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Abstract: Potentially toxic element (PTE) pollution in farmland soils and crops is a serious cause
of concern in China. To analyze the bioaccumulation characteristics of chromium (Cr), zinc (Zn),
copper (Cu), and nickel (Ni) in soil-rice systems, 911 pairs of top soil (0–0.2 m) and rice samples were
collected from an industrial city in Southeast China. Multiple linear regression (MLR), support vector
machines (SVM), random forest (RF), and Cubist were employed to construct models to predict
the bioaccumulation coefficient (BAC) of PTEs in soil–rice systems and determine the potential
dominators for PTE transfer from soil to rice grains. Cr, Cu, Zn, and Ni contents in soil of the survey
region were higher than corresponding background contents in China. The mean Ni content of rice
grains exceeded the national permissible limit, whereas the concentrations of Cr, Cu, and Zn were
lower than their thresholds. The BAC of PTEs kept the sequence of Zn (0.219) > Cu (0.093) > Ni
(0.032) > Cr (0.018). Of the four algorithms employed to estimate the bioaccumulation of Cr, Cu, Zn,
and Ni in soil–rice systems, RF exhibited the best performance, with coefficient of determination (R2)
ranging from 0.58 to 0.79 and root mean square error (RMSE) ranging from 0.03 to 0.04 mg kg−1.
Total PTE concentration in soil, cation exchange capacity (CEC), and annual average precipitation
were identified as top 3 dominators influencing PTE transfer from soil to rice grains. This study
confirmed the feasibility and advantages of machine learning methods especially RF for estimating
PTE accumulation in soil–rice systems, when compared with traditional statistical methods, such as
MLR. Our study provides new tools for analyzing the transfer of PTEs from soil to rice, and can help
decision-makers in developing more efficient policies for regulating PTE pollution in soil and crops,
and reducing the corresponding health risks.

Keywords: potentially toxic elements; soil-rice systems; bioaccumulation coefficient; machine learn-
ing methods; potential dominators

1. Introduction

Soil contamination arouse from potentially toxic element (PTE) such as chromium
(Cr), lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As), copper (Cu), zinc (Zn), nickel
(Ni) in agricultural land has raised serious concerns worldwide [1–7], particularly in
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China, which has experienced rapid industrialization and urbanization in the past four
decades [8–13]. Apart from natural weathering from parent soil materials, anthropogenic
activities (including industrial waste production, sewage irrigation, agricultural inputs,
mining, and smelting) are a major source of PTE accumulation in farmland soils [14–16].
Several previous studies have reported PTE pollution in farmland soils from different areas
of China, particularly in regions like the Yangtze River Delta [17–19], Pearl River Delta [20],
Beijing-Tianjin-Hebei [21,22], and Northeast China [23,24].

PTE uptake by the soil–crop system is the dominant pathway of human exposure to
PTEs [25–29]. Rice is one of the most important staple food crops worldwide. China is
the world’s largest producer of rice, and rice is the staple food for majority of the Chinese
population, particularly in Southern China. Therefore, PTEs pollution in soil and their
subsequent accumulation in these crops, and related health risks of human exposure have
been extensively studied around the world [30–35].

The transfer and bioaccumulation of PTEs from soil to rice is a complicated process
involving PTE release, dissolution, and bioaccumulation in different plant parts [36,37]. It
is affected by various factors, including the total concentration of PTEs in soil, as well as
soil physical and chemical properties [38–40]. Numerous studies have analyzed the shift of
PTEs in soil–rice system [41–44]. Brus et al (2009) built a multiple linear regression (MLR)
model to estimate the Cd concentration in rice grains using the total Cd concentration in
soil, soil pH, soil clay, and soil organic matter (SOM) as predictors (R2 = 0.66) [45]. Zhao
et al. (2009) developed a linear regression (LR) model to predict the transfer of Cr, Zn, Cu,
Pb, and Ni from soil to rice in Zhejiang Province of China. The total PTE content and soil
pH were used as covariates, and the model R2 ranged from 0.13 to 0.37 [46]. Chen et al.
(2016) further used LR to predict the transfer of Cu, Pb, Zn, Cd, and Mercury (Hg) from
soil to rice grains, using total PTE content, soil pH, and SOM as covariates, with a model
R2 of 0.24 to 0.63 [36]. Deng et al. (2020) predicted the transfer of Cr, Pb, Cd, Hg, and As
from soil to rice grains using MLR, with the total soil Cd concentration and soil pH as
covariates, and an R2 ranging from 0.109 to 0.456 [40]. Mu et al. (2020) also predicted the
Cd concentration in rice grain using LR, with the total Cd concentration, soil pH, SOM as
covariates, and obtained the R2 ranging from 0.42 to 0.66 [47]. Liu et al. (2021) analyzed
the transfer characteristic of Pb in different soil–crops system in Southwest of China and
found that beans, peas and peanuts have a stronger ability of bioaccumulation of Pb [48].
Ma et al. (2021) found that TFe2O3, MnO have essential effects on the migration of Cd in
soil-rice ecosystem in Southwest of China [49].

