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Abstract: This study examined the relationship between stream temperature and environmental
variables in a semiarid riparian corridor in northcentral Oregon, USA. The relationships between
riparian vegetation cover, subsurface flow temperature, and stream temperature were characterized
along an 800 m reach. Multiple stream temperature sensors were located along the reach, in open
and closed canopy areas, with riparian vegetation cover ranging from 4% to 95%. A support
vector regression (SVR) model was developed to assess the relationship between environmental
characteristics and stream temperature at the larger valley scale. At the reach scale, results show
that air temperature was highly correlated with stream temperature (Pearson’s r = 0.97), and no
significant (p < 0.05) differences in stream temperature levels were found among sensor locations,
irrespective of percent vegetation cover. Channel subsurface temperature levels from an intermittent
flow tributary were generally cooler than those in the perennial stream in the summer and warmer
during winter months, indicating that the tributary may have a localized moderating effect on stream
temperature. At the valley scale, results from the SVR model showed that air temperature, followed
by streamflow, was the strongest variable influencing stream temperature. Also, riparian area land
cover showed little effect on stream temperature along the entire riparian corridor. This research
indicates that air temperature, subsurface flow, and streamflow are important variables affecting the
stream temperature variability observed in the study area.
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1. Introduction

The increased air temperature levels associated with climate change will likely result
in decreased snowpack, leading to earlier peak flows [1], reduced summer flows [2],
and increased stream temperatures [3,4]. The combined effects of climate change and
shifts in land cover, such as those associated with urbanization or forestry, are also linked
to increased stream temperature [5,6], a trend seen in many regions across the United
States [7,8] and Europe [9–11].

Increased stream temperatures are associated with detrimental ecological impacts [8],
including reduced dissolved oxygen concentrations [3], reduced species richness and diver-
sity in stream ecosystems [12], and changes in primary production and nutrient uptake [13].
An increase in stream temperature can lead to lethal and sub-lethal effects in cold-water fish
species such as salmonids [14,15], a species of concern in the Pacific Northwest region in
the United States and Canada. Multiple biotic and abiotic factors influence stream tempera-
ture, including atmospheric characteristics such as precipitation and air temperature lapse
rates [16], basin elevation [17], streamflow volume [18], streambed surface [19], flooding
events [20], shallow groundwater inflows [21], and topography [22].
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Stream temperature dynamics differ across spatial and temporal scales. The primary
drivers of stream temperature vary with climate, season [23], stream size and order [24],
and distance from the headwaters [25]. Daraio and Bales [26] found that land-use change,
particularly the conversion to urban development, was associated with stream temperature
increases near the headwaters of a stream, but climate change was more influential on
modeled stream temperature over a larger spatial scale. Webb et al. [27] found that stream
discharge demonstrated more influence on short-term stream temperature, although the air
temperature was more impactful on stream temperature over more extended periods and
when streamflow was below median levels. Leach et al. [28] found that western Oregon’s
headwater streams showed considerable temperature variability during summer and dry
winter seasons. Mayer [23] found that thermal sensitivity to air temperature was lower
in summer than other times of the year in humid and semiarid systems in the Pacific
Northwest. In the same study, Mayer also found that the monthly baseflow index, channel
slope, and channel length were important predictors of stream temperature during the
summer, while annual stream temperature was explained mainly by air temperature and
streamflow. Similarly, the stream heat budget and thermal capacity can also vary across
temporal and spatial scales and are crucial to understanding stream temperature dynamics.

The thermal capacity of a stream is primarily a function of stream depth and velocity.
Greater streamflow volume is associated with lower stream temperatures [16,27,29], indi-
cating that the increased thermal capacity associated with greater streamflow volume may
mitigate some increases in air temperature. Additionally, stream temperatures in snowmelt-
fed, steeper-elevation systems have been less sensitive to air temperature changes than
lower elevation, rain-dominated stream systems [30]. Woltemade [18] found that while
stream temperature was strongly associated with both riparian cover and air temperature,
the relative influence of both was reduced with increased discharge. Channel width and
streamflow velocity also impact the level of influence solar radiation will have on stream
temperature [31], and areas of steeper gradient and greater stream velocity may warm
less quickly than areas with a shallower gradient. Smaller streams may be more impacted
by ambient temperature increases, although groundwater inputs in small streams may
mitigate these impacts [32]. In particular, deep groundwater-fed streams are less impacted
by fluctuations in air temperature than streams with shallower flow sources [33].

In addition to air temperature, solar radiation also plays a significant role in the heat
budget of a stream. Multiple studies [19,34,35] have indicated that solar radiation strongly
influences stream temperature. Riparian vegetation, in particular, has been the focus
of many studies into stream temperature dynamics and water quality [36–40]. Land-use
changes, particularly the removal and alteration of riparian vegetation, can influence stream
temperature by increasing the amount of solar radiation that reaches a stream. Riparian
vegetation removal has been associated with increases in maximum and mean stream tem-
perature [15,25,26,34–43] and reducing undercanopy diurnal temperature ranges [41,42].
For example, Johnson and Jones [43] found an increase in maximum stream temperatures
and that maximum stream temperatures occurred earlier in the year following riparian veg-
etation removal. Johnson [19] also found that riparian shade was associated with reduced
maximum stream temperature but not reduced daily mean or minimum temperature. It is
also important to note that while riparian canopy reduces solar radiation that reaches the
water [24,44], it does not cool the water directly [45].

