32
Optimal 106.51 (19.06) 87.17 (15.78) 88.24 (15.86) 67.03 (12.44) 60.81 (12.11) −18.17 −17.16 −37.07 −42.91

Total 558.87 552.23 556.28 538.90 502.36 −1.19 −0.46 −3.57 −10.11

China

Marginally suitable 112.93 (25.02) 122.03 (24.54) 123.2 (24.63) 129.96 (26.84) 121.08 (26.21) 8.06 9.10 15.08 7.22
Moderately suitable 122.36 (27.11) 134.66 (27.08) 138.56 (27.7) 121.24 (25.04) 117.69 (25.48) 10.05 13.24 −0.92 −3.81

Suitable 90.91 (20.14) 134.28 (27) 132.83 (26.56) 128.23 (26.49) 107.32 (23.23) 47.71 46.11 41.05 18.05
Optimal 125.22 (27.74) 106.36 (21.39) 105.55 (21.1) 104.71 (21.63) 115.88 (25.08) −15.06 −15.71 −16.38 −7.46

Total 451.42 497.34 500.15 484.13 461.97 10.17 10.79 7.25 2.34

Brazil

Marginally suitable 103.82 (12.61) 98.22 (16.19) 82.2 (13.79) 26.54 (7.27) 16.92 (6.75) −5.39 −20.83 −74.44 −83.70
Moderately suitable 235.92 (28.66) 159.78 (26.33) 161.33 (27.07) 76.42 (20.94) 60.69 (24.21) −32.27 −31.61 −67.61 −74.28

Suitable 204.79 (24.88) 158.12 (26.06) 162.86 (27.33) 127.11 (34.83) 93.52 (37.31) −22.79 −20.47 −37.93 −54.33
Optimal 278.71 (33.86) 190.64 (31.42) 189.51 (31.8) 134.85 (36.95) 79.52 (31.73) −31.60 −32.01 −51.62 −71.47

Total 823.24 606.77 595.90 364.92 250.65 −26.29 −27.62 −55.67 −69.55

Argentina

Marginally suitable 31.67 (17.04) 41.09 (22.61) 43.62 (24) 54.19 (31.88) 42.64 (29.84) 29.75 37.72 71.11 34.62
Moderately suitable 22.55 (12.13) 40.93 (22.52) 37.95 (20.88) 26.9 (15.82) 22.57 (15.79) 81.53 68.33 19.31 0.09

Suitable 29.46 (15.85) 32.49 (17.88) 34.45 (18.96) 31.72 (18.66) 30.64 (21.44) 10.26 16.93 7.65 4.00
Optimal 102.21 (54.98) 67.21 (36.99) 65.69 (36.15) 57.19 (33.64) 47.05 (32.93) −34.24 −35.73 −44.05 −53.96

Total 185.89 181.72 181.71 170.00 142.90 −2.24 −2.25 −8.55 −23.13

Ukraine

Marginally suitable 17.82 (32.29) 19.88 (36.82) 19.69 (35.67) 20.03 (39.88) 20 (42.73) 11.55 10.48 12.39 12.19
Moderately suitable 23.41 (42.41) 22.24 (41.19) 22.69 (41.11) 19.17 (38.16) 16.78 (35.87) −4.97 −3.05 −18.10 −28.29

Suitable 12.84 (23.27) 11.67 (21.61) 12.52 (22.69) 10.8 (21.5) 9.86 (21.08) −9.15 −2.50 −15.94 −23.20
Optimal 1.12 (2.03) 0.21 (0.39) 0.3 (0.54) 0.23 (0.46) 0.15 (0.33) −81.43 −73.47 −79.43 −86.39

Total 55.19 54.00 55.20 50.23 46.80 −2.16 0.02 −9.00 −15.21

Percentage changes relative to the values during the 2000s.
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