However, some limitations existed in current studies. Firstly, most of current re-
searches concentrated on analyzing linear relationship between PTEs and others factors.
For example, most studies conducted till date developed prediction models employing
traditional statistical methods, such as LR and MLR, and it can only analyze the linear
relationship between studied PTEs and others variables. Secondly, few quantitative covari-
ates were included in the existing studies, which limits the value of the results since the
migration of PTEs in the soil–crops system is affected by various factors. Thirdly, most of
current studies can only analyze the effects of quantitative variables on transfer of PTEs in
soil–crops system and not able to take qualitative variable into analysis. Finally, previous
studies did not quantify the effects of different components on the transfer of PTEs in soil–
rice systems. Machine learning algorithms like support vector machine (SVM), random
forest (RF), and Cubist, can predict non-linear relationships between different variables. In
addition, RF and Cubist can manage quantitative and categorical variables simultaneously.
Another advantage of machine learning methods is that they can provide information about
the importance of variables in the model, which can aid the regulation of PTE pollution in
soil–crop systems and reduce the health risks of PTE exposure [36,40,45–47].

Therefore, in the present study, we used three machine learning algorithms to build
models to predict the bioaccumulation coefficient (BAC) of Cr, Cu, Zn, and Ni from soil
to rice grains. A total of 20 covariates, including total soil PTE content, pH, CEC, and
soil texture, were used as predictors to improve model performance. An MLR model
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was constructed using the correlated quantitative covariates as predictors for comparison.
The objectives of current research were to: (1) analyze the concentration and transfer
characteristics of PTEs in soil–rice system; (2) build models to predict the transfer of PTEs
from soil to rice grains using MLR, SVM, RF, and Cubist methods; (3) identify potential
dominators of PTE bioaccumulation in soil–rice systems. The results are expected to aid
the control of PTE contamination in soil and rice, as well as reduce the health risk of human
consumption of such rice.

2. Materials and Methods
2.1. Study Area

The survey region was situated in Eastern China (120◦55′–122◦16′ E, 28◦51′–30◦33′ N)
(Figure 1), occupying an area of around 9,800 square kilometers and with a population
of 8.5 million. The survey city is one of the most developed cities in China, with the 12th
highest gross domestic product (GDP) in 2019. The total industrial output value of Ningbo
in 2019 was 578.3 billion Yuan. Three pillar industries in Ningbo are chemical industry,
textile and clothing, and machinery industry. The survey region was situated in the lower
reach of the Yangtze River in China, and has been an important area for rice cultivation,
because of the favorable climate and terrain conditions. Rice plantations occupy more than
100,000 ha in this region and the rice yield was around 660,000 tons in 2018. Details of the
study area have been provided Hu et al. [30].
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2.2. Sampling and Chemical Analysis

Overall, 911 pairs of surface soil (0–0.2 m) and rice samples were collected in 2013.
The rice samples were collected during the harvest season. The surface soil samples were
collected after the harvest season at the same locations as rice samples. Each soil sample
was a composite of 5 sub-samples collected from five locations within five meters using a
stainless steel shovel. The sampling positions were documented using a GPS (Figure 1).
Here, we presented the number of surface soil and rice sample collected from the study area
in grid with size of 2 kilometers (Figure 1). The pH was determined by a pHS-3C digital
pH meter (Shanghai REX Sensor Technology Co., Ltd., China). Soil samples were digested
in acid (HCl–HNO3–HClO4), whereas the corresponding rice grain samples were digested
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using the dry ashing method, and the concentration of Cr, Cu, Zn, and Ni were measured
by inductively coupled plasma optical emission spectrometry (ICP-OES 6300, Thermo
Fisher Scientific, Waltham, MA, USA). Quality control and standard quality assurance were
conducted using soil standard reference materials (GBW07403 and GBW07404 obtained
from the National Standard Detection Research Center, Beijing, China), duplicate samples,
and procedure blanks during the measurements. Reagent blanks were also included in the
analyses for quality control, and element recoveries were in the range of 90% to 110% [39].

