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Abstract: Frequently occurring flood disasters caused by extreme climate and urbanization processes
have become the most common natural hazard and pose a great threat to human society. Therefore,
urban flood risk assessment is of great significance for disaster mitigation and prevention. In this
paper, the analytic hierarchy process (AHP) was applied to quantify the spatiotemporal variations
in flood risk in Wuhan during 2000–2018. A comprehensive flood risk assessment index system
was constructed from the hazard, sensitivity, and vulnerability components with seven indices.
The results showed that the central urban area, especially the area in the west bank of the Yangtze
river, had high risk due to its high flood sensitivity that was determined by land use type and high
vulnerability with dense population and per unit GDP. Specifically, the Jianghan, Qiaokou, Jiangan,
and Wuchang districts had the highest flood risk, more than 60% of whose area was in medium or
above-medium risk regions. During 2000–2018, the flood risk overall showed an increasing trend,
with Hongshan district increasing the most, and the year of 2010 was identified as a turning point
for rapid risk increase. In addition, the comparison between the risk maps and actual historical
inundation point records showed good agreement, indicating that the assessment framework and
method proposed in this study can be useful to assist flood mitigation and management, and relevant
policy recommendations were proposed based on the assessment results.

Keywords: flood risk; land use change; climate change; analytic hierarchy process; Wuhan city

1. Introduction

Flooding is one of the most common natural disasters globally, which has had great
impacts on human society, causing widespread losses of life and property [1,2]. It was
recorded that flooding events caused USD 656 billion worth of economic losses and affected
2 billion globally during 1988–2017 [3]. China is a country that has suffered the most from
flooding, ranking first in economic loss and affected population [4]. In recent years, due to
climate warming and rapid urbanization process, the frequency of flooding induced by
extreme weather has gradually increased in many regions of the world, leading to more life
and economic losses in city areas with more population and economy exposed to natural
disasters [1,5,6]. The frequency and severity of flooding events are expected to increase
with intense rainfall under climate change [7]. Land use transitions from other land types
into impervious surfaces during the urbanization process affect the hydrological and hy-
drometeorological environments, preventing rainwater from percolating into the ground
and further leading to increased flooding risks [8,9]. Cites are at the forefront of climate
change and rapid urbanization processes and are more vulnerable to flooding [2,10]. Many
cities in China, such as Wuhan, Guangzhou, and Beijing, are facing frequent flooding [4,11].
Moreover, flood risk is expected to be aggravated under future climate change and ur-
ban expansion [8,12,13]. Therefore, it is necessary to quantitatively assess the flood risk
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under land use and climate change to support flood management strategies to minimize
potential damages.

During recent decades, the middle and lower reaches of Yangtze river have expe-
rienced increasing frequencies of severe floods due to abnormal rainfall and land use
changes. Wuhan, as the core of the city cluster in the middle reach of Yangtze river, mostly
experiences frequent flood disasters due to the frequent extreme weather events and the
changes in landscape caused by hardened urban roads [14]. Moreover, the developed econ-
omy and high level of urbanization also let the quota of post-disaster economic loss greatly
increase [13]. In the latest year of 2016, Wuhan once again set a new weekly continuous
precipitation record, which affected more than 700,000 people, damaged nearly 100,000
hectares of crops, and caused a direct economic loss of CNY 2.2 billion [15]. It can be seen
that Wuhan has experienced serious flood disasters. Therefore, it is of great significance to
explore an urban flood risk assessment model suitable for Wuhan to improve the response
speed, ensure regional economic and social stability, give targeted early warnings, and
enhance disaster reduction and prevention.

