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Abstract: Satellite remote sensing is a useful tool for estimating crop variables, particularly Leaf Area
Index (LAI), which plays a pivotal role in monitoring crop development. The goal of this study was
to identify the optimal Sentinel-2 bands for LAI estimation and to derive Vegetation Indices (VI) that
are well correlated with LAI. Linear regression models between time series of Sentinel-2 imagery and
field-measured LAI showed that Sentinel-2 Band-8A—Narrow Near InfraRed (NIR) is more accurate
for LAI estimation than the traditionally used Band-8 (NIR). Band-5 (Red edge-1) showed the lowest
performance out of all red edge bands in tomato and cotton. A novel finding was that Band 9 (Water
vapor) showed a very high correlation with LAI. Bands 1, 2, 3, 4, 5, 11, and 12 were saturated at
LAI ≈ 3 in cotton and tomato. Bands 6, 7, 8, 8A, and 9 were not saturated at high LAI values in cotton
and tomato. The tomato, cotton, and wheat LAI estimation performance of ReNDVI (R2 = 0.79, 0.98,
0.83, respectively) and two new VIs (WEVI (Water vapor red Edge Vegetation Index) (R2 = 0.81, 0.96,
0.71, respectively) and WNEVI (Water vapor narrow NIR red Edge Vegetation index) (R2 = 0.79, 0.98,
0.79, respectively)) were higher than the LAI estimation performance of the commonly used NDVI
(R2 = 0.66, 0.83, 0.05, respectively) and other common VIs tested in this study. Consequently, reNDVI,
WEVI, and WNEVI can facilitate more accurate agricultural monitoring than traditional VIs.

Keywords: Sentinel-2; spectral bands; LAI; vegetation indices

1. Introduction

Monitoring crop growth and performance during developmental stages is an essential
aspect of agricultural management. Leaf Area Index (LAI) is a good proxy of the vegetation
state [1–3] and a good yield predictor [4–6]. LAI is a dimensionless quantity that character-
izes plant canopies. It is defined as the one-sided green leaf area per unit ground surface
area. The LAI is an important parameter in plant ecology and a measure of the photosyn-
thetic active area, and at the same time of the area subjected to transpiration. It is also the
area that comes in contact with air pollutants. LAI is often a key biophysical variable used
in biogeochemical, hydrological, and ecological models. LAI is also commonly used as
a measure of crop growth and productivity at spatial scales ranging from the plot to the
globe. Moreover, activities such as herbicide and fertiliser management, leaf chlorophyll
content estimation, detection of crop disease, and yield prediction can be based on LAI
monitoring [7].

LAI can be estimated from VIs [8–11] produced from imagery acquired by optical
satellites, but this approach suffers from a low correlation between LAI and some bands
that the VIs are based on. Many studies showed that LAI estimation from optical imagery
suffers from saturation when LAI is greater than 3 (i.e., the LAI changes at a faster rate
than the reflectance) [11–14]. Since the LAI of many crops typically exceeds this level
by a large margin, optical sensors have limited use for LAI estimation. Most previous
studies that defined this saturation effect were based on older sensors (e.g., Landsat, Modis,
SPOT) [15–17], and accordingly, Vegetation Indices (VIs) intended for those sensors. In 2015
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the first Sentinel-2 became operational, which marked the arrival of the new generation
of satellites. The Multi-Spectral Instrument (MSI) onboard Sentinel-2 observes the earth
at 13 spectral bands with a spatial resolution from 10 to 60 m (depending on the band)
and a five-day revisit time. MSI is a spaceborne multispectral instrument that thoroughly
covers the red edge spectral range, which is highly sensitive to the chlorophyll reflectance
in plants [18]. The red-edge spectral range covers the wavelengths of 680–750 nm, where
the change of leaf reflectance is sharp [19,20]. In order to estimate LAI from Sentinel-2,
there is a need to evaluate which bands suffer from the saturation that was observed in
previous generations of spaceborne sensors and explore ways to overcome this limitation.

In addition to LAI modelling based on VIs, several machine learning algorithms for LAI
estimation based on Sentinel-2 bands were studied and showed mixed results [11,21–23].
Previous studies on different wavebands [24], including simulated Sentinel-2 bands,
concluded that the red edge is the best spectral region for LAI estimation in several
crops [2,3,25–27]. Therefore, careful selection of the bands used to derive VIs and machine
learning algorithms can improve the performance and generality of the LAI estimation
models based on Sentinel-2 imagery. Nevertheless, while several studies investigated the
performance of MSI-based VIs and machine learning algorithms for LAI estimation of
tomato, wheat, and cotton [11,28–30], very few studies investigated the performance of the
real MSI bands (as opposed to synthetic data) in the LAI estimation of these crops [31].

