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Abstract: Given the diverse socioecological consequences of rapid urban sprawl worldwide, the
delineation and monitoring of urban boundaries have been widely used by local governments as
a planning instrument for promoting sustainable development. This study demonstrates a fractal
method to delineate urban boundaries based on raster land use maps. The basic logic is that the
number of built-up land clusters and their size at each dilation step follows a power-law function.
It is assumed that two spatial subsets with distinct fractal characteristics would be obtained when
the deviation between the dilation curve and a straight line reaches the top point. The top point
is regarded to be the optimum threshold for classifying the built-up land patches, because the
fractality of built-up land would no longer exist beyond the threshold. After that, all the built-up
land patches are buffered with the optimum threshold and the rank-size distribution of new clusters
can be re-plotted. Instead of artificial judgement, hierarchical agglomerative clustering is utilized to
automatically classify the urban and rural clusters. The approach was applied to the case of Shanghai,
the most rapidly urbanizing megacity in China, and the dynamic changes of the urban boundaries
from 1994 to 2016 were analyzed. On this basis, urban–rural differences were further explored
through several fractal or nonfractal indices. The results show that the proposed fractal approach can
accurately distinguish the urban boundary without subjective choice of thresholds. Extraordinarily
different fractal dimensions, aggregation and density and similar average compactness were further
identified between built-up land in urban and rural areas. The dynamic changes in the urban
boundary indicated rapid urban sprawl within Shanghai during the study period. In view of the
popularization and global availability of raster land use maps, this paper adds fuels to the cutting-
edge topic of distinguishing the morphological criteria to universally describe urban boundaries.

Keywords: urban sprawl; urban boundary; fractals; morphological boundaries; fractal analysis;
land use maps

1. Introduction

Today, more than 55% of the global population resides in urban areas, and this figure
is projected to reach 68% by 2050 [1]. Due to the need of land for urban development, large
areas of rural land have been converted into urban land for residences, transportation,
industry or education [2]. In China, urban built-up land increased by 124.8% from 2000 to
2015, more than doubling the urban population growth rate [3]. Such rapid urban sprawl
has raised diverse social and environmental problems of sustainability, including under-
utilized infrastructure, poverty and inequity, food insecurity, farmland loss, biodiversity
decline and climate degeneration [4–6]. In this regard, how to restrict uncontrolled urban
sprawl has become a hot debate in both scientific and political communities concerned
with sustainability.

Aimed at curbing uncontrolled urban sprawl, Smart Growth was proposed in America
in the 1990s. It emphasizes sustainable development of the environment, society and
economy, which represents a compact, concentrated and efficient schema. In this context,
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the urban growth boundary (UGB) was applied by local governments as a planning
instrument for promoting higher urban densities and protecting rural lands such as basic
farmlands [7]. UGB has been implemented in many countries all over the world, such as
the United States of America [8], Canada [9] and Great Britain [10]. In recent years, the
former Ministry of Land and Resources and the Ministry of Housing and Urban-Rural
Development in China have tried to establish the urban development boundary (UDB,
similar to UGB) in 14 pilot cities, including Beijing and Shanghai. The Chinese Academy of
Urban Planning and Design defines the UDB as a boundary in space that divides the urban
administrative district into a construction expansion permitted zone and a construction
expansion prohibited zone. Both UGB and UDB are considered to be effective in controlling
urban sprawl; however, heated issues of their establishment and prediction remain [11].

To evaluate and improve existing UGB and UDB, many scholars concentrate on urban
boundary delineation [12–14]. There is no consensus at present about the best approach to
delineating the urban boundary in terms of criteria, thresholds or methods [15]. Several
methodologies in different aspects have been proposed for the delimitation of an urban
boundary, such as morphological delimitation, demographic delimitation, delimitation
based on the economic and social structure, and functional delimitation [16]. Most use
buildings extracted from digital maps and buffer with a series of number and distance
thresholds to realize the discontinuity spatially. These methods may work well in their
respective contexts, but they do not remove user experience such as a predefined threshold
or continuity constraint [17], which seem to be hardly comparable and subjective. Although
some reasonable methods have been proposed, such as a city clustering algorithm using
census data [18] or street nodes extracted from OpenStreetMap [19], they exactly prescribe
the clustering resolution, either the length of a square or the radius of a circle, depending
on experience.