The concept of flood risk is not unique but mostly defined as a product of hazard,
exposure (or vulnerability), and sensitivity [16–19]. Hazard is related to the probability
and extent of flood impacts; exposure (vulnerability) represents the values or humans
that are involved in the area affected by floods; sensitivity is the perception to flood,
which is determined by the characteristics of the affected areas [8,17,20]. In the past few
decades, urban flood risk assessment has become a focus in the field of disaster control
and management globally [5,18]. Flood risk assessment and mapping is a crucial part of
flood risk management, aiming to identify the location, magnitude, and distribution of
risk areas under intense rainfall to provide key information for future urban planning
and disaster mitigation [21,22]. At present, there are many kinds of methods for flood
risk assessment, including hydrologic and hydraulic models [23,24], historical disaster
mathematical statistics analysis [15,25], geographic information system (GIS) and remote
sensing (RS) coupling analysis [26], scenario simulation analysis [27,28], machine learning
models (MLMs) [29,30], and multi-criteria decision analysis (MCDA) [26,31,32]. Among
these methods, historical disaster analysis is easy to implement based on the statistics of
historical disasters, and its assessment results are generally consistent with reality. However,
it is generally used for post-disaster loss assessment based on sufficient historical data and
cannot reflect the spatial variability in urban flood risk [33]. GIS and RS-based assessments
have a great advantage in terms of assessment scope and timeliness with remotely sensed
data during the flood period. However, it is subject to image resolution and the flood scope
is inaccurate, which cannot reflect key information such as submerged water depth and
surface velocity [34]. Scenario simulation analysis often relies on hydraulics/hydrodynamic
models, such as Mike, Storm Water Management Model (SWMM), and Urban Flood
Cell Model (MODCEL), which require high-accuracy and high-resolution data that are
difficult to obtain in practical application. Moreover, the hydraulics/hydrodynamic models
are generally suitable for small watersheds due to the complexity of information [35].
MLM has been widely applied in recent years, as it is relatively flexible and objective
through automatically learning flood risk characteristics based on an intelligent model [36].
Meanwhile, as MLMs are newly applied in flood risk assessment, whether the models
are powerful and suitable require further exploration [37]. MCDA is the method that is
widely applied in flood risk assessment, which provides a flexible scheme for flood risk
assessment [38]. However, the index weight assignment in MCDA is relatively subjective
and the index system may be not adequate enough to reflect the risk [39]. Nevertheless,
MCDA is widely applied in flood risk assessment at the macro scale to reflect the regional
risk situation in China.

Based on the above analysis, the MCDA combining GIS can be a suitable approach for
flood risk assessment at the city level in Wuhan. The construction of an index system for
MCDA should use comprehensive indicators that cover the aspects of hazard, exposure,
and sensitivity. Generally, the morphological, hydrometeorological, and demographic
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factors, such as rainfall patterns, slope, elevation, drainage density, distance from the
river network, land use types, and population density, are commonly considered [21,31].
Specifically, the urban surface condition is key factor in flood risk assessment. However, the
existing index system mostly uses vegetation coverage, river network density, and other
indicators to represent the surface infiltration, and fails to integrate them into a single phys-
ical concept for comprehensive analysis, resulting in a certain degree of index duplication.
Thus, the curve number (CN) index, which can represent the maximum possible retention
of the soil conservation service (SCS) hydrological model, was innovatively introduced
into the index system as one of the sensitivity indexes to further quantify the influence of
urban surface infiltration capacity on flood disasters [40].

The formation of an urban flood is the result of the mutual influence among the
disaster-causing factors, disaster formative environment, and the disaster bears [18,41], in
which disaster-causing factors such as extreme rainfall reflect the probability of hazard,
disaster-formative environments influence the redistribution of rainfall and determine the
perception to flood (sensitivity), and disaster bears exposed to flood, such as the number of
impacted people and infrastructure, and the vulnerability and resiliency of the affected
area, reflect the consequences caused by disaster-causing factors. Then, the flood risk
is defined as the product of hazard, exposure, and sensitivity [18]. Based on the above
framework, the objective of this study was to clarify the spatiotemporal variations in flood
risk in Wuhan city during 2000–2018. First, a complete risk assessment system for Wuhan
urban flood disasters was formed; then, the analytic hierarchy process (AHP) as one of
the MCDA techniques within a GIS mapping environment was applied to assess the flood
risks; finally, the spatiotemporal variations in the resulting flood risk were presented and
analyzed, which provide efficient guidance for flood risk management.