2.3. Model Construction Algorithms
2.3.1. Multiple Linear Regression (MLR)

MLR [50] can predict the outcome of a response variable using multiple explanatory
variables. MLR is used to construct model to describe linear relationships between the
independent variables and the dependent variable. MLR has been described in detail by
Myers (1990) [50].

2.3.2. Support Vector Machines (SVM)

SVMs aim to build a hyperplane or a set of hyperplanes in a high- or infinite-
dimensional space, which can then be used for classification and regression [51]. For
regression analyses, SVMs can take the non-linearities of a natural system into account, in-
cluding kernel functions, which function as constructing blocks for SVMs [52]. SVMs have
previously been described by Cortes and Vapnik (1995) [51] and Bordoni et al. (2018) [53].

2.3.3. Random Forest (RF)

The RF is a non-linear, non-parametric algorithm developed by Breiman (2001) [54],
which comprises a sequence of numerous individual predictor tree models trained from
bootstrap samples of the data. The splits of each tree are decided based on a subset of
predictor variables were chosen randomly from all available predictors [37]. The prediction
results of all trees are then averaged to obtain the final prediction [54]. RF can also
calculate the relative importance of a variable from the prediction error of out-of-bag (OOB)
predictions [55]. RF perturbs each variable and estimates its importance as the change in
the OOB error [54].

2.3.4. Cubist

Cubist is a rule-based data mining and prediction-oriented regression model [56,57].
It firstly creates a tree structure and then folds each path through the tree into a rule. After
that, it fitted a regression model for each rule based on the subset of data described by
the rules, and the prediction model is selected based on these rules. Prediction can be
improved by generating several rule-based models, referred to as “committees”, through
boosting [58]. Subsequent models are built based on the corrections of the predictions
made by previous models to minimize the prediction error.

2.4. Data Collection

We used 20 auxiliary variables, which have been proved to have effects on the transfer
of PTEs from soil to the rice by previous studies to build a model to predict PTE bioaccu-
mulation in soil–rice systems (Table 1) [36,40,45–49]. The auxiliary variables included soil
properties (such as soil organic matter, pH, soil bulk density, content of PTE in soil, cation
exchange capacity, soil sand content, soil clay content, soil silt content, soil coarse fraction),
climatic factors (such as annual temperature, annual precipitation), terrain attributes (such
as elevation), agricultural management practices (such as amount of phosphate fertilizer
applied annually, amount of organic fertilizer applied annually, amount of nitrogen fertil-
izer applied annually, amount of potash fertilizer applied annually), geology (soil group,
parent material), and land use (land use types), and population density are detailed in
Table 1.
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Table 1. Auxiliary variables used to predict PTE bioaccumulation in soil-rice systems.

Auxiliary Variable Abbreviation Resolution Type a Source

Content of PTE in soil b SC – Q This study
Soil organic matter SOM – C This study

pH pH – Q This study
Soil group SG – C National Soil Survey Office c

Population density PD 1 km Q REDC d

Land use types LU 1 km C REDC d

Annual temperature Tem 1 km Q REDC d

Annual precipitation Preci 1 km Q REDC d

Elevation DEM – Q This study
Amount of phosphate fertiliser applied annually PHF – Q This study

Amount of organic fertiliser applied annually OF – Q This study
Amount of nitrogen fertiliser applied annually NTF – Q This study
Amount of potash fertiliser applied annually POF – Q This study

Soil bulk density BD 250 m Q ISRIC SoilGrids e

Parent material PM – C National Soil Survey Office f

Cation exchange capacity CEC 250 m Q ISRIC SoilGrids e

Soil sand content Sand 250 m Q ISRIC SoilGrids e

Soil clay content Clay 250 m Q ISRIC SoilGrids e

Soil silt content Silt 250 m Q ISRIC SoilGrids e

Soil coarse fraction Coarse 250 m Q ISRIC SoilGrids e

a Q: quantitative; C: categorical. b It means the content of individual target PTE in soil. c [59]. d REDC: Resource and Environmental Data
Cloud Platform (http://www.resdc.cn/Default.aspx). e [60]. f [61].