A variety of physically-based (e.g., Heat Source [46], SSTEMP [47]) and machine
learning/statistically based (regression [48–50], neural network [51,52]) models have been
used to understand the impact of environmental characteristics on stream temperature.
A review of various approaches used in stream temperature modeling was written by
Benyahya et al. [53]. Regression analyses to assess stream temperature have been widely
used and vary in type (e.g., multiple linear vs. logistic), the number and type of parameters
used, and spatial and temporal scale. For example, Neumann et al. [54] used stepwise
regression to model maximum daily stream temperature using daily maximum air tem-
perature and streamflow in Reno, NV. Piotrowski and Napiorkowski [55] assessed six
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catchments using a logistic regression model incorporating air temperature, flow, and sun
declination. Segura et al. [56] used a multiple linear regression approach to predict stream
temperatures based on air temperature and examined the relationship between site-specific
characteristics, such as drainage and forest cover, and stream temperature. Arismendi [48]
found that regression approaches using air temperature were able to predict stream tem-
peratures during the period of data collection but performed poorly at predicting stream
temperatures outside of this period.

Support vector regression (SVR), an application of the support vector machine (SVM)
algorithm, is a commonly used non-parametric supervised classification approach that,
either solo or in combination with SVM, has been used in several hydrologic prediction
applications, including precipitation downscaling [57], lake water levels [58], flood fre-
quency [59], streamflow prediction [60,61], and water temperature predictions (e.g., [62,63]).
SVR is a robust regression approach that predicts values based on a best-fitting line (hyper-
plane) while minimizing the error within a set threshold (ε). Rehana [63] found that SVR
performed better than a multiple linear regression approach to model river temperature
and Quan et al. [62] found that SVR-based models performed better than an artificial neural
network model to predict reservoir temperature.

Most studies assessing stream temperature–environment relationships have been
conducted in temperate forests. This study aimed to enhance base knowledge of land cover
and environment interactions influencing stream temperature variability in a semiarid
agricultural corridor in northcentral Oregon, USA. Study objectives were to: (1) characterize
riparian vegetation shade-stream temperature and subsurface flow-stream temperature
connections at the reach scale; and (2) develop a support vector regression model to assess
stream temperature–environment relations at the larger valley scale.

2. Materials and Methods
2.1. Study Site

This study was conducted in the Fifteenmile Creek (15-MC) watershed (121.103◦ W,
45.462◦ N) in northcentral Oregon, USA, which covers 96,700 hectares. The 15-MC wa-
tershed is located within the Dalles Ecological Province, bounded between the Cascade
Mountain range to the west and grasslands of the Columbia Basin to the east [64]. The re-
gion is mainly semiarid, and precipitation varies considerably with elevation from 300 mm
in the valley in the eastern portion of the watershed to 2500 mm in the western upland
areas near the 15-MC’s origin [65]. Most precipitation (62%) in the region falls between
October and February, with 30% falling during the dryland growing season from March
to June [63]. The 15-MC is largely snowmelt fed, and 22% of stream length in the basin is
perennial [65]. The main stem within the watershed is 15-MC, and it extends 87 km from its
headwaters near Lookout Mountain at 1950 m above sea level (mASL) to its convergence
with the Columbia River at 24 mASL.

Land cover in the basin transitions from fir and pine-dominated forests at higher
elevations to oak, grasses, and forbs near the beginning of the agricultural valley, to
a sagebrush steppe ecosystem in the lower-elevation areas. Eighty-five percent of the
watershed is privately owned, and a large portion of the lower-elevation areas of the
watershed is used for agricultural purposes [66]. Wheat is the main crop grown in the
dryland hillside portions of the watershed. The main crops grown in the irrigated valley
are alfalfa, grass, and cherries. Water for sprinkler or drip irrigation, the two most common
methods used in the valley, comes from surface and groundwater sources. Irrigation
accounts for a sizeable portion of water usage in the region [65]. Overstory riparian
vegetation in the valley is dominated by Alder (Alnus spp.), followed by willow (Salix spp.),
and the understory is dominated by reed canary grass (Phalaris arundinacea). Channelization
of sections of the 15-MC in response to a flooding event in 1964 has substantially decreased
the stream’s sinuosity in areas near Dufur, OR [67]. Other riparian and instream areas in
the valley have also been altered through road building [68].
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Relative narrow valleys are spread throughout the watershed on alluvial deposits
overlying basalt deposits typical of the region [68]. Silty-loam and loamy soils are com-
monly found in the riparian areas throughout [69]. The riparian soils are formed of volcanic
materials, loess, and sedimentary rock deposited by alluvial processes. Depth to water
table in the riparian corridor ranges from 0.6 to 0.9 m in the valley, and it is greater than
2 m in upland locations [66].

2.1.1. Surface and Subsurface Flow Temperature Interactions—The Reach Scale

Temperature data collected in an 800 m reach of 15-MC were used to assess stream
temperature variability and characterize tributary subsurface flow in locations with varying
levels of riparian canopy cover. Stream, air, and subsurface flow temperature data were
collected hourly at multiple locations along the reach. Seventeen (17) sensors (model Tidbit,
Onset Computer Corp., Bourne, MA, USA) were used to measure stream water temperature
along the 15-MC valley reach. Two additional sensors were placed at upstream and
downstream locations for measuring air temperature. All 19 stream and air temperature
sensors were tested in the laboratory in ice, water, and ambient temperature conditions and
were found to be within factory accuracy specifications. The stream temperature sensors
were installed along the reach to account for variable vegetation shade levels and north or
south-facing slope (aspect) (Table A1). A previous vegetation assessment conducted in this
reach shows that canopy cover was 61% [70]. Additionally, canopy cover measured directly
above each stream temperature sensor ranged from 4% to 95%, with a mean value of 70%.

Four driven-point monitoring wells, each equipped with an automated water level and
temperature logger (model U20, Onset Computer Corp., Bourne, MA, USA), were installed
to measure water level and temperature at the 15-MC and on one intermittent tributary.
The tributary has active surface streamflow during the early part of the snowmelt runoff
season (January through early March), then in spring and summer is mainly subsurface
flow. Two of the wells (SW-1 and SW-2) were installed in the 15-MC reach. Well SW-1
was located 6 m upstream of the confluence, and SW-2 was placed 500 m downstream of
SW-1. The two other wells were located in the tributary at 20 m (TW-1) and 110 m (TW-2)
upstream of the confluence with 15-MC (Figure 1). All the wells were pounded in the
stream until they reached bedrock, typically at less than 1.5 m depth. The wells were made
out of galvanized steel pipe (32 mm diameter) and have a 1.2 m length screen (60 gauge)
section in the bottom.
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Figure 1. Schematic illustrating the location of instrumentation installed at the 800 m reach along
15-MC and an intermittent tributary.