2. Materials and Methods
2.1. Study Area

Wuhan is the capital city of Hubei Province in Central China, located in the middle of
the Yangtze River Economic belt, spanning 113◦41′–115◦05′ E and 29◦58′–31◦22′ N, covering
an area of 8467 km2 (Figure 1). Wuhan covers 13 districts, including 7 central districts
(Jiang’an, Jianghan, Qiaokou, Hanyang, Wuchang, Hongshan, and Qingshan) and 6 new
districts (Dongxihu, Caidian, Jiangxia, Huangpi, Xinzhou, and Hannan). As the largest
metropolis in central China and the core city of urban agglomeration in the middle of the
Yangtze River Economic belt, Wuhan is characterized with rapid economic development
and high economic growth. In 2019, Wuhan had a population of 11.212 million and GDP
of CNY 1622.321 billion, ranking 7th in the China’s city GDP [42,43]. The developed
economy and large amount of population have caused higher exposure and vulnerability.
The Yangtze River and its largest tributary, Hanshui, flow through the city. Wuhan is
called the “City of Hundreds of Lakes,” where rivers and lakes interweave hundreds
of mountains and 166 lakes located in the city, and the water area accounts for about a
quarter of the city’s area. Meanwhile, due to rapid economic growth, many lakes have
been converted to built-up land, which has led to ecosystem services loss and has increased
flood risks [42]. Wuhan is located in a subtropical monsoon humid climate zone, where
precipitation is relatively concentrated in summer. The average annual precipitation varies
from 1150 mm to 1500 mm, and the precipitation in summer is about three quarters of the
annual precipitation [44], which has created a prerequisite for the occurrence of floods.
The floods have caused direct economic losses of CNY 213.71 billion from 2006 to 2017,
accounting for 6.19% of the total economy in China (Bulletin of Flood and Drought Disasters
in China, 2006–2017). The combination of river systems, land use changes, and climate
conditions constitute a very characteristic ecological environment of lakeside waters, thus
creating a unique pattern of urban flood disasters in Wuhan. Thus, the assessment of
flood risk under land use and climate change has an important significance for flood risk
management and reduction.
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Figure 1. Geographical location of Wuhan city.
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2.2. Data Sources and Processing
2.2.1. Index System for Flood Risk Assessment

The construction of an index system for flood risk assessment should be comprehen-
sive. Based on a previous literature review, there are many indices used for disaster risk
assessment. Most studies have identified that the risk is caused by the interaction of differ-
ent factors, including disaster-causing factors (hazard), the disaster formative environment
(sensitivity), and disaster bearers (vulnerability) [18,29,41]. Thus, the framework of the
index system was established from the three aspects, hazard, sensitivity, and vulnerability
(Figure 2). Disaster-causing factors (R1) determine the magnitude and possibility of oc-
currence and impact extent of hazards. As extreme rainfall is the main disaster-causing
factor of urban floods, the maximum 3-day precipitation (M3DP) (P1) was selected to
represent the risk of disaster-causing factors (R1). In addition, it is believed that places
close to rivers and lakes are more likely to be invaded by floods [17]; thus, the distance to
the river network (P2) was also selected as one index of the disaster-causing factors (R1).
The disaster-formative environment (R2) plays a vital role in the redistribution of rainfall.
Under the same rainfall condition, different underlying surface conditions can lead to
different runoff and infiltration conditions. Therefore, the indices of the disaster-formative
environment (R2) include the standard deviation of elevation (P3) and maximum possible
retention (S value) (P4). The S value is derived based on the Soil Conservation Service
Curve Number (SCS-CN) model, which is determined by soil texture and land use type.
The introduction of the S value integrates several infiltration evaluation indices that were
originally forced to be separated, making the evaluation of environmental sensitivity of
infiltration more scientific and more reasonable. In addition, the consequence caused
by disaster-causing factors depends on the situation of disaster bearers (R3), such as the
affected population and infrastructure, and the vulnerability and resiliency of the affected
area. As the number of population and GDP can describe the social and economic de-
velopment to a large extent, and road network density can represent the distribution of
infrastructure construction, population density (P5), per unit GDP (P6), and road network
density (P7) were selected to represent the vulnerability of the disaster bearers (R3).
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Figure 2. Wuhan flood disaster risk assessment index system.

