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Abstract: Gross primary productivity (GPP) is the most basic variable in a carbon cycle study that
determines the carbon that enters the ecosystem. The remote sensing-based light use efficiency
(LUE) model is one of the primary tools that is currently used to estimate the GPP at the regional
scale. Many remote sensing-based GPP models have been developed in the last several decades, and
these models have been well evaluated at some sites. However, an accurate estimation of the GPP
remains challenging work using LUE models because of uncertainties in the model caused by model
parameters, model forcing, and vegetation spatial heterogeneity. In this study, five widely used LUE
models, Glo-PEM, VPM, EC-LUE, the MODIS GPP algorithm, and C-fix, were selected to simulate
the GPP of the Heihe River Basin forced using in situ measurements. A multiple-model averaging
method, Bayesian model averaging (BMA), was used to combine the five models to obtain a more
reliable GPP estimation. The BMA was trained using carbon flux data from five eddy covariance
towers located at dominant vegetation types in the study area. Generally, the BMA method performed
better than any single LUE model. From the case study in the study area, it is indicated that the
trained BMA is an efficient method to combine multiple LUE models and can improve the GPP
simulation accuracy.

Keywords: carbon flux; remote sensing; bayesian model averaging

1. Introduction

Gross primary productivity (GPP) is the rate of carbon fixation through vegetation
photosynthesis. GPP is a key measure of the carbon mass flux in carbon cycle studies [1].
Accurately estimating the GPP at the regional scale is of importance to understand the
carbon cycle mechanism in a specific region. The light use efficiency (LUE) model, which
uses remote sensing observations as inputs, is one the most effective tools to estimate
regional GPP [2]. In the LUE model, GPP is a function of the amount of photosynthetically
active radiation (PAR), the fraction of PAR absorbed by the plant canopy (fAPAR), and
environmental factors (e.g., temperature, soil moisture, and vapor pressure deficit) [3].
Additionally, the GPP can be obtained at the ecosystem scale by using the eddy covariance
(EC) technique. A lot of networks have been established using the EC technique to monitor
the carbon flux between the vegetation and the atmosphere [4]. The EC measurements
provide in-situ data to validate and calibrate the LUE models, and this enhances the
development of LUE models.

In recent years, many LUE models have been developed, demonstrating different per-
formances in different regions [5–8]. To reduce the uncertainties in regional GPP estimation,
the simple average of the LUE model ensemble is widely used in many studies [9]. Thus,
how to integrate the outputs of multiple models to obtain a more reliable GPP is valuable
for the exploration of ecosystem function variations with climate change. The Bayesian

Land 2021, 10, 329. https://doi.org/10.3390/land10030329 https://www.mdpi.com/journal/land

https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0003-3591-4091
https://doi.org/10.3390/land10030329
https://doi.org/10.3390/land10030329
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/land10030329
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land10030329?type=check_update&version=1


Land 2021, 10, 329 2 of 10

model averaging (BMA) method [10] has been witnessed to be an effective method to
integrate the output of multiple models, and it has been used to simulate water flux using
the model ensemble [11]. However, how the BMA performs for the LUE model’s ensemble
integration has not been well studied. Thus, the primary objectives of this study are (1) to
evaluate the BMA method at dominant vegetation types in the study area and (2) to obtain
a more accurate GPP estimation in the study area using the ensemble of LUE models.

2. Materials and Methods
2.1. Study Area

The Heihe River Basin is the second-largest inland river basin in China and is located
in the northwest arid region of China. The elevation ranges from 5300 m upstream to
900 m downstream. It contains diverse landscapes, such as glaciers, permafrost, alpine
steppe/meadow, and forests in the upstream and irrigated croplands, riparian vegetation,
wetlands, and gobi desert in the middle stream and downstream [12]. An EC measurement
network was established in 2013 in the Heihe River Basin [13,14]. The flux between the
ecosystem and the atmosphere and ancillary meteorological variables were measured in
the dominant vegetation types of this region. The measured data was collected from five
sites from 2014 to 2015. The detailed information of these sites is listed in Table 1, while the
spatial distribution of these sites is shown in Figure 1. The Arou site and the Dashalong
site are located in the upstream, and the vegetation is the alpine meadow. The Daman site
and the Shidi site are located in the middle stream, and the vegetation is maize (cropland)
and reed (wetland), respectively. The Sidaoqiao site is located in the riparian zone of the
downstream, and the vegetation at this site is tamarisk.