A descriptive analysis approach including graphs, mean and maximum daily tem-
perature, and Pearson’s correlation coefficient (r) between air and stream temperature
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was used. Based on the Shapiro–Wilk test results for normality, stream temperature and
shallow groundwater temperature data were not normally distributed, and therefore
non-parametric approaches were used. A Kruskal–Wallis one-way analysis of variance
(ANOVA) test was conducted to assess daily averaged stream temperature variability at
all stream temperature locations and between tributary and stream monitoring wells. The
Tukey test was used to conduct pairwise comparisons of the wells. The Mann–Whitney
U test was used to compare daily averaged subsurface temperature of the two wells in
the tributary to daily averaged subsurface temperatures of the two wells along the valley
reach. SigmaPlot® version 14.0 (Systat Software, Inc., San Jose, CA, USA) was used for the
statistical analyses.

2.1.2. Stream Temperature and Environment Interactions—The 15-MC Valley Scale

Stream and air temperature data and streamflow, weather, and land cover information
were used to parameterize an SVR model developed for assessing stream temperature
variability and environment relationships along the 15-MC riparian corridor.

Stream and Air Temperature Relationships

Temperature data were collected from seven different agriculture valley locations
ranging between 260 and 640 mASL (Figure 2). In addition to four sites instrumented for
measuring air and stream temperature, we used stream temperature data courtesy of the
Oregon Department of Fish and Wildlife (ODFW) collected at three other locations. Air
and temperature data were collected using Hobo Tidbit sensors (Onset Computer Corp.,
Bourne, MA, USA) sensors, while data from the ODFW monitoring sites were collected
using Hobo Pro V2 sensors (Onset Computer Corp., Bourne, MA, USA). Both sensor models
have an accuracy of ± 0.2 ◦C. Field-measured data were used for estimating daily averaged
mean (mean), maximum (max), seven-day average (7DA), and the seven-day average of
the daily maximum (7DADM).
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Figure 2. Stream temperature monitoring locations along the Fifteenmile Creek longitudinal profile
in north-central Oregon, USA. Elevation is in meters above sea level (mASL).

Streamflow and Weather Information

Streamflow data were obtained from four gauging stations managed by the Oregon
Water Resources Department (OWRD) [71]. These stations are located along 15-MC, up-
stream of Ramsey Creek’s confluence, along Ramsey Creek, outside of Dufur, OR, and at a
station located further downstream near Moody, OR (Figure 3).
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Figure 3. Map of the 15-MC study area showing streamflow gauging stations and stream and air
temperature monitoring locations. The 15-MC HUC-10 watershed is outlined in red. Locations of the
riparian stream study sensors are labeled in order of decreasing elevation: Ramsey Creek valley site
(A), the 15-MC upstream site (B), the 15-MC valley site (C), and the 15-MC downstream site (D). Red
circles indicate locations of stream temperature sensors used courtesy of the Oregon Department of
Fish and Wildlife (ODFW): 15-MC upstream (1), Ramsey Creek (2), and 15-MC valley (3).

Data regarding total daily precipitation, maximum, mean, and minimum air tem-
perature, mean dew point temperature, and minimum, mean, and maximum vapor pres-
sure deficit were obtained from Parameter-elevation Regressions on Independent Slopes
Model (PRISM) datasets [72]. PRISM datasets use nearby monitoring station observa-
tions as inputs in a regression function to determine each grid cell’s value. Rasters con-
taining the above environmental variables were downloaded from the PRISM website
(https://prism.oregonstate.edu/, accessed on 1 March 2019), and the extract by points
function in ArcGIS Pro (Version 2.5.1, Redlands, CA, USA) was used to extract the PRISM
data for each sensor location.

Land Cover

Land cover was assessed using the United States Department of Agriculture National
Agricultural Imagery Program (NAIP) data from 2016. The NAIP imagery was downloaded
from the U.S. Geological Survey Earth Resources Observation and Science website (https:
//earthexplorer.usgs.gov/, accessed on 16 January 2020). The imagery used consists of red,
green, blue, and near-infrared bands with a one-meter resolution.

The support vector machine (SVM) classification tool in ArcGIS Pro (Version 2.5.1,
Redlands, CA, USA) was used to classify the NAIP imagery into several land cover
categories (shrub/rangeland, open water, forested areas, and other vegetated areas). SVM
is advantageous over classifiers such as the maximum likelihood classifier as it does not
require samples to be normally distributed. The NAIP image was initially segmented
using the Segmentation toolset, and polygons were drawn around representative samples
of each class using the Training Sample Manager. After examining the initial results of
classification and adding additional training samples as needed, an Esri Classification
Definition (.ecd) file was created and used for the SVM classification of the NAIP image.

Assessment and confusion matrix tools in ArcGIS Pro were used on 511 data points to
calculate user’s accuracy (an indication of type 1 error), producer’s accuracy (an indication
of type 2 error), and the kappa coefficient. A stratified random approach was used to

https://prism.oregonstate.edu/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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select the sampling points. Overall accuracy indicates the number of pixels correctly
classified divided by the total number of pixels sampled. User’s accuracy represents
whether pixels were accurately classified and is calculated based on the number of pixels
correctly classified into a given class divided by the total number of pixels classified into the
same class. The producer’s accuracy represents how well ground features were classified
and is calculated by dividing the number of correctly classified pixels of a given class by
the total number of reference pixels of a given class. The kappa coefficient indicates the
agreement between predicted classes and actual classes, in which 0 indicates no agreement
and a value of one indicates total agreement.