2.2.2. Data Sources

In this paper, seven indices of years 2000, 2005, 2010, 2015, and 2018 were selected
according to three aspects (Table 1). The M3DP was calculated based on the daily precip-
itation data, which were obtained from the National Meteorological Information Center.
Distance to the river network was represented by sequential buffers along the rivers, the
standard deviation of elevation was processed based on DEM data, and S values were
determined by soil characteristics and land use types. River network, DEM, soil data,
land use, population density, and per unit GDP were obtained from the Data Center for
Resources and Environmental Sciences, Chinese Academy of Sciences. Road density was
calculated based on the road network (including national road, provincial road, and railway
road) provided by the Gaode map.
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Table 1. The data sources for the seven indices.

Components Index Name Data Type Spatial Resolution Data Source and Description

R1: disaster-causing
factors (hazard),

P1: M3DP Daily precipitation 30 m × 30 m

The National Meteorological
Information Center

(http://data.cma.cn/ accessed
on 19 September 2020).

P2: Distance to river
network River network -

The Data Center for Resources
and Environmental Sciences,
Chinese Academy of Sciences

(http://www.resdc.cn/
accessed on 15 May 2020)

R2: disaster formative
environment (sensitivity),

P3: Standard deviation of
elevation

Digital Elevation Model
(DEM) 30 m × 30 m

P4: Maximum possible
retention (S value)

Land use 30 m × 30 m

Soil types and properties 1 km × 1 km

R3: disaster bearers
(vulnerability)

P5: Population density Population density 1 km × 1 km

P6: Per unit GDP Per unit GDP 1 km × 1 km

P7: Road density Road network - Road network provided by
Gaode map

Specifically, to represent the distance to the river network, sequential buffers were
created along the rivers (buffers at 500 m, 1000 m, 1500 m, and 2000 m) and ranks were
specified accordingly (ranks were assigned values of 5, 4, 3, 2, and 1 according to the
distance from the river). The S value is related to the dimensionless parameter CN, which
is a comprehensive parameter reflecting the characteristics of the region and is related to
soil moisture, slope, soil type, land use type, and vegetation. Theoretically, CN is an integer
value within 100 and is inversely proportional to S, that is, the larger the value of CN is, the
easier the region is to produce runoff. The relationship between CN value and S is different
in different regions. According to the studies of scholars on rainfall and runoff in Wuhan,
the generally accepted relationship between CN value and S in Wuhan is as follows [45]:

S =
25, 400

CN
− 254 (1)

Musgrave (1955) classified all soils into four hydrologic soil groups A, B, C, and
D with different infiltration capacities by measuring the minimum infiltration capacity
(Table 2) [46]. Based on the soil data of Wuhan, it is found that there are three suitable
hydrologic soil groups—B, C, and D in Wuhan, among which B and D are the main types.
Further, combined with the land use types, the CN values can be obtained as shown in
Table 3 [47,48], and the S value can be calculated further.

Table 2. Soil permeability classification.

Soil Type Minimum Infiltration Rate (mm/h) Soil Texture

A >7.26 Sandy soil, loamy sandy soil, sandy loam
B 3.81–7.26 Loam, silty loam
C 1.27–3.81 Clay and loam

D 0.00–1.27 Clay loam, silt clay loam, sand clay, silt
clay, clay

http://data.cma.cn/
http://www.resdc.cn/
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Table 3. CN values under different hydrologic soil groups and land use types.