Therefore, this study’s first goal was to model LAI using real Sentinel-2 imagery and
field-measured LAI to quantify the performance of individual bands and their saturation
levels in cotton, tomato and wheat. The second goal of the study was to suggest well-
performing VIs that employ bands not commonly used for VI derivation and facilitate
better agricultural monitoring.

2. Materials and Methods
2.1. Test Sites and Field Measurements

The field data used in this study were collected during one cotton, two wheat, and
three processing tomatoes experiments conducted in five locations in Israel (Figure 1).
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The Sentinel-2 image inventory used for this study is presented in Table 1. Over-
all, 56 Sentinel-2 images were used in the study (14—wheat, 33—processing tomatoes,
9—cotton). During these experiments, LAI was measured by a SunScan Canopy Analysis
System—SS1 developed by Delta-T Company (Cambridge, United Kingdom). The SunScan
is a widely used, accurate, nondestructive LAI measurement system successfully employed
in many previous studies [5,30,32]. The SunScan system measures LAI by calculating
the difference in solar radiance received by the dome sensor installed under unobscured
Sun view and the hand-held probe placed below vegetation canopy on the ground level
(Figure 2).

Table 1. The Sentinel-2 bands used in the present study.

Band Sentinel-2A Sentinel-2B

Central
Wavelength (nm)

Bandwidth
(nm)

Central
Wavelength (nm)

Bandwidth
(nm)

Spatial
Resolution (m)

Band 1—Coastal aerosol 442.7 21 442.2 21 60
Band 2—Blue 492.4 66 492.1 66 10

Band 3—Green 559.8 36 559.0 36 10
Band 4—Red 664.6 31 664.9 31 10

Band 5—Vegetation red edge 1 704.1 15 703.8 16 20
Band 6—Vegetation red edge 1 740.5 15 739.1 15 20
Band 7—Vegetation red edge 3 782.8 20 779.7 20 20

Band 8—NIR 832.8 106 832.9 106 10
Band 8A—Narrow NIR 864.7 21 864.0 22 20
Band 9—Water vapour 945.1 20 943.2 21 60

Band 11—SWIR 1613.7 91 1610.4 94 20
Band 12—SWIR 2202.4 175 2185.7 185 20
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Figure 2. Main components of the SunScan system: (A) Dome sensor; (B) Probe; (C) Field computer.

Each LAI value used for model calibration was an average value of at least 30 field
measurements. LAI was measured in the center of the fields and was correlated to average
values of Sentinel-2 bands and VIs of homogenous areas in the fields’ centers. In the Megido
2020 experiment, LAI was measured in two areas of the field (in the center of the field
(six LAI measurements) and on the northwest corner (four LAI measurements)) where
the crop developed at different rates and, thus, LAI was different. Accordingly, both time
series of the field measurements were correlated with the average values of bands and
VIs within defined polygons. In-field paths and their surrounding area were masked out
from analysis polygons of the tomato experiments to remove bare soil areas and avoid
border effects. These excluded areas consisted of approximately 20% of the overall polygon
areas in the tomato fields. Therefore, each tomato polygon consisted of either two or four
vegetated regions separated by the paths.

Overall, 11 averaged LAI values taken during two growing seasons were used for
deriving the wheat models, nine for cotton (one season), and 23 for tomato (three seasons).
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The linear regression models in this study utilised the average values derived from satel-
lite imagery within the analysis polygons and same-date field measurements or linearly
interpolated LAI values of field measurements from adjacent dates.

2.2. Satellite Imagery

Sentinel-2 is an Earth observation mission and part of the European Space Agency
(ESA) Copernicus program. It includes two satellites with a payload of MSI, namely
Sentinel-2A (launched 23 June 2015) and Sentinel-2B (launched 7 March 2017). Table 1
lists the spectral bands of Sentinel-2 that were used in this study. The inventory of the
atmospherically and topographically corrected Level-2A Sentinel-2 images used in this
study alongside the information on the LAI measurements can be found in Tables 2 and A1.
Level-2A and Level-1C imagery were downloaded from the ESA Copernicus site (https:
//scihub.copernicus.eu/dhus/#/home, accessed on 6 April 2021) (# means “Number”).
Level-1C images were processed to Level-2A using Sen2Cor algorithm [33].