For land cover classification near each sensor’s location, a 30 m buffer was delineated
on both sides of the stream for a distance of 100 and 1000 m upstream of each sensor.
Percent cover was determined by dividing the number of pixels within the buffer classified
as a given land cover type (e.g., forest, agriculture, rangeland, water) by the total number
of pixels.

Support Vector Regression Model

An SVR model was used to evaluate the relationship between stream temperature and
thirteen different environmental variables (Table 1). A flowchart of the SVR process used
in this study is provided in Figure 4. Stream and air temperature data collected on-site,
streamflow information obtained from the OWRD website, and data obtained from PRISM
datasets were used to parameterize the SVR model.

Land 2021, 10, x FOR PEER REVIEW 7 of 24 
 

each class using the Training Sample Manager. After examining the initial results of clas-

sification and adding additional training samples as needed, an Esri Classification Defini-

tion (.ecd) file was created and used for the SVM classification of the NAIP image. 

Assessment and confusion matrix tools in ArcGIS Pro were used on 511 data points 

to calculate user’s accuracy (an indication of type 1 error), producer’s accuracy (an indi-

cation of type 2 error), and the kappa coefficient. A stratified random approach was used 

to select the sampling points. Overall accuracy indicates the number of pixels correctly 

classified divided by the total number of pixels sampled. User’s accuracy represents 

whether pixels were accurately classified and is calculated based on the number of pixels 

correctly classified into a given class divided by the total number of pixels classified into 

the same class. The producer’s accuracy represents how well ground features were classi-

fied and is calculated by dividing the number of correctly classified pixels of a given class 

by the total number of reference pixels of a given class. The kappa coefficient indicates the 

agreement between predicted classes and actual classes, in which 0 indicates no agree-

ment and a value of one indicates total agreement. 

For land cover classification near each sensor’s location, a 30 m buffer was delineated 

on both sides of the stream for a distance of 100 and 1000 m upstream of each sensor. 

Percent cover was determined by dividing the number of pixels within the buffer classi-

fied as a given land cover type (e.g., forest, agriculture, rangeland, water) by the total 

number of pixels. 

Support Vector Regression Model 

An SVR model was used to evaluate the relationship between stream temperature 

and thirteen different environmental variables (Table 1). A flowchart of the SVR process 

used in this study is provided in Figure 4. Stream and air temperature data collected on-

site, streamflow information obtained from the OWRD website, and data obtained from 

PRISM datasets were used to parameterize the SVR model. 

Figure 4. Flowchart showing the SVR process used in this study. 

The SVR analysis included data from 1 July 2014 to 31 December 2016. After examin-

ing multiple environmental parameters, 13 variables (Table 1) were selected. Variables 

were also selected to reduce the similarity between individual parameters (e.g., forest 

cover at 30 m buffer vs. forest cover at 100 m). 

Table 1. Environmental variables used in the SVR model. The data source of each variable is listed 

in the third column. PRISM refers to Parameter-elevation Regressions on Independent Slopes 

Model (available at https://prism.oregonstate.edu/, accessed on 1 March 2019), NAIP refers to 

United States Department of Agriculture National Agricultural Imagery Program (available at 

https://earthexplorer.usgs.gov/, accessed on 16 January 2020) and OWRD refers to the Oregon 

Figure 4. Flowchart showing the SVR process used in this study.

The SVR analysis included data from 1 July 2014 to 31 December 2016. After examining
multiple environmental parameters, 13 variables (Table 1) were selected. Variables were
also selected to reduce the similarity between individual parameters (e.g., forest cover at
30 m buffer vs. forest cover at 100 m).

Although SVR does not assume normality, many machine-learning models better
characterize patterns when the variables are approximately normally distributed. All data
were screened for normality by examining the skew of each variable. If the |skew| is ≤1,
the variable is considered normally distributed [73]. All variables outside this range were
positively skewed and were log-transformed. The log-transformed variables satisfied the
skew criteria for most variables, except for PPT, which had a skew of 1.96. Although the
skew was >1, the transformation significantly reduced the skew and was therefore retained
for analysis. SVR is sensitive to variables that vary over different orders of magnitude.
Therefore, all variables were Z score transformed, which scales the data such that all
variables have a mean of 0 and a standard deviation of 1. The SVR model was programmed
in Python using an algorithm developed by scikit learn (sklearn.svm.SVR; [74]). All default
parameters were used, except the kernel and C. The linear kernel was used, which is
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advantageous because the linear kernel produces coefficient weights that are useful for
evaluating each predictor variable’s importance. The regularization parameter C and
values were randomly selected between 10−6 and 102.

Table 1. Environmental variables used in the SVR model. The data source of each variable is listed in the third column.
PRISM refers to Parameter-elevation Regressions on Independent Slopes Model (available at https://prism.oregonstate.
edu/, accessed on 1 March 2019), NAIP refers to United States Department of Agriculture National Agricultural Imagery
Program (available at https://earthexplorer.usgs.gov/, accessed on 16 January 2020) and OWRD refers to the Oregon Water
Resources Department hydrographics data (available at https://apps.wrd.state.or.us/apps/sw/hydro_near_real_time/
Default.aspx, accessed on 5 April 2018).