Land Use Type
Hydrologic Soil Group

A B C D

Paddy 74 80 85 91
Dry farming 68 77 83 89

Forest 38 58 70 77
Bush 41 56 68 77

Grassland 46 67 79 84
Water body 100 100 100 100
Urban land 72 83 90 92

Rural settlements 64 75 81 85
Other built-up land 68 79 86 89

Unused land 72 80 85 91

2.3. Methodology

Based on the comprehensive index system, flood risk is defined as the product of the
hazard, sensitivity, and vulnerability. The calculation formula for flood risk is as follows:

FRI = f (H, S, V) = Hazard (R1)∗Sensitivity (R2)∗Vulnerability (R3) (2)

where FRI is the flood risk index, H is the hazard index that is determined by the disaster-
causing factors (R1), S is the sensitivity index that is measured by factors of the disaster-
formative environment (R2), and V is the vulnerability index that is represented by the
vulnerability of the disaster bearers (R3). The flood risk index (FRI) is the product of
Hazard (H), Sensitivity (S), and Vulnerability (V), which are, respectively, represented by
R1, R2, and R3, which are the sum of the product of the standardized value of relevant
factors, as shown in Figure 2, and the determined weights of each factor (Table 4). It can be
defined by Equation (3).

FRI = αH(
n

∑
i=1

Hihi)
Hazard

∗ αE(
n

∑
j=1

Sjsj)

Sensitivity

∗ αV(
n

∑
k=1

Vkvk)
Vulerability

(3)

where αH , αS, and αV are, respectively, the weights of the hazard index, sensitivity index,
and vulnerability index; Hi, Sj, and Vk are the metrics of three indexes; hi, sj, and vk are the
weights of the metrics.

Table 4. Comparison matrix for flood risk assessment.

A. Comparison Matrix for Hazard Indicators

R1: Hazard P1 P2 Relative Weight

P1: M3DP 1 1.5 0.6
P2: Distance to river network 0.67 1 0.4

B. Comparison Matrix for Sensitivity Indicators

R2: Sensitivity P3 P4 Relative Weight

P3: Standard deviation of elevation 1 0.4 0.29
P4: Maximum possible retention 2.5 1 0.71

C. Comparison Matrix for Vulnerability Indicators

R3: Vulnerability P4 P5 P6 Relative Weight

P5: Population density 1 0.33 0.5 0.16
P6: Per unit GDP 3 1 3 0.59
P7: Road density 2 0.33 1 0.25

λ = 3.07, CR = 0.06 < 0.1, pass the consistency verification.
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To determine the weights of the metrics, the AHP was applied, as one of the multi-
criteria analysis methods that allows experts, using their experience and knowledge, to
organize the elements into a hierarchical structure and calculate their weights with the
help of a preference matrix [31]. Currently, AHP is one of the methods that is most widely
applied in the flood risk assessment, especially for research at the city scale. It can cover
well the city’s social economy and ecological environment. Considering Wuhan city’s
socioeconomic and natural environmental condition for the possibility of flood risk, AHP
is introduced to the assessment of flood risk in Wuhan. In AHP analysis, the first step is to
develop a pairwise comparisons matrix for indices of hazard, sensitivity, and vulnerability
using scores based on their relative importance (Table 4A–C). In this pairwise comparison
matrix, each index was rated against every other one by assigning relative importance
values [32]. Then, based on the comparison matrix, the normalized eigenvector was
calculated by dividing each column by corresponding sums. Last, average values of each
row of the normalized eigenvector were calculated and used as weights.

After the weights were determined, the standardization of each index was then carried
out. Among the seven indices, except that the maximum possible retention and road density
are inversely related to flood risk, the other five indices are all positive. The standardization
of each index was then carried out. The standardized formulas are as follows.

For positive index:

Yij =
(
Xij − Xjmin

)
/
(
Xjmax − Xjmin

)
(4)

For negative index:

Yij =
(
Xjmax − Xij

)
/
(
Xjmax − Xjmin

)
(5)

where Yij represents the standardized value of the jth index of the ith object, Xij is the
actual value, and Xjmin and Xjmax represent the minimum and maximum values of the jth
index, respectively.