Fractal theory has received increasing popularity in the urban literature over recent
decades. Fractal geometry, as an effective mathematical tool, has the potential to ana-
lyze chaotic and fragmentized geographic phenomena. Many studies have explored and
discovered the characteristic of self-similarity in land use systems, which promotes the
fractal theory applied to the explanation of laws in urban spatial distribution, the mor-
phology of urban boundaries [20–22] and the deforestation process [23,24]. Tannier et al.
proposed a common fractal approach to identifying urban boundaries based on vector-built
maps [25] and then compared six archetypal theoretical cities with Belgium’s 18 largest
towns [26]. The results indicate that such a fractal method is steady, comparable and
fruitful. However, whether or not such a method works well for raster land use maps
remains unknown. The varying data structure of raster data and vector data necessitates
the computing procedure of fractal analysis for raster land use maps, so as to boost the
comparability of such methods. More specifically, although the fractal method can be
adapted to the raster data structure in theory, it may have difficulties when applied to
raster data. One problem is that raster resolution cannot satisfy the needs of exponential
growth of the buffer radius similarly to vector data. Another limit of such a method is
the lack of approach distinguishing urban and rural clusters automatically from rank-size
distribution, which reduces comparability of urban boundaries between different spatial or
temporal dimensions. Additionally, we are aware that globally accessible land use maps
recently released by international academic institutions are all recorded in raster structure.
Hence, a fractal approach to urban boundary delineation based on raster land use maps
should open the door for distinguishing the morphological criteria to universally describe
urban boundaries.

Our study aimed to close such a research gap through proposing a fractal approach to
deriving urban boundaries from raster land use maps. This approach was further applied
to delineate urban boundaries for different years and explore their dynamic character-
istics in Shanghai, the largest megacity in China. The contributions should be twofold:
(1) methodologically, the reliability of fractal analysis for extracting urban boundary based
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on raster land use maps is evidenced; and (2) practically, spatiotemporal dynamics of urban
boundaries in Shanghai are captured, with essential implications for land use planning.

2. Materials and Methods
2.1. Study Area

Located at 31◦14′ N and 121◦29′ E, Shanghai is one of the municipalities directly under
the central government in China, and it is the main city in the Yangtze River delta (Figure 1).
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Shanghai is close to the estuary of the Yangtze River and is a plain densely covered
with rivers. In addition, Shanghai has a highly developed transportation system, which
jointly leads to fragmented landscapes. Shanghai has approximately 6833 square kilometers
of land area and more than 24 million permanent residents within 16 municipal districts.
With regard to the overall spatial distribution of built-up land in Shanghai, the Huangpu
River runs through the land and separates it into four parts in four directions together with
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another two narrower artificial rivers. This fragmented landscape determines the spatial
pattern of urban morphology to some degree, which implies that the urban area is more
likely composed of several agglomerations instead of a huge one. Since the 1990s, Shanghai
has experienced rapid urbanization [27]. The problems caused by urbanization such as
population explosion, land shortage, and worsening environmental pollution have kept
Shanghai from modernization construction. In China, urbanization took a formal modality
of industrial zones and satellite towns to maximize land income or to open up new spaces
for alleviating the main city zone from the pressure of land and population growth by a
city plan [3]. Especially in Shanghai, the city master plan has a significant impact on city
growth and contributes to the operation of the local growth engine [28,29], which makes
its spatial distribution of built-up land more polycentric. In this context, identifying the
urban boundary and exploring the dynamic changes for years in Shanghai has a good
demonstration effect and referential significance to other modern cities undergoing rapid
urbanization. It should be explained that we only focused on the metropolitan area of
Shanghai city and the surrounding islands were not taken into consideration, because these
islands are generally rural spaces and follow a quite different urbanization process from
the metropolitan area.