Variable Description Data Source

Mean temp mean daily air temperature (◦C) PRISM
VPD mean daily vapor pressure deficit PRISM
PPT total daily precipitation (mm) PRISM
VPD max maximum daily vapor pressure deficit PRISM
Elevation elevation (m) on-site survey

For30_100 percent of pixels classified as forested using 30 m buffer on either side of stream,
for 100 m upstream of the monitoring point NAIP

For30_1000 percent of pixels classified as forested using 30 m buffer on either side of stream,
for 1000 m upstream of the monitoring point NAIP

Shrub30_100 percent of pixels classified as shrubland using 30 m buffer on either side of stream, for
100 m upstream of the monitoring point NAIP

Shrub30_1000 percent of pixels classified as shrubland using 30 m buffer on either side of stream, for
1000 m upstream of the monitoring point NAIP

Veg30_100 percent of pixels classified as all types of vegetation using 30 m buffer on either side of
stream, for 100 m upstream of the monitoring point NAIP

Veg30_1000 percent of pixels classified as all types of vegetation using 30 m buffer on either side of
stream, for 1000 m upstream of the monitoring point NAIP

Q streamflow in cubic meters per second OWRD
Max–min air temp difference between the daily maximum and daily minimum air temperatures (◦C) PRISM

The entire dataset was randomly split in half for training and testing cross-validation.
The SVR model was tuned using the training dataset and was evaluated for overfitting
using the testing dataset. During each iteration (n = 1000), a different C value was used
to train the model, and the resulting model was used to predict the values of the testing
dataset. Overfitting occurs when the model performance is high for the training dataset but
substantially lower for the testing dataset. While no critical threshold exists to indicate the
presence of overfitting, if the difference in the R2 between the training and testing model
performance is >0.1, then overfitting was assumed to be present, and the tuning values
were discarded. We developed a custom tuning metric for the remaining values to rank
each randomly selected training and testing the dataset’s performance for each iteration.
The C value associated with the best-performing model was retained for further analysis.

Using the best-performing C value, the final SVR model was developed as previously
described. The dataset was randomly split in half for training and testing datasets to
quantify overfitting. During each iteration (n = 1000), the training and testing performance
and the coefficient weight of each variable were recorded. Additionally, the model was
used to predict the stream temperature of the entire dataset. The overall fit of the model
was evaluated by comparing the averaged predictions to the observed values.

Finally, a sensitivity analysis was performed. During each iteration of the final run,
the model was used to predict a synthetic dataset where all predictor variables were held
constant at their mean value (i.e., 0 given that each was Z score transformed) except for
a single predictor variable that was allowed to vary ±2 standard deviations of its mean.
By repeating this process for each predictor variable, we directly compared each predictor
variable’s independent effect.

The SVR model was used to evaluate 16 different scenarios (Table 2). First, the model
was run for each stream temperature category (mean, max, 7DA, and 7DADM) for the
entire study’s entire duration using the 13 environmental variables outlined in Table 1.
Next, the analysis was run for each stream temperature category using air temperature and

https://prism.oregonstate.edu/
https://prism.oregonstate.edu/
https://earthexplorer.usgs.gov/
https://apps.wrd.state.or.us/apps/sw/hydro_near_real_time/Default.aspx
https://apps.wrd.state.or.us/apps/sw/hydro_near_real_time/Default.aspx
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streamflow (e.g., labeled as 7DADM_Q+A). Finally, we applied the SVR model based on
seasonal streamflow characteristics, divided into the seasons with highest streamflow
(October through May) and lowest streamflow (June through September), using five
environmental variables which exhibit seasonal changes (i.e., mean air temperature, VPD,
PPT, Q, and max–min air temp). We assessed each SVR analysis’s performance based on the
coefficient of determination (R2) of observed versus modeled temperatures.

Table 2. SVR parameterization for the different scenarios tested in this study.

Scenario Stream Temperature Metric Timeframe Parameters

7DADM 7 day average of the daily maximum full year Table 1
7DADM_Q+A 7 day average of the daily maximum full year Table 1
7DADM_Oct–May 7 day average of the daily maximum Oct to May mean temp, VPD, PPT, Q, max–min air temp
7DADM_Jun–Sep 7 day average of the daily maximum Jun to Sep mean temp, VPD, PPT, Q, max–min air temp

Max Daily maximum full year Table 1
Max_Q+A Daily maximum full year Table 1
Max_Oct–May Daily maximum Oct to May mean temp, VPD, PPT, Q, max–min air temp
Max_Jun–Sep Daily maximum Jun to Sep mean temp, VPD, PPT, Q, max–min air temp

7DA 7 day moving average full year Table 1
7DA_Q+A 7 day moving average full year Table 1
7DA_Oct–May 7 day moving average Oct to May mean temp, VPD, PPT, Q, max–min air temp
7DA_Jun–Sep 7 day moving average Jun to Sep mean temp, VPD, PPT, Q, max–min air temp

Mean Daily mean full year Table 1
Mean_Q+A Daily mean full year Table 1
Mean_Oct–May Daily mean Oct to May mean temp, VPD, PPT, Q, max–min air temp
Mean_Jun–Sep Daily mean Jun to Sep mean temp, VPD, PPT, Q, max–min air temp

3. Results
3.1. Stream and Air Temperature Variability—The Reach Scale
3.1.1. Stream Temperature

Based on the ANOVA, there were no statistical differences (p < 0.05), regardless of
aspect or canopy cover, in 7DA, daily maximum, and mean temperature levels for all
17 sensor locations along the 800 m reach. Daily averaged stream temperature from August
2015 to July 2016 ranged from 0 to 21 ◦C, with a mean value of 9 ◦C ± 0.3. The lowest
daily mean stream temperature occurred in December (2.9 ◦C) and the highest daily mean
stream temperature in August (18 ◦C) (Figure 5).
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3.1.2. Stream and Subsurface Flow Temperature

Daily averaged subsurface flow temperature levels in both the tributary and 15-MC
were less variable than surface stream temperature, with subsurface flow temperatures
generally being warmer than surface stream temperature during the winter and generally
cooler than surface stream temperatures during the summer (Figure 6). Temperature
differences of up to 8 ◦C in summer, and 10 ◦C in winter, between surface stream and
tributary subsurface flow locations were observed.
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Figure 6. Shallow groundwater temperature fluctuations in two monitoring wells at the 15-MC valley
site from 1 October 2015 to 30 September 2016. SW-1 is a shallow groundwater well located along
15-MC before the confluence with the intermittent tributary. TW-1 is a shallow groundwater well
located along the tributary approximately 20 m before the confluence.