2.5. Data Analysis

In this study the BAC for different PTEs was calculated to represent the migration of
PTEs from soil to rice. The BACs were determined by:

BAC =
Crice
Csoil

(1)

where Crice and Csoil represent the total PTE content in rice grain and soil, respectively.
Exploratory data analysis was performed using R (R Core Team, 2015). The MLR, RF,

SVM, and Cubist algorithms in the caret package [62] for R were used to construct models
for predicting BACs of PTEs in soil–rice systems. The flowchart of this study was presented
in Figure 2.
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3. Results
3.1. PTE Content in Soil and Rice Grains

The summary characteristics of PTEs in soil and rice grains are described in Table 2. Zn
exhibited the highest mean content (115.50 mg kg−1) in soil, followed by Cr (71.87 mg kg−1),
Cu (35.76 mg kg−1), and Ni (29.94 mg kg−1). The coefficient of variation (CV, %) indicates
the variation degree of the PTE content [39] (Hu et al., 2019). The CVs of the soil PTE
concentrations were in the order of: Ni (50.17%) > Cu (36.89%) > Cr (36.81%) > Zn (29.76%).
All the soil samples have Cr and Cu content lower than risk screening value regulated by
Chinese government (GB 15618–2018). Additionally, 1.32% of soil samples with Zn content
higher than risk screening value meanwhile 0.88% of soil samples with Ni content higher
than risk screening value (GB 15618–2018).

Table 2. Summary statistics for the PTEs in soil and rice grains (N = 911).

Element Min
(mg/kg)

Median
(mg/kg)

Mean
(mg/kg)

Max
(mg/kg) SD a CV (%) b Percentage above the

National Standard

Cr
Soil 9.16 74.20 71.87 246.00 26.46 36.81 0

Rice grain 0.01 0.52 0.79 13.00 0.92 117.08 20.75%

Cu
Soil 8.92 34.10 35.76 116.00 13.19 36.89 0

Rice grain 0.15 3.00 2.98 6.90 0.80 26.92 0

Zn
Soil 34.30 110.00 115.50 714.00 34.39 29.76 1.32%

Rice grain 1.30 24.00 23.89 52.00 4.31 18.04 0.11%

Ni
Soil 3.81 30.40 29.94 293.00 50.17 50.17 0.88%

Rice grain 0.01 0.50 0.64 5.40 0.49 75.79 65.75%

Note: a denotes standard deviation; b denotes coefficient of variation.

The mean PTE contents in rice grains kept the sequence: Zn (23.89 mg kg−1) > Cu
(2.98 mg kg−1) > Cr (0.79 mg kg−1) > Ni (0.64 mg kg−1). As outlined by the Chinese
Government, the national standard values for Cr [63], Cu [64], Zn [65], and Ni [66] in rice
grains are 1.00, 10.00, 50.00, and 0.40 mg kg−1, respectively. The results revealed that the
mean Ni concentration in rice grains exceeded the national threshold, whereas Cr, Cu, and
Zn contents were below their national limits. The CVs of PTEs in the rice grain were in the
order of: Cr (117.08%) > Ni (75.79%) > Cu (26.92%) > Zn (18.04) (Table 2). The percentage of
rice samples with a concentration of Cr, Cu, Zn, and Ni higher than corresponding national
standard value is 20.75%, 0, 0.11%, and 65.75%, respectively.

3.2. BAC of PTEs from Soil to Rice

The BACs of the different PTEs in rice grains exhibited remarkable variations (Figure 3).
The BACs of Cr, Cu, Zn, Ni ranged from 0.001 to 0.890, 0.002 to 0.485, 0.013 to 0.729, and
0.003 to 0.783, respectively. The average BACs of the different PTEs followed the sequence:
Zn (0.219) > Cu (0.093) > Ni (0.032) > Cr (0.018) (Figure 3). The CVs of the BACs of Cr,
Cu, Zn, and Ni in rice grains were 270.34%, 45.90%, 29.87%, and 168.68%, respectively,
demonstrating that the BACs of Cr and Ni varied greatly in the study area.