2.2. Data and Preprocessing

Raster built-up land maps (1994, 2000, 2003, 2006 and 2016) with 10 m × 10 m
resolution were provided by the local government. These maps were converted from
the official digital land use maps at 1:10,000 scale in vector format following the data
confidentiality standard. What resolution to choose depends on the actual situation of built-
up land distributions in different cities. Normally, it should not be too large to discover
the distance threshold, nor be too small owing to algorithm time-consumption and real
data resolution [27]. The 10 m resolution was chosen because this was accurate enough to
reflect hierarchical differences in roads within this study area. According to the national
standard, the built-up land includes residential land, public service land, commercial land,
industrial land, warehouse land, transportation land, and squares. The premise of the
fractal approach is hierarchical empty lanes between built-up land patches; therefore, we
removed transportation land and squares to split the built-up land. The raster maps are
shown in Figure 2. Detailed information is presented in Table 1.
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Table 1. Information of raster maps for five years.

Year SR(m) Type Region (Pixel) Proportion (%)

1994 10 Built-up land 10,651 × 9072 12.9
2000 10 Built-up land 10,651 × 9072 26.0
2003 10 Built-up land 10,651 × 9072 31.6
2006 10 Built-up land 10,651 × 9072 37.1
2016 10 Built-up land 10,651 × 9072 45.6

SR: spatial resolution; Proportion: percentage of built-up land area in Shanghai inland area (about 542,647.49 ha).

2.3. A Fractal Approach to Urban Boundary Delineation
2.3.1. Theoretical Foundation

The term ‘fractal’ was first proposed by Mandelbrot, with the initial meaning of
irregular and broken. It was defined as a rough geometric shape that can be subdivided
into smaller parts, which are the copy of the whole [30]. Fractals are born in nature and
often used to describe intricate natural phenomena, such as the length of a coastline, the
shape of a cloud and the outline of a leaf. Fractal geometry has been applied in various
fields, and has been widely adopted in geography for approximately 30 years. A number
of publications have discussed the multiscale spatial organization resulting from urban
growth [31–33]. Others explore the statistical scaling relationship between the size and
number of urban clusters [25,34,35]. Fractals such as Fournier dusts have strict hierarchy
between distances and numbers of empty lanes: their numbers will increase as their
widths become narrower. Such characteristics could be recognized by the dilation method
proposed by Minkowski [36], as shown in Figure 3. In dilation, every element is surrounded
by a buffer of increasing width. It is obvious that the number of clusters will ultimately
decrease to one, which is to say that there exists only one enormous cluster (Figure 3d). If
a spatial organization resembles Fournier dusts, the number of clusters N and the size of
buffer width εwill follow a power-law function. If we take the logarithm of both sides, a
linear relationship with slope equaling to fractal dimension D would appear (Equation (1)).

log(N) = log(m) + D·log(ε) (1)

where m is a constant of proportionality. If we draw a log–log plot about N and ε, and
use a curve to fit it, we can obtain a dilation curve reflecting the spatial scaling behavior
of patterns.

Built-up land in an urban area (except transportation land and squares) (Figure 4b) is
morphologically similar to Fournier dusts (Figure 4a). Both are separated by hierarchical
streets (lanes) following the rule that the narrower, the more. In contrast, built-up land in a
rural area (Figure 4d) is more random and has an irregular spatial organization (Figure 4c).
Tannier built three theoretical urban patterns: (1) regular fractal city, (2) random fractal
city, and (3) regular fractal city in a nonfractal environment (an appropriate substitute of a
real city involving urban and rural areas) [25]. The dilation curves of these three patterns
express different scaling characteristics. Only the third pattern shows a sharp change in
its dilation curve. In the third theoretical urban pattern, the urban area is a fractal pattern
which is well-bedded, hierarchical, high-density and agglomerative, whereas the rural area
is amorphous, random, low-density and scattered. Different spatial organization leads to
different scaling behavior, so that we may find a significant change in one city’s dilation
curve, separating urban and rural areas.
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According to the aforementioned findings, Tannier et al. developed a fractal-based
approach to identify the urban boundary [25]. Although this method is adapted to both
vector and raster data in theory, it may have difficulties when applied to raster data. One
problem is that raster resolution cannot satisfy the need of exponential growth of buffer
radius similarly to vector data. Another limit of this method is the lack of approach distin-
guishing urban and rural clusters automatically from rank-size distribution, which reduces
the comparability of urban boundaries between different spatial or temporal dimensions.
Therefore, this paper proposed an improved method to delineate urban boundaries.