Table 1. Information of the Eddy Covariance (EC) sites in the Heihe River Basin.

Site Name Land Cover Latitude Longitude Elevation (m)

Arou Grassland 38.0473 100.4643 3033
Dashalong Grassland 38.8399 98.9406 3739

Daman Cropland (Maize) 38.85551 100.3722 1556
Shidi Wetland 38.97514 100.4464 1460

Sidaoqiao Shrubland 42.0012 101.1374 873
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The EC measured 10 Hz data was processed using despike, coordinate rotation, fre-
quency response correction, and WPL correction to obtain the half-hourly data [15]. Then
the half-hourly EC data was gap-filled and partitioned into the GPP and ecosystem respira-
tion using the REddyProc package (https://cran.r-project.org/web/packages/REddyProc
(accessed on 10 January 2019)) [16] in the R environment. The measured air temperature,
downward shortwave radiation, relative humidity, soil moisture, and GPP daily value
were used to force or validate the LUE model. The MODIS reflectance at these sites was
extracted from the MOD09A1 collection 6. The normalized difference vegetation index
(NDVI), the enhanced vegetation index (EVI), and the land surface water index (LSWI)
were calculated from the MODIS reflectance data at these sites.

2.2. LUE Models

The LUE model is an effective tool to estimate the GPP using remote sensing data.
LUE models can be generalized as the following formula:

GPP = FAPAR × PAR × LUEmax × f(T, S, —) (1)

where FAPAR is the fraction of absorbed photosynthetically active radiation (PAR). LUEmax
is the maximum light using efficiency, and f(T, S, —) is an environmental scalar on the
photosynthesis rate. According to different schemes to quantify the environmental stress
on photosynthesis, many LUE models have been developed. In this study, five widely
used LUE models were selected to simulate the GPP seasonal dynamic at dominant veg-
etation types of the study area. They were Global Production Efficiency Model (GLO-
PEM) [17], Vegetation Photosynthesis Model (VPM) [18], Carbon fixation model (C-Fix) [5],
Eddy Covariance-Light Use Efficiency (EC-LUE) [6], and MODIS GPP product algorithm
(MODIS-PSN) [7]. All the models were forced using in-situ measured meteorological
data and default parameters for each site. Information regarding these models is listed in
Table 2.

Table 2. The Light Use Efficiency (LUE) models used in this study.

Model Main Formula Input Variables

GLO-PEM GPP = APAR × LUEmax× f(T) × f(SM) × f(VPD) PAR, NDVI, T, SM, VPD
VPM GPP = APAR × LUEmax× f(T) × f(LSWI) × f(P) PAR, EVI, T, LSWI
C-Fix GPP = APAR × LUEmax× f(T) × f(CO2) PAR, NDVI, T, CO2

EC-LUE GPP = APAR × LUEmax× f(T) × f(EF) PAR, NDVI, T, EF
MODIS-PSN GPP = APAR × LUEmax× f(TMIN) × f(VPD) PAR, NDVI, TMIN, VPD

T: air temperature; SM: soil moisture; VPD: vapor pressure deficit; EF: evaporative fraction.

2.3. Bayesian Model Averaging

Bayesian model averaging is a scheme for the integration of outputs from multiple
models. More detail regarding the theory can be found in the literature [10]. In the BMA
method, the posterior distribution of the simulation variable, y, can be calculated using the
following expression:

p(y|D) =
k

∑
i=1

p( f i|D )pi(y| fi , D) (2)

where y is the variable to be simulated, D =
[
yobs

1 , yobs
2 , · · · , yobs

T

]
is the training data with

length T, f = [ f1, f2, · · · , fk] is the ensemble of outputs from k different models, p( fi|D)
is the posterior probability of a simulation given the observation D, and pi(y| fi, D) is the
posterior distribution of y given the model simulation fi and the observed dataset D.