3. Results
3.1. Spatiotemporal Variations in Flood Hazard, Sensitvity, and Vulnerabiltiy

In this study, flood hazard magnitude was investigated based on the M3DP and
distance to the river network. The M3DP distribution of years 2000, 2005, 2010, 2015,
and 2018 were similar. As precipitation is a probabilistic event that cannot completely be
predictable, in order to minimize the impact of abnormal precipitation in some regions
in a single year, the average M3DP of the five years was used in this study. It showed
that central and east regions of Wuhan had high M3DP, indicating the area with high
flood possibility (Figure 3a). Accordingly, the flood hazard was calculated for each pixel of
Wuhan based on standardized values of M3DP, distance to the river network (Figure 3b),
and their weights. The result showed that the intensity of flood hazards is very high in the
eastern part of Wuhan, close to the river network (Figure 3c).

Urban flood sensitivity incorporates the standard deviation of elevation and the poten-
tial maximum retention (S). For the S value index, land use types are the key determinant
factors. It can be more intuitively seen that from 2000 to 2018, the area of paddy and dry
farming land continued to decline, while the area of urban land and other construction
land increased significantly (Figure 4). As a result of the pattern and change in land use
and soil property, the S value showed a pattern of increasing from the central region to
the surrounding area (Figure 5). This is because the land use type of the central region is
mostly hardened pavement with a low infiltration rate. In the central area of the city center
along the river, there is also an area with a high S value, mainly because the soil type in
this area is mainly loam with good water permeability. In addition, from a single year,
Figure 5b–f show that the S value is higher in the northern mountainous area, where there
are more forest land with high soil infiltration rate and low possibility of runoff. Because
there is no soil in the river system, low-S-value areas are generated in the river network,
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and the river is the runoff area, which is also consistent with common sense. The loam soil
associated with the river has a high infiltration rate and a high S value, which is reflected in
the red dotted high infiltration area distributed along the river. A longitudinal comparison
of the difference in S value in different years shows that the distribution pattern of high
and low infiltration rate has not changed much. In detail, in the central urban area with
nonloam soil, the area with low S value showed an expansion trend from 2000 to 2018,
which is caused by the continuous expansion of urban land from the city center.
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Based on the elevation standard deviation and S value data, the urban flood sensitivity
was obtained. The spatiotemporal patterns of flood sensitivity in Wuhan during 2000–2018
are shown in Figure 6. As the elevation standard deviation data of each year were the
same, the differences in flood sensitivity in the five years were mainly determined by the
differences in S value. In general, the results showed that the central urban area of Wuhan
was of high sensitivity value. Due to the expansion of urban land, the scope of highly
sensitive areas was also expanding. The northern mountainous area was mostly covered by
forest and, thus, was of high ground infiltration capacity and low flood sensitivity, while
areas covered by water bodies were mostly of high flood sensitivity.
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Figure 4. Change in the land use in Wuhan during 2000–2018.
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Figure 5. Spatiotemporal patterns of land use of 2018 (a) and standard derivation of elevation and
maximum possible retention (S) in Wuhan ((b) 2000, (c) 2005, (d) 2010, (e) 2015, (f) 2018).

Urban flood vulnerability includes susceptible indexes such as population density,
per unit GDP, and road density, among which population and GDP collectively indicate
the magnitude of vulnerability, and road density represents the resilience component that
reduces the magnitude of vulnerability. The results of the urban flood vulnerability showed
that the central part of the city has the highest vulnerability, and it decreased radially to the
periphery (Figure 7). Based on the comparison of vulnerability patterns of the five years,
it showed that areas with high vulnerability expanded during 2000–2018, especially the
area in the west bank of the Yangtze River, where the urban area developed most rapidly.
Especially, the population and economic development increased even more after 2010. The
prosperous population and economy will make this region face high post-disaster losses,
which requires better forecasting, monitoring, and disaster reduction measures.