2.3.2. Urban Boundary Delineation

The basic logic of the fractal approach to delineating urban boundaries is that the
number of built-up land clusters and their size at each dilation step should follow a linearly
shaped power-law function [25]. It is assumed that two spatial subsets with distinct fractal
characteristics would be obtained when the deviation between the dilation curve and a
straight line reaches the top point. The top point is regarded to be the optimum threshold
for classifying the built-up land patches, because the fractality of built-up land would no
longer exist beyond the threshold. After that, all the built-up land patches are buffered with
the optimum threshold and the rank-size distribution of new clusters can be re-plotted.
A challenge emerges in the last step to distinguish urban and rural clusters. Instead of
artificial judgement, the focus of our approach is to automatically classify the urban and
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rural clusters. Figure 5 shows the flowchart of the proposed approach and details for each
step are described as follows:
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First, every built-up patch will be covered by a steadily widening buffer in every
iteration, and the buffer radius ε and the number of built-up clusters N will be stored.

Second, to ensure that ε can exponentially grow, we adopt a method of interpolation:
cubic hermite interpolation (CHI) [37,38]. Cubic hermite interpolation can ensure that
both function value and 1st–nth derivatives remain the same between the interpolation
polynomial and original function. Especially, we can assign derivatives of the interpolation
polynomial in the node. In view of the distribution of log(ε) and log(N) monotonically de-
creasing, the closer two nodes are, and the more similar their 1st derivatives are. Therefore,
we calculated every 1st derivative in the node with the following equation:

y(xi)
′ = k1·

d2

d1 + d2
+ k2·

d1

d1 + d2
(i = 1, 2, . . . , n− 2) (2)

where n is the number of nodes, k1 and k2 are the slope from node i − 1 to node i and that
from node i to node i + 1, respectively, whereas d1 and d2 are the distance from node i − 1
to node i and that from node i to node i + 1, respectively. The 1st derivatives of the first
and last node are equal to slopes of their nearest node to themselves, respectively. In this
paper, we set 0.1 as the sample interval, which meant that the position (log(ε0) + 0.1 ∗ n)
could be interpolated. Meanwhile, the first and last points will be reserved.

Third, log(N) and log(ε) were fitted with a polynomial from the 1st to 13th degree
to obtain 13 estimated curves. Then, the best dilation curve was selected according to
the Bayesian information criterion (BIC). BIC can evaluate the trade-off between com-
plexity and goodness of fit for statistical models [39], as shown in Equation (3), where n
is the number of data, p is the number of model parameters, and σ2 is the mean-square
error (MSE).

BIC = n· ln
(
σ2
)

+ p·ln(n) (3)
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This equation shows that only when the polynomial fits well and its complexity
remains low does the BIC value reach the minimum. After we selected the best estimated
dilation curve, we needed another indicator to catch the discontinuity in scaling behavior:
curvature k (Equation (4)).

k =

(
y′′

(1 + y′)3/2

)
(4)

where y′ is used to measure the velocity of the decreasing number of clusters, y′′ is its
accelerated velocity, and k is the ratio of yy′′ and y′. BIC: Bayesian information criterion;
Existing method: the fractal approach [25].

In this study, the point of main curvature of a dilation curve with minimal BIC
corresponds with the distance threshold. To avoid the point of main curvature arising
from estimation artifacts, two extremities of the estimated curve should be removed before
calculating the curvature [25]. If there is not a point of main curvature within a valid range,
other dilation curves with secondary BIC values would not be selected until a meaningful
curvature appeared. The data range can be determined by Equation (5), the same as the
Morpholim software [40]:{

Rmin = Xmin + (Xmax − Xmin)× 0.2
Rmax = Xmax − (Xmax − Xmin)× 0.1

(5)

where X means log(ε) and R means the valid range of X.
Next, built-up land was covered with a buffer radius equaling the distance threshold.