Based on the Mann–Whitney U test, no significant difference (U = 66124.5, p > 0.05)
between the daily averaged subsurface temperature of the two stream wells (median = 10.5 ◦C,
mean = 9.9 ◦C ± 0.2) and the two tributary wells (median = 10.7 ◦C, mean = 9.8 ◦C ± 0.1)
was observed. Greater maximum subsurface flow temperature levels were observed in the
15-MC wells than in the tributary ones. The two wells closest to the confluence (SW-1 and
TW-1) exhibited lower mean stream temperature than the two (SW-2 and TW-2) farther
away (Table 3).

Table 3. Mean, minimum (min), standard error (SE), median, and maximum (max) subsurface flow
temperature (◦C) levels for the wells in the stream (SW-1 and SW-2) and intermittent tributary (TW-1
and TW-2) from 1 May 2016 to 30 April 2017.

Well Range Max Min Median Mean SE

SW-1 10.6 14.1 3.6 10.2 9.4 0.2
SW-2 8.6 13.9 5.3 10.9 10.4 0.1
TW-1 10.2 12.6 2.4 10.6 9.4 0.1
TW-2 7.3 12.8 5.5 10.8 10.0 0.1

Based on the ANOVA (p ≤ 0.001) and the Tukey test (p ≤ 0.05), results showed
statistical differences in daily averaged temperature between all wells except for TW-2 vs.
SW-1 and SW-1 vs. TW-1 (Table 4).
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Table 4. Results of the Tukey test for each pairwise comparison of subsurface flow temperature (◦C)
levels for the wells in the stream (SW-1 and SW-2) and intermittent tributary (TW-1 and TW-2) from 1
May 2016 to 30 April 2017.

Comparison Diff of Ranks q p

SW-2 vs. TW-1 62,161 7.717 <0.001
SW-2 vs. SW-1 48,981 6.081 <0.001
SW-2 vs. TW-2 31,356 3.893 0.030
TW-2 vs. TW-1 30,805 3.824 0.035
TW-2 vs. SW-1 17,625 2.188 0.409
SW-1 vs. TW-1 13,180 1.636 0.654

A seasonal trend in shallow groundwater temperature response was observed in all
wells. One of the wells (TW-1) in the tributary showed the lowest temperature values in
the summer and the most significant decrease in temperature during the snowmelt runoff
season. We attributed this response to the location near the confluence with the main creek.
The range of mean daily shallow groundwater temperatures was much less than that of
the riparian air temperature.

Stream temperature followed the general seasonal trend of air temperature. Daily
averaged air temperature fluctuations were greater than stream temperature (Figure 7). Air
temperature levels were significantly greater (up to 8 ◦C) than stream temperature during
spring and summer. Peak maximum temperature for air (24 ◦C) and stream (17 ◦C) occurred
in August 2015. Based on Pearson’s correlation, a strong correlation (r) = 0.97 between
all-sensor mean air temperature (n = 2) and mean stream temperature (n = 17) was observed
along the entire 800 m reach.
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Figure 7. Daily averaged stream and riparian air temperature for all sensors in the 800 m reach
of 15-MC.

3.2. Valley Scale
3.2.1. Stream Temperature

Greater stream temperature levels were observed in the lower-elevation sites (i.e.,
15-MC valley and 15-MC downstream). Differences in temperature between study site
locations were most significant during the summer months (Figure 8). A difference in
the 7DA of up to 5 ◦C was observed between the highest-elevation site (Ramsey) and the
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15-MC downstream site. Lower temperature variability among study sites was observed
during late fall and winter.
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Figure 8. Seven-day running average (7DA) stream temperature at the four sites from October 2015
to September 2016.

Maximum and mean daily averaged stream temperature levels were highest at the
downstream site location: 24.0 and 10.8 ◦C. The lowest maximum and mean daily stream
temperatures were observed at the site located at the Ramsey tributary site (17 and 7.7 ◦C),
which also experienced the slightest fluctuation in stream temperature during the year.
The 7DA stream temperature in the downstream site exceeded the maximum threshold
temperatures for salmonid and some other cold-water fish rearing (16 ◦C) and migration
(18 ◦C) during the summer (Figure 8).

3.2.2. Streamflow

Streamflow was generally greater at the 15-MC downstream site and lowest at Ramsey
Creek, with flow peaks corresponding to snowmelt periods in early spring for all sites. The
lowest streamflow levels were reported during the summer, with the tributary Ramsey
Creek at 0.2 m3 s−1 and 15-MC upstream at 0.7 m3 s−1. Larger streamflows were observed
at the 15-MC downstream site in the spring of 2016 compared to the previous years. In
contrast, lower streamflows in the spring season were observed at the 15-MC upstream site
in 2016 than in 2014 and 2015 (Figure 9).

3.2.3. Riparian Land Cover Classification

For 15-MC and Ramsey Creek, most land cover (within 30 m on either side of the center
of the stream channel) was classified as forested (46%) and shrubland (23%). The riparian
areas upstream of Ramsey Creek and 15-MC’s confluence were largely forested (52%),
with shrubland accounting for 14%. Approximately 10% of the riparian area upstream
of the confluence was classified as herbaceous or planted fields. Downstream of the
confluence, there is a slight reduction in forest cover. In the mid-section of 15-MC, between
the confluence with 15-MC and Ramsey Creek and the downstream study site (Figure 3,
Site D), forest cover accounts for 45% of riparian cover, and shrubland accounts for 31%
of riparian cover. Herbaceous areas or planted fields accounted for approximately 9% of
riparian land cover in the mid-section of 15-MC. Downstream of site D, approximately 38%
of the riparian area is classified as forested, and 31% as shrubland. Approximately 10%
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of the riparian area between site D and the Columbia River’s confluence was classified as
herbaceous or planted fields.
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Figure 9. Streamflow level variability at the four gauging stations located within the 15-MC watershed from January 2015
to October 2016.