Table 2. Sentinel-2 imagery and LAI measurements used in the study.

Area Crop Period * # of Images Polygon Size
(Sentinel-2 Pixels)

# LAI
Measurements

Range of
Measured LAI

Saad Wheat 02-March-2019
06-April-2019 6 260 4 4.8–7.1

Yavne Wheat 11-January-2019
11-April-2019 8 550 7 3.8–7.0

Gadash Tomato 3-May-2019
24-July-2019 8–9 ** 425 6 1.4–4.7

Gadot Tomato 25-April-2019
14-August-2019 12–13 ** 249 11 0.7–9.1

Gadot Tomato 7-May-2020
3-August-2020 11 332 6 0.9–8.6

Megido Cotton 30-May-2020
29-July-2020

9
4

268 (Centre)
17 (NW Corner)

6
3

0.6–9.6
0.8–1.9

* Indicates the dates of the first and last images. ** A defective red edge band in a Sentinel-2 image acquired on 10 June 2019 prevented the
derivation of red edge-based models for that date.

2.3. Model Calibration and Validation

Linear regression models were derived to estimate LAI for specific crops based on
field measurements and Sentinel-2 bands. Similarly, regression models between LAI and
VIs were derived, including NDVI [34] and NDVI based on the Narrow NIR Band-8A
instead of NIR Band-8. Additionally to NDVI, models were also derived for reNDVI [35],
MTCI [36], WDVI [37], EVI [38], SAVI [39], MSAVI [40], DVI [34], and two new indices:
WEVI (Water vapor red Edge Vegetation Index) and WNEVI (Water vapor narrow NIR red
Edge Vegetation index). For every model, the R2 and root mean square error (RMSE) values
were calculated using the Microsoft Excel software. WEVI and WNEVI were developed
based on combinations of the best performing bands for LAI estimation. The following
equations and Sentinel-2 bands were used for deriving the aforementioned VIs:

NDVI = (B8 − B4)/(B8 + B4) (1)

NDVI8A = (B8A − B4)/(B8A + B4) (2)

MTCI = (B6 − B5)/(B5 − B4) (3)

WDVI = B8 − 0.5 × B4 (4)

EVI = (2.5 × (B8 − B4))/(B8 + 6 × B4 − 7.5 × B2 + 1) (5)

SAVI = ((B8 − B4))/ (B8 + B4 + 0.5)) × 1.5 (6)

MSAVI = ((B8 − B4) × (1 + L))/(B8 + B4 + L) (7)

https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
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where: L = 1 − 2 × s × NDVI × WDVI and s is the soil line slope = 0.5

DVI = B8 − B4 (8)

reNDVI = (B8A − B6)/(B8A + B6) (9)

WEVI = B9 − B6 (10)

WNEVI = (B8A − B6)/(B9 + B6) (11)

3. Results

Table 3 shows the performance of the separate Sentinel-2 bands and VIs for LAI
estimation of cotton, tomato, and wheat. Overall, the bands that modelled LAI best were
Band-7 (Red edge-3), Band-9 (Water vapor), and two NIR bands (8 and 8A). Notably, Band-
8A (Narrow NIR) showed a higher correlation with LAI and lower RMSE in LAI estimation
than Band-8 (NIR) in all three crops. Consequently, NDVI8A performed better than NDVI.
Importantly, Band-4 (Red) showed average performance, and Band-5 (Red edge-1) showed
weak performance relative to other bands in tomato and cotton. Therefore VIs based on
the better performing bands might be beneficial for LAI estimation. One such VI, namely
reNDVI, showed a very high estimation performance. Finally, the high performance in LAI
prediction by the Water vapor Band-9 suggests that this band might be useful for creating
VIs with good correlation to LAI. This result was confirmed by low RMSE and high R2

values of the new WEVI and WNEVI that are based on Band-9. The two new VIs proposed
in the study (WEVI and WNEVI) alongside reNDVI showed superior performance in LAI
predictions compared to NDVI and NDVI8A in all three crops, with the largest difference
in wheat.