Then, the rank-size distribution of new clusters was plotted. Instead of artificial judgement,
we adopted a bottom-up clustering approach named hierarchical agglomerative clustering
(HAC) [41] to distinguish urban and rural clusters. In consideration of the characteristics
of the rank-size distribution of urban and rural clusters, we chose the single-linkage as the
linkage criteria of HAC. This means the minimum distance between any two subsets which
determines whether these two subsets are able to merge together or not. Urban clusters
seem to be top-ranking, few and large, whereas rural clusters are always lower-ranking,
abundant and much smaller; therefore, Euclidean distance is sufficient as a metric. All
clusters will be divided into two clusters: the one including the first rank cluster must be
the urban set, and the other one is the rural set. The clustering result will be exhibited in
hierarchical clustering dendrograms. Finally, we extracted the urban boundary from urban
clusters. All of the above steps were performed using Visual C++ programming.

2.3.3. Urban Boundary Characteristics

After we extracted the boundary of the clusters, the city was divided into two spatial
forms: urban areas within the boundary and rural areas outside of the boundary. To
explore the shape of the boundary and the difference between urban and rural area as
the assessment of delineated boundary, we then calculated multidimensional indices [3].
The first one characterized fractal patterns or sets by quantifying their complexity as a
ratio of the change in detail to the change in scale [42]. The second one measured the
average morphological compact degree of spatial organization. The third one was an index
reflecting aggregation effect, and the final one showed the proportion of one landscape in
a scope.

1. Fractal dimension

The fractal dimension is a ratio reflecting the space-filling capacity of a pattern in
changing scales, which does not have to be an integer. If we used rulers of different
lengths to measure the length of a coastline, we would not obtain a unique value, because
coastlines show more details at higher resolution. This is why we need an index named
fractal dimension instead of a perimeter to describe a fractal-like coastline. It can be calcu-
lated by different methods, such as the structured walk method [43], equipaced polygon
method [44], hybrid walk method [45] and cell count method [46]. However, there is a
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small diversity in the calculated dimensions [47]. In this paper, we used the box-counting
method [48,49] realized in a fractal analysis software package named Fractalyse [50] to
calculate the fractal dimension of the boundary (DB) and surface (DS). This method uses
the exponential growth box size to cover the whole picture and then counts the boxes
containing objects. Then, the result is displayed on a log-log plot. If a pattern is fractal,
points can be fitted by a straight line whose slope is its fractal dimension.

To be specific, the raster images in the five years were all extracted by the minimum
enclosing rectangle of the urban boundary in 2016. These extracted images were converted
into BMP format and added into the Fractalyse software, which was downloaded from the
official address (https://sourcesup.renater.fr/www/fractalyse/, accessed on 3 March 2020).
The upper left corner was used as the start point for box-counting. We chose six theoretical
patterns (Figure 6) with known fractal dimensions to test the approximate accuracy of
box-counting in Fractalyse: boundary and surface of circle, square, Sierpinski carpet and
Fournier dusts. The box size was set following an exponential function whose exponent
equaled 2 and the grid algorithm. The result presented a high correlation coefficient of size
and number (near 1.0) and tiny deviation (smaller than 0.06), which demonstrates the high
precision of the box-counting method in Fractalyse in calculating the fractal dimension
(Table 2). Theoretically, the fractal dimension of a point is 0; a line is 1; and a surface
is 2, which equals their own topological dimensions. If a square is narrow enough, its
fractal dimension may be close to 1, because the space-filling capacity of this pattern finally
degenerates to that of a line in large scales. If a line is complex and winding enough or
widens, its space-filling capacity will be stronger in small scales than smoother lines, such
that its fractal dimension may be close to 2. When we calculate the fractal dimension of
sets of lines or squares, it reflects the space-filling capacity of all the elements in changing
scales, not a part of them. In theory, the space-filling capacity of built-up land in urban
areas is stronger than that in rural areas. With respect to the urban boundary, the minimum
size was 2 pixels and maximum size was 8192 pixels. The minimum size was 1 pixel and
the maximum size was 8192 pixels for both urban clusters and rural clusters.

Land 2021, 10, x FOR PEER REVIEW 10 of 22 
 

 
Figure 6. Six experimental patterns. 

Table 2. Comparison between theoretical fractal dimensions and experimental values in Frac-
talyse. 

Pattern Type Dt Dp Deviation CC 
Circle B 1 0.95 0.0523 0.999988 
Square B 1 0.98 0.0151 0.999765 
Circle S 2 1.97 0.0260 0.999989 
Square S 2 1.97 0.0270 0.999956 

Sierpinski carpet S 1.89 1.88 0.0138 0.998266 
Fournier dusts S 1.51 1.52 0.0051 0.979444 

Type B: boundary of pattern; Type S: surface of pattern; Dt: theoretical fractal dimension; Dp: prac-
tical fractal dimension; Deviation: the absolute value between theoretical and calculated fractal 
dimension; CC: correlation coefficient of log(r) and log(N). 