3.3. Modeling the Transfer of PTEs from Soil to Rice

We employed four different methods (Cubist, RF, SVMs, and MLR) to build models
for predicting PTE bioaccumulation from soil to rice grains with input from multiple
ancillary sources. The sample dataset was firstly randomly divided as training dataset and
validation dataset with ratio of 4:1. Firstly the models were trained using a training dataset
and 5-fold cross-validation was employed to evaluate the model performance on training
dataset. Then the constructed models were validated independently using a validation
dataset. Performance metrics of the constructed models are listed in Table 3. The R2 of
the Cubist models for the different PTEs varied between 0.05 and 0.72, whereas the RMSE
varied between 0.04 and 3.22 mg kg−1. The R2 of RF models varied between 0.58 and 0.79,
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whereas the RMSE varied between 0.03 and 0.04 mg kg−1(Figure 4). For the SVM models,
the R2 spanned 0.05 and 0.69, and the RMSE ranged from 0.05 to 2.95 mg kg−1. For the
MLR models, the R2 varied between 0.46 and 0.67, and the RMSE ranged from 0.05 to
2.95 mg kg−1. The RF algorithms markedly outperformed the other three methods, with
the highest R2 and Lin’s concordance correlation coefficient (CCC) and the lowest RMSE
and bias for all the tested PTEs (Table 3).
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Table 3. Comparison of model performance validated using a validation dataset (N = 182).

Model Index Cr Cu Zn Ni

Cubist R2 0.72 0.05 0.09 0.20
CCC a 0.83 0.21 0.29 0.35

RMSE (mg kg−1) b 0.04 0.69 3.22 0.36
Bias (mg kg−1) −5.31E−03 6.33E−02 −2.23E−02 −7.07E−02

RF R2 0.79 0.58 0.66 0.74
CCC a 0.86 0.69 0.77 0.85

RMSE (mg kg−1) b 0.03 0.04 0.04 0.04
Bias (mg kg−1) −4.41E−03 1.91E−03 −3.58E−03 7.93E−07

SVM R2 0.69 0.05 0.13 0.21
CCC a 0.62 0.15 0.24 0.35

RMSE (mg kg−1) b 0.05 0.66 2.95 0.36
Bias (mg kg−1) −1.10E−02 5.45E−02 −1.81E−01 −8.26E−02

MLR R2 0.67 0.49 0.51 0.46
CCC a 0.72 0.66 0.67 0.63

RMSE (mg kg−1) b 0.04 0.05 0.06 0.06
Bias (mg kg−1) −5.67E−03 −1.11E−15 −3.11E−15 −3.55E−15

Note: a indicates Lin’s concordance correlation coefficient; b indicates root mean square error.
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dataset (N = 182).

3.4. Variable Importance for Modeling PTE Bioaccumulation in Soil-Rice Systems

We used 20 auxiliary variables (Table 1), including terrain attributes, climatic factors,
soil properties, geological factors, and geomorphic factors, to estimate PTE bioaccumulation
from soil to rice grains. As described in Section 3.3, the RF model yielded the best estimation
of PTE bioaccumulation from soil to rice grains. Therefore, the potential dominators for
PTE bioaccumulation were based on the relative variable importance determined by RF.

The relative importance of variables for estimation of PTE bioaccumulation in soil–rice
systems is presented in Figure 5. The total concentration of Cr in soil, CEC, and the amount
of organic fertilizer applied annually were identified as the three most important variables
for predicting the BAC of Cr. Soil Cu content, annual average precipitation, and the amount
of potash applied annually were the three principle variables for modeling the BAC of Cu.
Soil Zn content and annual average precipitation and temperature were the three primary
variables for modeling the BAC of Zn. Soil Ni content, CEC, and the amount of nitrogen
fertilizer applied annually were the three most critical variables for modeling the BAC
of Ni.
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Figure 5. Relative importance of variables for modeling BAC of Cr (a), Cu (b), Zn (c) and Ni (d) (Abbreviations: SC, PTE
content in soil; SOM, soil organic materials; CEC, Cation exchange capacity; Preci, annual average precipitation; Tem,
annual average temperature; PHF, amount of phosphate fertilizer applied annually; OF, amount of organic fertilizer applied
annually; NTF, amount of nitrogen fertilizer applied annually; POF, amount of potash fertilizer applied annually; BD, soil
bulk density; DEM, elevation; PD, population density; SG, soil group; LU, land use; PM, parent material).