Table 3. Performance of Sentinel-2 bands and VIs used in the present study. The performance of best
performing bands and VIs for each crop are in bold.

Tomato Cotton Wheat

Band/VI R2 RMSE R2 RMSE R2 RMSE

Band 1—Coastal aerosol 0.08 2.4 0.58 2.4 0.17 1.1
Band 2—Blue 0.13 2.3 0.52 2.5 0.02 1.2

Band 3—Green 0.00 2.5 0.57 2.4 0.06 1.2
Band 4—Red 0.65 1.5 0.81 1.6 0.02 1.2

Band 5—Vegetation red edge 0.00 2.5 0.75 1.8 0.22 1.1
Band 6—Vegetation red edge 0.79 1.1 0.93 1.0 0.01 1.2
Band 7—Vegetation red edge 0.78 1.2 0.96 0.7 0.26 1.0

Band 8—NIR 0.78 1.2 0.96 0.7 0.23 1.1
Band 8A—Narrow NIR 0.82 1.1 0.97 0.7 0.34 1.0
Band 9—Water vapour 0.80 1.1 0.97 0.7 0.29 1.0

Band 11—SWIR 0.01 2.5 0.12 3.4 0.00 1.2
Band 12—SWIR 0.61 1.6 0.82 1.5 0.00 1.2

NDVI 0.66 1.4 0.83 1.5 0.05 1.2
NDVI8A 0.71 1.3 0.87 1.3 0.05 1.2
reNDVI 0.79 1.1 0.98 0.6 0.83 0.5
MTCI 0.16 2.3 0.95 0.8 0.53 0.8
WDVI 0.76 1.2 0.94 0.9 0.29 1.0

EVI 0.78 1.2 0.95 0.8 0.26 1.0
SAVI 0.73 1.3 0.92 1.0 0.14 1.1

MSAVI 0.75 1.2 0.93 1.0 0.15 1.5
DVI 0.77 1.2 0.94 0.9 0.19 1.1

WEVI 0.81 1.1 0.96 0.7 0.71 0.6
WNEVI 0.79 1.1 0.98 0.6 0.79 0.5

Figure 3 shows the reflectance in each band and the corresponding LAI measurements
in this study’s experiments. The reflectance in bands 1, 2, 3, 4, 5, 11, 12 in cotton and
processing tomatoes start saturating from LAI ≈ 3 and almost no longer changing at
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LAI ≈ 6. This result is especially important because bands 4 and 5 are used in many VIs.
On the other hand, bands 6, 7, 8, 8A, 9 were not saturated. Insufficient satellite imagery
and field measurements of LAI were acquired during the wheat experiments and hindered
estimating the saturation levels of this crop.
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Figure 3. Band reflectance and LAI measurements in the following experiments: (A) Wheat Saad, (B)
Wheat Yavne, (C) Cotton Megido (centre of field), (D) Tomato Gadash 2019, (E) Tomato Gadot 2019,
(F) Tomato Gadot 2020.

Figure 4 shows the RMSE of Sentinel-2 bands LAI estimation for wheat, cotton, and
tomato. While the RMSE of Sentinel-2 bands most commonly used in VIs formulae (bands
2-8A) in wheat LAI estimation is closer to each other, Band-4 and Band-5 have notably high
RMSE in cotton and tomato LAI estimation, and this is especially pronounced for Band-5
in tomato.



Land 2021, 10, 505 7 of 13Land 2021, 10, x FOR PEER REVIEW 8 of 19 
 

 
Figure 4. RMSE of Sentinel-2 bands in tomato, cotton, and wheat LAI estimation. 

Figure 5 shows reNDVI, WEVI, WNEVI, NDVI, and MTCI linear regression models 
for tomato, cotton, and wheat. 

Figure 6 shows the LAI measurements and LAI estimation based on the VIs used in 
this study using the models described in Table 3. While several VIs showed similar be-
havior in LAI estimation, MTCI, MSAVI, reNDVI, WEVI, and WNEVI were notably dif-
ferent. MTCI, affected by the low performance of the Band-5, did not perform well in to-
mato LAI estimation in Gadot 2019 and 2020. MSAVI notably underestimated wheat LAI 
values. Conversely, reNDVI, WEVI, and WNEVI show closer resemblance to measured 
LAI than all other VIs. In the present study, no difference in the spectral response of Sen-
tinel-2A and -B satellites was observed owing to an excellent radiometric cross-calibration 
of the MSI on both satellites.  