2. Area-weighted compactness index 
The compactness index (CI) is used to evaluate whether the shape of one patch is 

compact or not, which in some places is named after the shape complexity. It is calculated 
using the following formula: 

CI = 
2 · √π · A

P  (6)

where A is the surface area and P is the perimeter. 
A circle has the most compact geometry, whose CI reaches a maximum equaling 1. If 

a patch is very compact, CI is close to 1. In contrast, if a patch has a long perimeter and 
small surface area, CI is close to 0. We expected to compare overall patches in urban areas 
to rural areas in terms of the compactness index; therefore, we designed the area-weighted 
compactness index (AWCI): 

AWCI = 
Ai
A  × CIi

n

i = 1

 (7)

where A means the total area. 
We calculated the AWCI of urban and rural built-up land to explore the difference in 

shapes between two such patterns. 
  

Figure 6. Six experimental patterns.

https://sourcesup.renater.fr/www/fractalyse/


Land 2021, 10, 941 10 of 21

Table 2. Comparison between theoretical fractal dimensions and experimental values in Fractalyse.

Pattern Type Dt Dp Deviation CC

Circle B 1 0.95 0.0523 0.999988
Square B 1 0.98 0.0151 0.999765
Circle S 2 1.97 0.0260 0.999989
Square S 2 1.97 0.0270 0.999956

Sierpinski carpet S 1.89 1.88 0.0138 0.998266
Fournier dusts S 1.51 1.52 0.0051 0.979444

Type B: boundary of pattern; Type S: surface of pattern; Dt: theoretical fractal dimension; Dp: practical fractal
dimension; Deviation: the absolute value between theoretical and calculated fractal dimension; CC: correlation
coefficient of log(r) and log(N).

2. Area-weighted compactness index

The compactness index (CI) is used to evaluate whether the shape of one patch is
compact or not, which in some places is named after the shape complexity. It is calculated
using the following formula:

CI =
2·
√
π·A

P
(6)

where A is the surface area and P is the perimeter.
A circle has the most compact geometry, whose CI reaches a maximum equaling 1. If

a patch is very compact, CI is close to 1. In contrast, if a patch has a long perimeter and
small surface area, CI is close to 0. We expected to compare overall patches in urban areas
to rural areas in terms of the compactness index; therefore, we designed the area-weighted
compactness index (AWCI):

AWCI =
n

∑
i=1

(
Ai
A
×CIi

)
(7)

where A means the total area.
We calculated the AWCI of urban and rural built-up land to explore the difference in

shapes between two such patterns.

3. Aggregation index

The aggregation index (AI) is a global measurement regarding the aggregation of
landscapes, which is mathematically described as the ratio of actual shared edges versus
maximal possible shared edges [51]. It was calculated as follows:

AI =
gii

max→ gii
×100% (8)

where gii is the number of similar adjacencies tallied using the single-count method,
whereas the max gii is the maximum possible number of similar adjacencies corresponding
to the whole landscape.

The single-count method means that if two neighboring pixels belong to the same
landscape, it tallies only once. Hence, the maximal aggregation is achieved when the patch
type consists of a single and compact patch, which is not necessarily a square patch. We
calculated this index with FRAGSTATS v4 [52], which is a computer software program
designed to compute a wide variety of landscape metrics for categorical map patterns.

4. Density

Density in this paper is the ratio of built-up land surface area and the urban or rural
area, divided by the urban morphological boundary we have defined. Its formula is:

Du/r =
Su/r

Au/r
(9)
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where Du/r means the built-up land density in the urban or rural area, Su/r means the
built-up land area in urban or rural area, and Au/r means the whole area in the urban or
rural region.

By comparing Du to Dr, it is easy to observe the difference in built-up land distribution
in spatial scales between urban and rural areas, contributing to further explorations of the
functions of such morphological boundaries.