Finally, the posterior mean is estimated using the following formula:

E[y|D] =
k

∑
i=1

p( fi|D )·E[pi(y| fi, D)] =
k

∑
i=1

wi(ai + bi fi) (3)

https://cran.r-project.org/web/packages/REddyProc
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where wi is the weight for model i and ∑k
i=1 wi = 1; ai and bi are bias correction terms that

are derived using a simple linear regression of y on fi.
Measurements obtained from the five sites in 2014 were used to train the BMA

method, and measurements obtained in 2015 were used to validate the performance
of the BMA method.

2.4. Model Accuracy Evaluation

The determinant coefficient, R2, and the root mean square error (RMSE) were used to
evaluate the model performance. The formulas for R2 and the RMSE are as follows:

R2 = 1− ∑n
i=1(Pi −Oi)

2

∑n
i=1
(
Oi −O

)2 (4)

RMSE =

√
1
N

n

∑
i=1

(Pi −Oi)
2 (5)

where Pi is the simulated GPP, Oi is the EC-measured GPP in this study, O is the average of
all the measurements, and N is the number of measurements.

3. Results
3.1. Carbon Flux Dynamics in the Heihe River Basin

The seasonal carbon flux dynamics of the five dominant vegetation types in the
Heihe River Basin are shown in Figure 2. The annual carbon flux is summarized in
Table 3. Carbon flux at these sites had an obvious seasonal cycle. The carbon flux be-
gan increasing in early May, reached the maximum in July and returned to the mini-
mum in later October (Figure 2). Alpine grassland is the dominant vegetation type in
the upper stream of the study area. Both Arou and Dashalong are covered with alpine
grass. From the carbon flux measurement, the annual GPP was 862.76 gC/m2/year at
Arou and 477.91 gC/m2/year at Dashalong. The annual Net Ecosystem Exchange (NEE)
was −144.08 gC/m2/year at Arou and −309.89 gC/m2/year at Dashalong. The annual
Ecosystem Respiration (ER) was 718.69 gC/m2/year at Arou and 168.02 gC/m2/year at
Dshalong. Artificial and natural oases are the dominant landscapes in the middle stream
of the Heihe River Basin. Carbon flux at two sites in the oases, a cropland (Daman) and a
wetland (Shidi), was measured. In the middle stream, the annual GPP for the cropland was
1364 gC/m2/year and 1087 gC/m2/year for the wetland, the annual NEE for the cropland
was −688 gC/m2/year and −585 gC/m2/year for the wetland, and the annual ER for
the cropland was 676 gC/m2/year and 502 gC/m2/year for the wetland. Natural oasis
dominates the vegetated area in the downstream of the study area. The Sidaoqiao site is
located in the natural oasis region of the downstream. The vegetation type is tamarisk at
the Sidaoqiao site. This site is close to the main river channel. At the Sidaoqiao site, the
annual GPP was 709 gC/m2/year, the annual NEE was −201 gC/m2/year, and the annual
ER was 508 gC/m2/year. All of these sites were carbon sinks and absorbed more than
100 gC/m2/year.

Table 3. Annual carbon flux at the five study sites in the Heihe River Basin.