3.2. Spatiotemporal Variations in Comprehensive Flood Risk

The spatiotemporal variations in comprehensive flood risk disasters are shown in
Figure 8, where the flood risks were classified into five levels (least, mild, medium, high,
and highest) based on the Jenks natural breaks classification method. As to the spatial
patterns of flood risk, it showed that the high-flood-risk areas in the five years were mainly
concentrated in the central urban area, extending in the southeast and northwest directions;
the area in the west bank of the Yangtze river was especially the highest, which was mainly
determined by the land use type and flood vulnerability of the disaster bearer. In addition,
the flood risk of the areas close to the river network was higher than that of other flat lands.
The points of Figure 8e,f are the recorded inundation points in Wuhan released in 2020. By
comparing the data of inundation points in the Wuhan urban area officially released in
2020 with the spatial distribution map of risk degree in the latest year of 2018, it was found
that 52 of the 59 waterlogging points fall in relatively high-risk areas and high-risk areas,
with a screening rate of 88%. Moreover, in the west side of Hanjiang River, the density
of inundation points in the high-risk area was higher than that in the relatively high-risk
area, which suggested our risk assessment results were basically consistent with the actual
data. Furthermore, the flood risk of the 13 districts in Wuhan was statistically analyzed.
As can be seen from Figure 9, Jianghan, Qiaokou, Jiang’an, and Wuchang districts in the
central area had the highest flood risk, and the area with above-medium risk accounted for
more than 60%. More than 80% of Jianghan district is a high-risk region. The developed
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political and economic conditions and the risk of disasters of Jianghan district caused
higher requests for urban flood risk prevention work to be put forward. On the one hand,
soft ground, green coverage, and drainage pipeline construction need to be increased to
reduce the risk; on the other hand, the risk early warning and disaster response need to be
strengthened, so that the safety of life and property can receive the maximum protection.
Jiangxia, Xinzhou, Hannan, Caidian, and Huangpi districts had the lowest risk, with the
proportion of high-risk area less than 5%. It was mainly due to the fact that they were
far away from the central urban area, with more forest and grassland area that has a
high infiltration rate. In addition, although Qingshan district has a small proportion of
high-risk areas and highest-risk areas, it has the largest proportion of medium-risk areas.
In a large-scale precipitation disaster, compared with other regions and cities, it is more
necessary to do a good job of disaster prevention and evacuation of masses and property.
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Figure 9. Area proportion of various flood risk levels of 13 districts in Wuhan in 2018.

As to the temporal variations in flood risk, it showed that the overall flood risk had
increased and expanded. As can be seen from Figure 10, the areas of high and highest
flood risk of most districts presented an increasing trend. The increases in high- and
highest-flood-risk area in Hongshan district were most obvious. Specifically, the year 2010
was an obvious turning point, as flood risk increased rapidly since 2010, which was also
the turning point when Wuhan’s urbanization development began to develop rapidly.
Moreover, the distribution and risk levels of recorded inundation points of the year 2020 in
Wuhan were collected and overlayed on the flood risk map of 2018. It was found that 52 of
the 59 inundation points (88%) fall in high- and highest-risk areas. Moreover, the density
of inundation points in the highest-risk area was higher than that in the high-risk area.
Overall, the flood risk results were basically consistent with the actual inundation risk data.
Wuhan, as a core city in the middle reaches of the Yangtze River, has broad prospects for
future development. It is one of the key issues to reduce flood risk while ensuring Wuhan’s
urbanization development and sustained economic prosperity.
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Figure 10. Changes in area of high risk and highest risk in the 13 districts from 2000 to 2018.

4. Discussion

In this study, a multiple index system was constructed to assess the flood risk in
Wuhan during 2000–2018. Many previous studies evaluated the flood risk and estimated
socio-economic losses based on social media data, with a combination of mobility patterns
and multi-source data [49–51]. In contrast, this study assessed flood risk on the basis
of climatic data, natural physical data, land use data, and socio-economic data. Land
use change is the main driving factor of flood risk and has a negative impact on the
flood exposure [52]. Compared with other studies, this study innovatively introduced an
indicator of maximum possible retention (S value), which can integrate several infiltration
evaluation indices to make more reasonable the quantification of the influence of urban
surface infiltration capacity on flood disasters. In addition, the data of distribution and
risk levels of recorded inundation points of the year 2020 in Wuhan were collected to help
verify the accuracy of flood risk assessment results.