4. Discussion
4.1. PTE Content in Soil-Rice Systems

In this study, the mean contents of all PTEs in the region under survey were clearly
higher than their national background concentrations in China, indicating PTE accumula-
tion resulting from anthropogenic activities (Table 4). In comparison with other surveys
conducted in regions like Liaoning, Jilin, Jiangsu, Fujian, Xinjiang, Shanghai, Guangdong
and Hunan Province in China [42,67–70] (listed in Table 4), the soil Cr content was relatively
high, whereas soil Cu, Zn, and Ni were present in moderate levels. The mean PTE contents
in rice grains from the survey region were notably lower than the national permissible
values, except Ni. The concentration of Cr in rice grains observed in this study was the
highest among those reported in the studies listed in Table 4. The Zn content of rice grains
was also higher than that noted in other surveys, whereas the Cu content of rice grains was
lower. The maximum values of Cr, Zn, and Ni contents exceeded the national permissible
limits, indicating that some of the rice crops are already affected by PTE pollution (Table 2).
Especially, 20.75% of rice samples have Cr content higher than national threshold, moreover
65.75% of rice samples have Ni content higher than national threshold. This indicates that
it is urgent task to take measures to control the bioaccumulation of PTEs in rice.
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Table 4. Comparison between mean PTE contents in soil-rice systems obtained in the presented research and those reported
in previous studies from China.

Location Cr (mg kg−1)
Soil/Rice/BAC

Cu (mg kg−1)
Soil/Rice/BAC

Zn (mg kg−1)
Soil/Rice/BAC

Ni (mg kg−1)
Soil/Rice/BAC Source

Zhejiang 71.37/0.79/0.018 35.76/2.98/0.093 115.50/23.89/0.219 29.94/0.64/0.032 This study
Zhuhai, Guangdong – 49.34/3.98/0.081 120.2/21.51/0.179 – [71]

Qingyuan, Guangdong – 96.9/5.23/0.054 104/25.1/0.241 8.07/0.83/0.103 [72]
Shengyang, Liaoning – – 109.5/18.4/0.168 – [23]
Wenzhou, Zhejiang 74.8/0.61/0.008 52.6/3.51/0.067 144.0/26.8/0.186 35.0/0.41/0.012 [73]
Hanzhong, Hubei – 32.9/0.40/0.012 217/22.5/0.104 – [74]

Jiangsu, Zhejiang, Shanghai 64.3/0.19/0.003 30.47/11.77/0.386 102.21/22.79/0.223 – [69]
Huzhou, Zhejiang – 31.06/2.49/0.080 106.82/14.28/0.134 32.14/0.12/0.004 [72]
Shaoxing, Zhejiang – 28.64/2.98/0.104 98.74/22.41/0.227 27.03/0.35/0.013 [72]
Wenzhou, Zhejiang – 41.13/3.09/0.075 98.74/20.69/0.210 27.03/0.22/0.008 [72]

Guizhou – – 135/11.56/0.086 40.5/1.57/0.039 [75]
Shantou, Guangdong 60.2/0.21/0.003 78.4/3.01/0.038 111.9/17.32/0.155 37.8/1.37/0.036 [68]

Changsha, Hunan 53.6/0.44/0.008 23.9/3.69/0.154 82.7/17.7/0.214 23.3/0.34/0.015 [43]
Jiangsu, Zhejiang, Shanghai – 38.7/5.02/0.130 105/22.09/0.210 – [36]

Shaoguan, Guangdong 29.1/0.34/0.012 67.2/3.63/0.054 129/29.1/0.226 15.1/0.83/0.055 [67]
China 54.6 a/1.0 b 23.5 c/10 d 82.1 e/50 f 28 g/0.4 h [63–66,76]

Note: a national soil background value of Cr content in China; b national regulation value of Cr content in rice grain in China; c national
soil background value of Cu content in China; d national regulation value of Cu content in rice grain in China; e national soil background
value of Zn content in China; f national regulation value of Zn content in rice grain in China; g national soil background value of Ni content
in China; h national regulation value of Ni content in rice grain in China.