2.4. Spatiotemporal Analysis

On the basis of urban area extracted through years, we further explore the spatiotem-
poral characteristics of urban growth in Shanghai. We quantified the sprawl extent over
intervals of five years according to the scale of district/township. There were 197 dis-
trict/townships within the study area. First, we counted the number of pixels transformed
into urban areas from rural areas during these periods. Secondly, we calculated the pro-
portion of transformed areas within every district/township. Finally, all proportions were
reclassified into four classes by the Natural Break Jenks method: non-sprawl, light sprawl,
medium sprawl, and high sprawl.

3. Results
3.1. Urban Boundary Delineation and Urban–Rural Differences

The values of box sizes for corresponding box numbers are shown in Table 3 for urban
boundaries, Table 4 for the urban clusters, and Table 5 for the rural clusters. Table 6 presents
detailed results about the best estimated dilation curve and the distance thresholds from
1994 to 2016. In 1994, the threshold reached 138.995 m, has clearly shortened since 2000,
and then maintained around 20–40 m. The results of fitting data by CHI, the best estimated
dilation curves, and thresholds for five years are shown in Figure 7a–e.

Table 3. Number of boxes in different years and box sizes for urban boundaries.

Year
Size

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

1994 30,328 15,010 7386 3551 1647 686 259 98 37 14 7 4 1
2000 101,274 49,300 23,204 10,030 3996 1488 541 201 75 26 8 4 1
2003 129,854 63,375 30,055 13,166 5277 1967 717 263 100 34 12 4 1
2006 155,394 75,690 35,480 15,318 6128 2334 869 319 123 43 15 5 2
2016 209,098 101,670 47,830 20,503 8173 3087 1141 417 152 54 21 8 3

Table 4. Number of boxes in different years and box sizes for the urban clusters.

Year
Size

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

1994 3,078,062 799,932 215,369 60,876 17,044 4850 1396 400 120 38 14 5 2 1
2000 7,200,854 1,968,728 543,778 149,380 41,601 11,662 3272 928 273 84 29 11 6 2
2003 10,577,007 2,894,354 803,569 222,804 62,617 17,575 4878 1358 385 113 35 11 6 2
2006 14,231,067 3,879,508 1,072,089 295,691 82,752 23,133 6425 1762 491 143 45 12 6 2
2016 22,501,120 6,281,349 1,791,108 505,638 142,673 39,549 10,698 2867 776 217 64 21 8 3

Table 5. Number of boxes in different years and box sizes for the rural clusters.

Year
Size

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

1994 3,925,754 1,051,851 298,938 93,472 33,036 13,449 5966 2373 759 220 67 20 8 3
2000 6,915,358 2,089,801 685,612 245,737 93,984 33,705 10,089 2830 786 223 66 20 8 3
2003 6,565,693 1,957,783 631,354 221,221 82,463 29,043 8824 2602 757 218 65 20 8 3
2006 5,912,252 1,739,515 551,198 189,490 69,890 24,942 7851 2414 728 216 65 20 8 3
2016 2,217,723 677,360 222,344 79,529 30,683 11,753 4245 1563 573 193 61 21 8 3
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Table 6. Main results of distance threshold calculation.

Year Range Degree BICmin R2 Curvature Log(r) Threshold/m

1994 1.400–2.800 12 −159.439 0.999992 −2.033 2.143 138.995
2000 1.369–2.661 4 −95.537 0.999580 −1.638 1.406 25.468
2003 1.323–2.451 9 −109.335 0.999974 −1.029 1.595 39.355
2006 1.350–2.573 4 −81.763 0.999275 −1.304 1.393 24.717
2016 1.329–2.479 6 −82.586 0.999704 −0.786 1.580 38.019