The overall accuracy of the SVM classification was 89%. Both the producer’s accuracy
and the user’s accuracy ranged from 0.73 to 1, with mean values of 0.89 and 0.88. Cohen’s
kappa was 0.88, indicating good agreement between predicted and actual class.

3.2.4. SVR Model

For each environmental variable tested in each scenario, each parameter’s mean
importance was calculated and scaled from −1 to 1. A value of −1 or 1 indicated the
greatest either negative or positive relationship, respectively. Values close to 0 indicate
little to no relationship between the predictor and response variable. Mean temp (i.e., mean
daily air temperature) has a strong positive relationship stream temperature and had the
greatest scaled mean importance (Figure 10).

Increases in daily mean air temperature resulted in increases in predicted stream
temperature for all the SVR model scenarios tested. With the exclusion of the scenarios
that used only data from warmer months (e.g., 7DADM_Jun–Sept), increased flow (Q)
generally resulted in decreased predicted stream temperature (weighted importance rang-
ing from −0.32 to −0.11). Land cover was slightly associated with stream temperature
changes and indicated conflicting patterns. A negligible impact of forested land cover
(i.e., For30_100 and For30_1000) on stream temperature was found. Similarly, shrub cover
(i.e., Shrub30_100 and Shrub30_1000) were minimally associated with stream temperature.
The mean VPD was negatively related with stream temperature for 7DADM_Jun–Sept,
max_Jun–Sept, 7DA_Jun–Sept, and mean_Jun–Sept scenarios (relative mean importance of
−0.27 to −0.31) (Figure 10).
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Figure 10. Scaled importance of each environmental variable. Values can range from −1 to 1, with positive values indicating
that an increase in the parameter (e.g., increased air temperature) results in an increase in stream temperature and vice versa.
The closer the value is to zero, the lower the importance. Scenarios shown are (a) 7DADM, (b) _Q+A, (c) 7DADM_Oct–
May, (d) 7DADM_Jun–Sept, (e) 7DA, (f) 7DA_Q+A, (g) 7DA_Oct–May, (h) 7DA_Jun–Sept, (i) max, (j) max_Q+A, (k)
max_Oct–May, (l) max_Jun–Sept, (m) mean, (n) mean_Q+A, (o) mean_Oct–May, and (p) mean_Jun–Sept.

The scenarios (i.e., 7DADM, max, 7DA, and mean) that incorporated all 13 environ-
mental variables and that included data across all seasons generally performed better than
the rest (Figure 11). For these scenarios, R2 ranged from 0.86 to 0.92 (mean of 0.89). The
R2 across all scenarios ranged from 0.36 to 0.92, with an average R2 of 0.75 (Table 5). R2

ranged from 0.83 to 0.89 (mean of 0.86) for analyses that used only Q and mean daily
air temperature (e.g., 7DADM_Q+A). Additionally, mean and max scenarios performed
somewhat better than 7DA and 7DADM. Of all scenarios, those using only data from June
through September (e.g., 7DADM_Jun–Sept) performed the worst (mean R2 of 0.48).
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(j) max_Q+A, (k) max_Oct–May, (l) max_Jun–Sept, (m) mean, (n) mean_Q+A, (o) mean_Oct–May, and (p) mean_Jun–Sept.

Table 5. R2 for each scenario. “Full” refers to those scenarios that used all annual data and environ-
mental parameters.

7DADM 7DA Mean Max

Full 0.86 0.87 0.92 0.90
Q+A 0.83 0.83 0.89 0.87

Oct–May 0.73 0.73 0.83 0.80
Jun–Sept 0.37 0.36 0.63 0.55

In general, the SVR model did not predict extreme maximum and minimum stream
temperatures (Figures 11 and 12). This was most pronounced when the model was run
using only seasonal data, particularly for scenarios using summer data (e.g., 7DADM_Jun–
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Sept). Trends were also indicated in the residuals (observed value-predicted value) for
these scenarios. The model tended to overpredict temperatures at sites furthest upstream
and, to a lesser degree, underpredict temperatures at sites further downstream during
the summer months. A sinusoidal trend is also indicated for the residuals of many of the
sensors for these summer month scenarios (Figure 12, top).
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The sensitivity analysis results (data not shown) indicated the same trends as the scaled
mean importance of each variable, with changes in air temperature being the strongest
predictor of stream temperature for all scenarios. An increase of one standard deviation in
air temperature (8.2 ◦C) was associated with a 5.6, 5.8, 6.1, and 5.2 ◦C increase in stream
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temperature for 7DADM, mean, max, and 7DA scenarios, respectively. For Jun–Sept
scenarios, an increase of one standard deviation in air temperature (3.5 ◦C) was associated
with a stream temperature increase between 2.7 and 3.6 ◦C. In contrast, an increase of one
standard deviation in streamflow resulted in a decrease in stream temperature of 1.6 and
0.8 ◦C for 7DADM and 7DADM_Oct–May scenarios, respectively.

4. Discussion

This research examined the relationship between stream temperature and various
environmental parameters in a semiarid riparian ecosystem. Study results show that air
temperature, followed by Q in the cooler months and VPD during the warmer months,
was the most significant factor associated with stream temperature at both the reach and
valley scales. Similar to other studies [28,75,76], we found that stream temperature and
environment relationships are highly seasonal. Q was negatively related with stream tem-
perature and was the second-largest factor influencing stream temperature. The exception
to this was when Q was lowest, in which there was a minimal positive association indicated
between streamflow volume and stream temperature. By comparison, Isaak et al. [7] found
that streamflow explained almost half of stream temperature variation during summer
months while air temperature accounted for most long-term stream temperature differences
for 18 monitoring sites in the northwestern United States.