Taking the results of other studies into consideration, the BACs of Cr, Cu, Zn, and Ni
ranged from 0.003 to 0.012, 0.038 to 0.386, 0.086 to 0.241, and 0.004 to 0.103, respectively
(Table 4). Our results found that migration capacity of Zn is the strongest while Cr is the
weakest in soil–rice system which is consistent with the study reported by Li et al. (2021).
The BAC of Cr calculated in this research was higher than that reported by previous study
listed in Table 4, whereas the BACs of Cu, Zn and Ni were mid-range. The BAC of Zn was
evidently higher than that of the other PTEs, which was consistent with previous study
reported by Wang et al. (2016) [67], Chen et al. (2018) [26], Du et al. (2018) [42], and He
et al. (2019) [39]. Cakmark (2008) [77] noted that application of Zn fertilizers enhances the
amount of available Zn in the soil solution, leading to bioaccumulation in grains during
the productive growth stage. Nan et al. (2002) [78], Mohammad and Moheman (2010) [79];
demonstrated the interactions occurring during the accumulation of Cd and Zn and the
synergistic effects of the bioaccumulation of these two PTEs in soil–crop systems. These
factors may contribute to the higher BAC of Zn observed in soil-rice systems.

4.2. Model Performance Employing the Different Methods and Elements

Clear differences were observed in the model performances. Generally, RF had the
best performance, followed by MLR, SVM and Cubist. MLR aims to model the linear
relationship between the explanatory variables and response variable. MLR has previously
been used to predict soil organic carbon (SOC) [80], soil pH [81], soil bulk density [82], and
soil texture [50]. However, MLR is not suitable if non-linear relationships are present in
the data [83]. This may explain the poor performance of MLR when compared with that
of RF and Cubist. Furthermore, the relationship between the covariates and BAC of PTEs
in soil–rice systems is highly complex and difficult to model using linear relations alone,
which further lower the performance of MLR. SVMs have also previously been employed
to predict soil SOC stock [84], phosphorus [85], and clay [85]. They were reported to be
more suitable for classification than quantitative prediction [86]. Cubist has proven to be a
feasible method for predicting soil properties, such as SOC [87], salinity [88], silt [89], and
concentration of soil Cr, Pb, Cu, Zn, Ni, and As [90]. The RF algorithm is based on decision
trees and is currently the most widely used machine learning method for predicting soil
properties. It has several advantages, such as ease of application, insensitivity to data
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size, and the ability to model non-linear relationships in the data set [37,60,91], which may
contribute to the better performance of RF.

The model constructed using RF yielded the best estimation of Cr bioaccumulation in
soil–rice systems. The R2 of this model was 0.79 (Table 3 and Figure 4), and it significantly
outperformed the linear models constructed by Zhao et al. (2009) [46] (R2 = 0.13), Zeng
et al. (2011) [92] (R2 = 0.22), and Deng et al. (2020) [40] (R2 = 0.46) (Table 5). Our models
for predicting Cu, Zn, and Ni were also more accurate than those reported previously in
similar case studies (Table 5). The results confirmed the ability of RF to efficiently predict
PTE bioaccumulation in soil–rice systems with multi-source covariates.

Table 5. Comparison of model performance for the estimation of PTE bioaccumulation in soil-rice systems obtained in the
presented study and in previous studies.

Element Method R2 Study Area Covariates Source

Cr LR 0.456 Shaoxing, China pH, SC [46]
Cu, Zn, Ni LR 0.52, 0.52, 0.55 Zhejiang China pH, SOM, EC, sand, silt, clay [27]

Cu, Zn MLR 0.24, 0.63 YRD, China SC, pH, SOM [36]
Cr, Cu, Zn, Ni MLR 0.13, 0.15, 0.37, 0.20 Zhejiang China SC, pH [46]

Cr, Cu, Zn SR 0.22, 0.06, 0.37 Zhejiang China SC, pH [92]
Cr, Cu, Zn, Ni RF 0.79, 0.58, 0.66, 0.74 – Table 1 This study

Notes: LR, Linear Regression model; SR: Stepwise regression model; MLR, Multiple Linear Regression; YRD, Yangtze River Delta; SC, soil
PTE content; EC, electrical conductivity.

4.3. Potential Dominators for PTE Bioaccumulation in Soil-Rice Systems

The total PTE content of soil was found to be the principal variable for estimating the
BAC of PTEs in soil–rice systems, as evident from Figure 4. In addition, CEC and annual
average precipitation contributed significantly to BAC estimation. Cr, Cu, Zn, and Ni are
indispensable elements for rice growth. The PTEs can be absorbed by rice plants from the
soil. Several studies have demonstrated the strong relationship between PTEs in the soil
and in crops, including rice [39,41,47,49,93,94], which may explain the importance of SC in
modeling PTE bioaccumulation in rice.