The results showed that Jianghan, Qiaokou, Jiang’an, and Wuchang districts had the
highest risk of flood disaster in Wuhan, which is consistent with findings of other research.
For example, Liu et al. (2021) showed that central Wuhan and southeast sub-districts were
typically affected by floods [50]. Wuhan plays an important role in the development of
the Yangtze River Economic Belt. Flood risk management and reduction are significant for
sustainable development in Wuhan. Hazard, sensitivity, and vulnerability are three key
components for flood risk. Thus, risk management and reduction can be achieved through
considering these factors. For instance, during the urbanization process, the water bodies
and green spaces should be protected to reduce the impacts of short-term rainstorms. The
newly developed urban area should be at higher elevations and not too close to rivers, to
reduce the possibility of inundation. In the urbanized area, low-impact development is
suggested to help reduce run-off, and road networks and underground drainage systems
should be strengthened. In addition, contingency land-use plans can be developed to
reduce urban flood exposure.

In addition, flood risk is a complex issue and affected by various factors. In this study,
seven indices were selected from three aspects. However, these cannot fully reflect the
driving factors of flood risk. As for hazard, it is related to the probability and extent of flood
impacts. Maximum 3-day precipitation and drainage density were selected to evaluate
flood hazard, while we ignored other factors. For example, climate change would increase
the frequency and seriousness of the occurrence of floods. Extreme precipitation, tempera-
ture, and events were important indicators of climate change. In addition, resilience is the
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capacity of adapting to natural hazards. This study mainly considered the consequences of
flood risk and ignored the coping capacities or resilience of social and economic dimensions.
Secondly, there is a quantitative relationship between flood risk and socioeconomic losses.
This study assessed flood risk and verified the accuracy of the results, while there was a
lack of analysis of socio-economic losses. Therefore, in a further study, a more scientific
and comprehensive indicator system and estimated economic losses analysis caused by
floods should be conducted.

5. Conclusions

Wuhan city has been severely affected by flood hazards for a long time, which high-
lighted the need for flood risk assessment to better understand the elements causing floods
and to put forward effective measures to reduce the risk. Based on the comprehensive
flood risk assessment index system that takes natural, social, and economic factors into
consideration, the flood risk and its major components and factors behind flood hazards,
sensitivity, and vulnerability in Wuhan from 2000 to 2018 were explored using the AHP
method. The values of flood hazard, sensitivity, vulnerability, and comprehensive flood
risk were visualized and their corresponding spatial risk assessment maps were developed,
based on which the characteristics of their spatiotemporal variations were analyzed. The
results indicated that the central urban area, especially the area in the west bank of the
Yangtze river, were mostly risk-prone due to its high flood sensitivity (S value) that was
determined by land use type and high vulnerability that was determined with the popula-
tion concentration and economic development. Specifically, Jianghan, Qiaokou, Jiangan,
and Wuchang districts had the highest flood risk, with the area with above-medium risk
accounting for more than 60%. The temporal variations in flood risk showed that the risk
of most districts presented an increasing trend, with Hongshan district increasing the most,
and the year of 2010 was an obvious turning point for rapid risk increase. In addition, the
distribution and risk level of the recorded inundation points of the year 2020 was highly
consistent with flood risk map of 2018 in Wuhan. As such, this study demonstrates that
the AHP method can be an effective approach in flood risk studies. It also tries to develop
a comprehensive index that logically integrates geomorphic, hydrological, demographic,
socioeconomic, and infrastructural attributes for risk assessment. The characteristics of
the spatiotemporal variations in flood risk in Wuhan from this study would be helpful for
identifying factors and hotspot regions for risk reduction and provide support for future
planning decisions for flood hazard management.
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