Site Name
GPP (gC/m2/yr) NEE (gC/m2/yr) ER (gC/m2/yr)

2014 2015 2014 2015 2014 2015

Arou 845.90 879.63 −175.61 −112.54 670.29 767.08
Dashalong 506.58 449.24 −314.61 −305.16 191.97 144.08

Daman 1329.96 1397.60 −726.94 −648.23 603.02 749.36
Shidi 1008.57 1165.77 −559.52 −609.76 449.05 556.02

Sidaoqiao 664.82 753.58 −190.00 −211.96 474.82 541.62
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3.2. The BMA Based GPP Estimation

The determinant coefficient and RMSE were calculated between the simulated GPP
and the EC-measured GPP (Table 4). As expected, the results from the trained BMA method
had the highest accuracy. Averaging the R2 and RMSE among all of the sites indicated that
BMA had the highest R2 and the lowest RMSE among all the models during the training
and validation stages (Table 4). However, if one looks at one of the five sites, the BMA was
not always the highest-accuracy method, and some LUE models performed better than
the BMA. The LUE models performed differently at different sites. At a specific site, the
performance of the LUE models varied greatly. For example, the R2 of the C-fix model
in 2014 at the Dashalong site was 0.73, but the R2 was 0.97 in 2015 at the Daman site. At
the Arou site, the MODIS-PSN model performed better than other LUE models, but the
C-fix model performed better than other LUE models at the Sidaoqiao site. Overall, at each
site, the BMA method was close to the best one of the LUE models. To further explore
the performance of these methods, the residual is plotted for each method (Figure 3). The
residuals of the BMA method were uniformly distributed around 0 and were less than the
standard deviation (SD) of the measurements. The residuals of the BMA method were
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smaller than all the LUE models. All the LUE models had values outside the 1x standard
deviation range. Even GLO-PEM and EC-LUE had values outside the 2x standard deviation
range. The convergence trajectory of the coefficients for LUE models at the Arou site is
shown in Figure 4. The initial coefficients for each LUE model were assigned a fixed value,
and the value changed during the iteration and quickly reached a steady-state (Figure 4).

Table 4. Determinant coefficients and RMSEs between the simulated GPP and the EC-measured GPP. (Data measured
during 2014/2015 was used to train/validate the BMA method. The highest R2 and the smallest RMSE were bolded.).

Site
R2 RMSE (gC/m2/8 day)

VPM EC-
LUE C-Fix GLO-

PEM
MODIS
_PSN BMA VPM EC-

LUE C-Fix GLO-
PEM

MODIS
_PSN BMA

Arou Training 0.95 0.95 0.95 0.95 0.97 0.96 6.7 8.1 8.4 26.0 6.0 4.8
Validation 0.95 0.94 0.94 0.94 0.95 0.95 10.1 7.0 10.9 23.8 10.3 6.9

Dashalong Training 0.83 0.79 0.73 0.79 0.79 0.8 8.8 7.1 10.7 10.9 9.6 6.0
Validation 0.88 0.91 0.84 0.82 0.76 0.87 7.1 3.9 8.2 13.2 8.4 4.7

Daman Training 0.95 0.94 0.95 0.94 0.96 0.95 11.5 13.6 9.6 23.9 10.9 8.4
Validation 0.96 0.96 0.97 0.95 0.98 0.97 15.7 8.4 8.2 41.5 6.7 8.6

Shidi Training 0.83 0.85 0.87 0.81 0.82 0.84 9.9 15.5 14.7 39.5 13.6 8.6
Validation 0.75 0.82 0.79 0.83 0.82 0.81 18.4 16.1 17.0 40.9 13.5 15.1

Sidaoqiao Training 0.93 0.91 0.94 0.93 0.91 0.95 5.7 7.2 4.8 24.3 8.5 3.4
Validation 0.85 0.84 0.87 0.85 0.78 0.87 9.3 9.7 7.4 25.7 11.6 7.6

All sites Training 0.90 0.90 0.90 0.89 0.90 0.91 9.5 11.0 10.2 21.6 10.8 5.8
Validation 0.88 0.90 0.89 0.88 0.85 0.90 12.7 9.9 10.9 25.1 11.3 8.1
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4. Discussion