Figure 4. RMSE of Sentinel-2 bands in tomato, cotton, and wheat LAI estimation.

Figure 5 shows reNDVI, WEVI, WNEVI, NDVI, and MTCI linear regression models
for tomato, cotton, and wheat.

Figure 6 shows the LAI measurements and LAI estimation based on the VIs used
in this study using the models described in Table 3. While several VIs showed similar
behavior in LAI estimation, MTCI, MSAVI, reNDVI, WEVI, and WNEVI were notably
different. MTCI, affected by the low performance of the Band-5, did not perform well in
tomato LAI estimation in Gadot 2019 and 2020. MSAVI notably underestimated wheat LAI
values. Conversely, reNDVI, WEVI, and WNEVI show closer resemblance to measured LAI
than all other VIs. In the present study, no difference in the spectral response of Sentinel-2A
and -B satellites was observed owing to an excellent radiometric cross-calibration of the
MSI on both satellites.
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4. Discussion

This study investigated the performance of the individual Sentinel-2 bands and VIs in
estimating LAI of tomato, cotton, and wheat. This study’s most important finding is that
bands 6, 7, 8, 8A, 9 performed well in LAI estimation and did not saturate at high LAI in
cotton and processing tomatoes. At the same time, the wheat data was insufficient to make
this determination. Therefore, these bands can be used to create VIs for LAI monitoring.
VIs such as reNDVI and two new VIs introduced in this study for the first time, WEVI and
WNEVI, which are based on these bands, performed well in LAI estimation, better than
the commonly used NDVI as well as all the other VIs used in the study.

Band-8A (Narrow NIR) showed better performance in LAI estimation compared to
Band-8 (NIR). Therefore, NDVI derived based on Band-8A performed better than NDVI
based on Band-8. Band-4 (Red) was found to have an average performance. Therefore, sub-
stituting Band-8 with Band-8A and possibly substituting Band-4 with a better-performing
band (such as Band-6 used in reNDVI) is likely to improve the correlation of VIs with LAI,
and facilitate more accurate agricultural monitoring. The high performance of the reNDVI
achieved in the study supported this hypothesis. Unlike red edge and NIR bands, Band-9
(Water vapor) is not commonly used as a VI formulae but can be used in VIs such as WEVI
and WNEVI developed in this study. The analysis of Band-9 performance, which is not
commonly used for agricultural monitoring, and developing VIs based on this band that
perform well in LAI estimation of the three crops, is the unique feature of the present study.

Unlike red edge bands 6 and 7 that showed high performance, Band-5 (Red edge-1), at
the tail of the chlorophyll absorption peak [41], showed the lowest overall performance out
of all the red edge bands. This might be explained by the negative effect of the chlorophyll
content present in the leaves [10,14,42–44], which reaches maximum absorbance at about
690 nm [45]. Moreover, chlorophyll content may vary independently from LAI [46]. In
this study, MTCI, based on Band-5, showed low performance in tomato LAI estimation.
MTCI was previously found to have low correlation with tomato crop coefficient (Kc) and
height [11]. Nevertheless, MTCI was highly correlated with LAI of cotton and wheat in the
present study. MTCI was also previously found to have very high correlation with cotton
Kc [47,48] as well as a very good correlation with leaf chlorophyll concentration [25,49]
and LAI of many crops [3,23,50]. Consequently, despite its effective use for crop variable
estimation in many cases, Band-5 and VIs based on this band (e.g., MTCI) should be used
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with caution to model tomato variables. Similarly, careful selection of Sentinel-2 bands
might improve the performance of various machine learning algorithms, for example, the
SNAP Biophysical processor [51].

The results and approach demonstrated in this study can be useful in many agricul-
tural applications based on remote sensing data, for example Zaeen et al., [52] who developed
in-season potato yield prediction models based on several VIs, and Kganyago el al., [22] that
studied the performance of SNAP Biophysical processor machine learning algorithm in
LAI estimation of several crops. These applications might benefit from further investigation
of the correlations between Sentinel-2 bands and various vegetation variables.

In the present study, all the Sentinel-2 bands and the majority of VIs (except reNDVI,
WEVI, and WNEVI) showed low performance in LAI estimation of wheat. Therefore,
despite the achievements in estimating LAI using Sentinel-2 bands in tomato, cotton,
and wheat, additional measurements of wheat are needed to estimate Sentinel-2 bands
saturation levels in that crop. Moreover, owing to the spectral resemblance of the Sentinel-2
MSI and the VENµS sensors [2,11,53], a combination with VENµS might facilitate better
agricultural monitoring, considering its high two-day temporal resolution.