We found no statistical differences in stream temperature between sites with different
canopy cover. Land cover was marginally associated with stream temperature. Similarly,
Łaszewski and Kiryła (2008) used Sentinel (1 and 2) imagery to assess the relationship
between forested areas and stream temperature and did not find statistically significant
differences in thermal regimes based on forest cover [77]. This contrasts with Horne and
Hubbart [78], who found that forested land use was negatively correlated with stream
temperature at a West Virginia study site. Other studies have also found riparian vegetation
shading to be negatively correlated with stream temperature (e.g., [42,79–81]).

Due to the frequency of NAIP imagery collection, riparian land cover was only
assessed for the summer of 2016. Land cover classes may have changed throughout
this study (e.g., agricultural fields may have been harvested). However, since most of
the riparian areas in the valley are under a long-term conservation program agreement,
it was assumed that minimal land cover changes occurred along the entire 15-MC riparian
corridor evaluated. While the NAIP-based classification approach yielded generally good
results, this approach may not have accounted for shading associated with other vegetation,
including understory. Further, while riparian land cover and stream shading are related,
riparian vegetation classification should not be directly equated with riparian shading.
Other factors, such as slope and aspect, can also influence incoming solar radiation and were
not assessed during this study. The aggregated effect of vegetation along the entire stream
may help to modulate stream temperature overall. For example, a study conducted by the
Oregon Department of Environmental Quality using the Heat Source model [46] found
that increasing riparian vegetation to site potential and increasing Q would reduce peak
7DADM, with increased riparian vegetation being the most important factor influencing
stream temperature [82].

The marginal temperature differences between different locations along the reach
(regardless of canopy cover) may also be influenced by stream velocity and discharge.
Steep gradients help move water through the landscape relatively rapidly during the
snowmelt runoff season. As a result, movement through shaded or non-shaded areas may
be less influential than at lower velocities. During the year, the lowest shallow ground-
water temperatures were associated with greater rates of streamflow during the spring
snowmelt but not the lowest annual stream temperatures, reemphasizing the importance
of ambient conditions.

There was a lack of data regarding subsurface flows outside the 800 m reach evaluated;
therefore, shallow groundwater flows were not included in the SVR analyses. Similar to
that reported by Simmons et al. [80], our study indicated that colder groundwater inputs



Land 2021, 10, 519 18 of 22

could influence stream temperature, at least at a small scale. This suggests that subsurface
flows may serve as a modulating influence and potentially produce cold-water habitat at
the confluence. Mean daily shallow groundwater temperatures just before the confluence
with the intermittent tributary were lower than those downstream, indicating that the
influence of groundwater inflows may be localized.

The overall SVR model performance varied with the stream temperature scenario
tested, the environmental parameters included, and the period assessed (seasonal vs. full-
year). Variations were expected based simply on the number of parameters used, as an
increase in regression parameters is generally associated with an increase in R2 values.
However, the inclusion of land cover parameters and additional atmospheric variables
(e.g., PPT and VPD) modestly improved performance over the analysis that only used air
temperature and Q. The SVR model performed the worst during the seasons when Q was
the lowest and stream temperatures were the greatest. This suggests that other factors not
examined in the SVR used in this study may also affect stream temperature.

The SVR model results highlight several limitations to the use of regression approaches.
For example, hysteresis associated with seasonal changes is difficult to capture in stream
temperature models. Regression models are often more effective for stream temperature
modeling at weekly or longer scales due to the presence of autocorrelation at shorter time
scales [22,83]. However, we found that the SVR model we tested generally performed
better on daily scales than on weekly scenarios. Further, the relationship between air and
stream temperature is not linear in all cases [22,84], particularly at high and sub-zero water
temperatures. Therefore, non-linear approaches (e.g., [85]) are also commonly used. The
SVR analysis applied in our study was able to predict general stream temperature patterns
but did not predict extreme maximum and minimum stream temperatures (as the water
temperature remains relatively constant with air temperature at or below freezing). This
suggests that a non-linear approach may be more appropriate for modeling temperature
beyond certain thresholds (e.g., sub-zero stream temperature). However, this study’s SVR
approach is an easily replicable approach that can be applied at other study sites, provided
that these limitations are acknowledged.

This research highlighted several critical areas for future research into stream tempera-
ture dynamics in semiarid systems. Stream temperature can be impacted by environmental
characteristics that were beyond the scope of this study (e.g., riparian soil types). For
example, streambed heat exchange can impact stream temperature dynamics of shallow
streams [86]. Irrigation can also influence groundwater discharge to stream resulting in im-
pacts on stream temperature [87]. Further, the monitoring sites selected for this study were
chosen to represent different areas along the longitudinal gradient and were also based
on landowner participation; additional sites at higher and lower elevations could provide
a more comprehensive model. Land use and land cover beyond the riparian area may
also play a role in stream temperature dynamics. While beyond this study’s scope, future
research should address the role that ecohydrologic connections across the landscape (e.g.,
land-use practices outside of the riparian area) may play in stream temperature dynamics.

We did not attempt to model stream temperature regimes under alternative environ-
mental conditions, such as altered land cover or increased air temperatures. Therefore, our
results should be interpreted with caution regarding how changes derived from land man-
agement practices, such as the planting or removal of riparian vegetation, may influence
stream temperature.
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Appendix A

Table A1. Distance from the beginning of the reach, aspect, and riparian vegetation cover above each
stream temperature sensor.

Sensor# Distance (m) Aspect Cover (%)

- 0 - -
1 15 South 4
2 24 South 95
3 80 South 11
4 98 North 84
5 121 South 68
6 171 North 74
7 252 South 76
8 344 North 79
9 371 North 66
10 401 South 75
11 425 South 70
12 470 North 92
13 503 North 78
14 534 North 79
15 596 South 90
16 660 North 92
17 725 South 56
- 800 - -
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