The close relationship between CEC and absorption of PTEs by crops from the soil
has been reported by several researchers [37,95–97]. Vega et al. (2010) [98] revealed that
CEC plays important roles in the sorption and retention processes of PTEs in soil–crop
systems. Gupta et al. (2008) [99] reported that high CEC could significantly slow down
PTE uptake by crops from the soil. Shen et al. (1998) [100] also found that high CEC allows
the minerals in soil to absorb PTE ions from soil solutions through ion-exchange processes.
Gu et al. (2011) [101] noted that an increase in soil CEC could promote PTE precipitation
and complexation in the soil solution.

The annual average precipitation may affect PTE bioaccumulation in soil–rice systems
by promoting crop growth, subsequently enhancing PTE absorption by the crop. Other
covariates, such as SOM, appeared to be less important than expected, and these warrant
further investigation.

4.4. Policy Recommendations

Our results indicate that some measures could be taken to curb the bioaccumulation of
PTEs in rice. Firstly, great effort still necessary to reduce accumulation of PTEs in soil which
could then reduce the bioaccumulation of PTEs from soil to rice. Secondly, more reasonable
agricultural land management measures for example reasonable application of fertilization,
reasonable crop rotation were expected to curb transfer of PTEs from soil to rice. After
that, liming of acidic soils is recommended especially in the areas serous polluted by PTEs
such as Cd, Pb since some PTEs such as Cd and Pb are more easily absorbed by crops in
acidic soil [102]. Finally, breeding crops, such as rice cultivars with low accumulation, is
another efficient way to reduce the human health risk caused by PTEs pollution in food
or vegetables.
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4.5. Limitations and Perspectives

Although the model developed using RF could efficiently predict PTE bioaccumula-
tion in soil–crop systems, some limitations remain to be addressed. The present study did
not take the rice variety into consideration while building the model. Some studies have
reported significant differences in the BAC of PTEs among different rice varieties [47,103,104].
Furthermore, some of our ancillaries, such as CEC, soil bulk density, annual average tem-
perature, annual average precipitation, and soil texture, were sourced from maps available
online. The resolution of these data is 1000 m, which is still coarse to provide accurate
information on the spatial variation of these variables (Table 1). This may negatively affect
model performance. In addition, the agricultural practices, such as application of lime,
duration of flooding, can affect PTE bioaccumulation in soil–rice systems [105,106].

Several measures could be employed to improve the estimation accuracy. Firstly, the
differences between the rice varieties must be taken into consideration in future works.
Secondly, maps with high resolution data of CEC, soil bulk density, annual average temper-
ature, annual average precipitation, and soil texture, recorded during additional surveys
should be used as covariates. Greater information related to soil management practices
should also be included in the model to improve prediction accuracy. Finally, in our current
study, the model was built using the total PTE content as one of the core covariates. How-
ever, the available form of PTEs in soil was reported to be more closely related to the PTEs
absorbed by crops from the soil [39,107–110]. Therefore, future studies should employ the
available form of PTEs in soil for constructing the model, instead of the total PTE content.

5. Conclusions

Results obtained in current study revealed that the mean contents of Cr, Cu, Zn, and
Ni in farmland soils in the region under survey were higher than their background contents
in China. The average Ni content in rice grains clearly exceeded the national permissible
limit, whereas the Cr, Cu, and Zn contents were lower than their thresholds. The mean
value of BAC of Zn (0.219) was the highest, followed by that of Cu (0.093), Ni (0.032), and
Cr (0.018).

The model developed using RF significantly outperformed the MLR, SVM, and Cubist
models, and could efficiently predict the bioaccumulation of Cr, Cu, Zn, and Ni in soil–rice
systems, with an R2 varying between 0.58 and 0.79 and RMSE varying between 0.03 and
0.04 mg kg−1. Total PTE content in soil, CEC, and annual average precipitation were the
principal components for the estimation of BACs of PTEs in soil–rice systems. This study
confirmed the feasibility of RF for predicting PTE bioaccumulation in soil–rice systems and
identifying potential dominators for the transportation of PTEs in soil–rice systems. The
findings of this study are expected to enhance our knowledge of the PTEs accumulation
in soil and rice grains, contributing to food safety and reducing the human health risk of
consuming PTE-polluted rice.
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