Overall, the study quantified the performance of the individual Sentinel-2 bands
and several VIs (including two newly developed VIs) in the LAI estimation of tomato,
cotton, and wheat. Such a result facilitates deriving efficient algorithms and methods for
agricultural monitoring via optical satellite imagery.

5. Conclusions

This study is a step towards improving agricultural practices such as variable rate irri-
gation, fertilizer and herbicide application, yield prediction, disease monitoring, and many
others. This achievement is made possible because of the newly-derived VIs and models
that can estimate LAI throughout the season without saturation. As a result, agricultural
practices informed through remote sensing can potentially improve agricultural production.

This study found that Sentinel-2 Band-8A (Narrow NIR) is more accurate for LAI
estimation than Band-8 (NIR). A very important achievement of the study is that the
Band-5 (Red edge-1) showed a low correlation with LAI. Band 9 (Water vapour) showed
a very high correlation with LAI alongside the red-edge bands 6 and 7 and NIR bands.
Band-9 was demonstrated to be effective for LAI estimation when incorporated into new
VIs suggested here for the first time, WEVI and WNEVI. Importantly, Bands 1, 2, 3, 4, 5,
11, 12 were saturated at LAI ≈ 3 and were practically not responsive to a further increase
in LAI around LAI ≈ 6. Bands 6, 7, 8, 8A, 9 did not saturate at high LAI. ReNDVI, WEVI,
and WNEVI were found to be the best performing VIs for LAI estimation of all three crops
tested in this study.
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Appendix A

Table A1. Sentinel-2 images inventory and LAI measurements data used in the study.

Gadash 2019 Gadot 2019 Gadot 2020 Megido 2020 Saad 2018 Yavne 2019

Tomato Tomato Tomato Cotton Wheat Wheat

Sentinel-2
Images

LAI Mea-
surements

LAI
Value

Sentinel-2
Images

LAI Mea-
surements

LAI
Value

Sentinel-2
Images

LAI Mea-
surements

LAI
Value

Sentinel-2
Images

LAI Mea-
surements

LAI
Value

Sentinel-2
Images

LAI Mea-
surements

LAI
Value

Sentinel-2
Images

LAI Mea-
surements

LAI
Value

1 21 May 16 May 0.6 21 May 16 May 0.3 20 May 20 May 0.8 30 May 2 25 May 2 0.3 2 2 March 1 March 7.0 11 January 6 January 3.5
2 26 May 28 May 2.5 26 May 28 May 1.3 30 May 27 May 2.3 4 June 2 9 June 2 1.1 2 7 March 14 March 7.1 16 January 20 February 6.6
3 31 May 12 June 3.0 31 May 4 June 1.8 4 June 14 June 6.2 9 June 2 17 June 2 2.3 2 17 March 25 March 7.5 21 January 7 March 7.7
4 10 June 1 27 June 3.6 10 June 1 12 June 3.6 9 June 24 June 8.8 14 June 2 2 July 2 5.3 2 22 March 9 April 5.0 26 January 21 March 6.8
5 25 June 10 July 3.5 25 June 27 June 8.2 14 June 14 July 7.8 4 July 20 2 19 July 2 9.6 2 27 March 31 January 28 March 7.3
6 5 July 25 July 4.7 5 July 3 July 8.9 24 June 21 July 5.0 14 July 2 2 August 2 8.7 2 6 April 5 February 7 April 6.4
7 15 July 15 July 10 July 9.7 29 June 19 July 2 25 February 11 April 4.4
8 20 July 20 July 25 July 5.6 4 July 24 July 2 11 April
9 25 July 25 July 7 August 4.8 14 July 29 July 2

10 30 July 11 August 5.8 19 July 30 May 3 25 May 3 0.6 3

11 4 August 15 August 4.9 4 June 3 9 June 3 1.3 3

12 9 August 9 June 3 17 June 3 2.2 3

13 14 August 14 June 3

1 A defective red edge band in a Sentinel-2 image acquired on 10 June 2019 prevented the derivation of red edge-based models for that date. 2 Polygon in the centre of the field. 3 NW polygon.
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