The high spatial heterogeneity of GPP is an obstacle to accurately obtain regional GPP.
We found that the carbon flux obtained using the eddy covariance method varied greatly
among the different vegetation types. The artificial oasis dominated by croplands showed
the highest GPP and carbon sequestration capacity. This indicates that both natural factors
and human activity have a great impact on carbon flux and cannot be neglected. Eddy
covariance is one of the commonly used techniques to measure ecosystem-scale carbon flux,
but still it involves many uncertainties that should be noted when analyzing the data. The
uncertainties primarily result from three aspects. First, the eddy covariance data quality is
affected by sensor configurations and meteorological conditions [19]. Hence, strict quality
control is required for the raw data before its use. Second, due to instrument malfunction
and spikes, data gaps are inevitable in the raw data, and gap-filling is a necessary step to
obtain continuous carbon flux [20]. This process also leads to uncertainties in the results.
Third, the eddy covariance method only directly measures the NEE, and the GPP and
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ER are partitioned from the NEE with some hypothesis, a fact that can also result in
uncertainties in the GPP and ER [21,22].

The LUE model performance changed greatly with vegetation types. The LUE model
is a widely used method to estimate the GPP, especially at the regional scale. However,
GPP simulated using the LUE model contains uncertainties that result from the model
parameters, meteorological input data, and remote sensing input data [23,24]. Model
parameters vary with species and vegetation community compositions, and the LUE
models usually only provide default parameters for the major vegetation types. When
applying the LUE models in a small region, the default parameters may result in great
uncertainties. The uncertainties that result from meteorological input data are primarily
caused by gap filling and the interpolation of measured data. Remote sensing input data
(such as FPAR, NDVI, EVI, LSWI and others) in the LUE model also contain uncertainties
that result from bad data quality [25]. Some studies reported that model parameters have a
larger impact on the simulation accuracy than the meteorological input data and remote
sensing input data [26].

BMA is an effective method to improve modeling accuracy. Every model has some
limitations caused by its hypothesis and parameterization scheme [27]. The average of
multiple model outputs can overcome this problem and be thought of as more reliable
than a single model output. In many studies, the classical average of a model ensemble
has been used to conduct the research [28,29]. BMA provides a way to obtain the model
ensemble weighted average [30]. By training the BMA method with measurement data,
different weights are assigned to different models, and the weights also vary with spatial
and vegetation type changes. This is more reasonable than the classical average because
the performances of the LUE models are different at different locations and with different
vegetation types [31,32]. Many studies have reported that BMA can improve the sim-
ulation accuracy than the classical average in stream-flow forecasting models [33] and
evapotranspiration models [11]. This is consistent with the finding of the current study,
where the RMSE of the BMA method was 5.8 gC/m2/8 day during the training period
and 8.1 gC/m2/8 day during the validation period, while the classical averages were
12.6 gC/m2/8 day and 13.98 gC/m2/8 day, respectively. This demonstrates that BMA has
the potential to improve GPP estimation by integrating multiple LUE models. Meanwhile,
training process is vital to BMA application. The short data period for BMA training may
result in some uncertainties in the simulation in this study. The training data should be as
comprehensive as possible. Additionally, BMA is also able to calculate the uncertainties in
its estimated GPP, which is useful when conducting the analysis with remote sensed GPP.
In this study, we take the Heihe River Basin as an example to demonstrate the performance
of the BMA method. As a universal method, if BMA is well-calibrated at the global scale, it
can integrate the global GPP products and output high quality global GPP estimation.

5. Conclusions

In this study, five LUE models and the multi-model ensemble method were evalu-
ated using measured daily carbon flux and meteorological data in the Heihe River Basin.
The measured carbon flux data indicate that the GPP varied greatly among the different
ecosystems in the Heihe River Basin from upstream to downstream. The cropland and
wetland in the middle stream had the highest carbon uptake capacities. Performance of
the LUE models indicated that the LUE models contain uncertainties resulting from model
parameters and model struct. Single LUE model performance is not robust in different
vegetation types. The LUE models without parameter calibration exhibited great inconsis-
tencies in GPP simulations. The BMA method is an effective tool to integrate multi-model
ensemble output. The RMSE between the BMA-simulated GPP and EC-measured GPP
was the smallest. The use of the BMA method allows for the combination of multiple LUE
models to yield a high-accuracy GPP.
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