Abbreviations: Range means the valid range of the logarithm of dilation radius, Degree means the polynomial degree corresponding with
the minimal BIC, Log(r) means the logarithm of dilation radius corresponding with point of main curvature, and Threshold means the
unique dilation radius distinguishing the urban and rural areas.
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Figure 8a–e shows the rank-size distributions of built-up land covered by distance
thresholds in each year, whereas the hierarchical clustering dendrograms (Figure 9a–e)
reflect different quantities of urban clusters in different years. In 1994, only the largest
cluster belongs to urban area, but the 2, 2, 2, and 3 largest clusters belong to urban area in
2000, 2003, 2006 and 2016, respectively.
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The identified urban boundaries for five years are shown in Figure 10. The results
of the qualitative analysis can be summarized as follows: (1) In 1994, built-up land clus-
ters near the east and the west of Huangpu River merged into one large morphological
agglomeration because of the long threshold radius of 140 m. Such a scope just conforms
to the initial central urban area in Shanghai, which includes most of the range of Huangpu,
Hongkou, Yangpu, Jingan, Putuo, Changning, and Xuhui, the east region of Baoshan and a
small region in the northwest of Pudong. (2) In 2000, built-up land was separated into east
and west regions by the Huangpu River, and the west area was larger than the east area,
which corresponded to their development levels. In the west, the urban area sprawled
over most of Minhang west of the Huangpu River and the middle area of Baoshan. In
the east, the urban area rapidly covered the west part of Pudong, which illustrates the
rapid development in Pudong in the late 1990s. (3) In 2003, the urban area in the east and
west regions showed a striking contrast: the urban area in the west region grew quickly
and began to invade Jiading and Songjiang, much more quickly than the east regions.
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Meanwhile, the west urban boundary seems highly tortuous, with a morphology of ten-
tacular structures similar to Sierpinski carpets, which occurs where interstitial spaces are
filled in along transportation axes. (4) In 2006, the urban area in Pudong sprawled sharply
toward the south and the west part continued to sprawl toward the west. (5) In 2016, the
north region of Shanghai had nearly complete “urbanization” because of the geographic
restriction of the administrative division. The region of Minhang in the east of Huangpu
River finally became an urban area and some space in Fengxian was transformed into an
urban area because of the developing transportation industry. Notably, the third largest
cluster R3 combined with regions of Jinshan and Fengxian was divided into an urban
area. Although it was smaller than the largest two clusters, it clearly exhibited a big leap
compared with the fourth cluster, which could not be ignored. In general, Shanghai seems
to have transformed its spatial structure from a monocentric city to a polycentric one.
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Table 7 shows the results of multidimensional indices of urban boundaries and urban–
rural differences. From 1994 to 2016, DB first increased (1994–2000), and then maintained
around 1.4 (Figure 11a). The explanation of such a phenomenon may be as follows. In
1994, the urban area concentrated on the central region whose form was relatively compact
so that DB was not high. From 2000 to 2016, the urban boundaries showed similar space-
filling capacity. Furthermore, as the urban area expanded, more and more rural areas
are gradually surrounded by urban area, which mainly occurs around the urban fringe.
In general, DB was maintained between 1.3 and 1.41, which reflects the complexity of
its morphology.

Table 7. Several indices to characterize urban and rural area.

Urban Rural

Year DB DS AWCI AI Du DS AWCI AI Dr

1994 1.308 1.692 0.589 0.981 0.662 1.536 0.625 0.965 0.079
2000 1.409 1.701 0.630 0.953 0.797 1.655 0.637 0.898 0.153
2003 1.407 1.749 0.641 0.953 0.759 1.643 0.618 0.906 0.163
2006 1.391 1.779 0.601 0.955 0.799 1.624 0.640 0.914 0.162
2016 1.407 1.794 0.629 0.942 0.682 1.489 0.630 0.892 0.104

DB: the fractal dimension of urban boundary; DS: the fractal dimension of surface area; Du: urban density; Dr: rural density.
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The average of DS of the built-up land in urban areas was 1.743, whereas that in rural
areas was 1.589, which means that the space-filling capacity in urban areas is much better
than that in rural areas. In urban areas, DS increased gently, close to a line (Figure 11b, y1)
with a slope of 0.0051 (R2 = 0.8368), whereas in contrast, DS in rural areas had a non-
significant downward trend with a slope of −0.0035 (R2 = 0.1492) (Figure 11b, y2). This
indicates that built-up land in urban and rural areas has different characteristics in terms
of space-filling capacity and opposite development tendencies.

AWCI values for urban and rural built-up land seem indiscriminate but irrelevant
at the level of the patch. They basically remain at 0.62, reflecting that the overall shape
of urban and rural built-up land patches is neither too compact nor too fragmented. AI
values for urban and rural built-up land are obviously high enough that all of them are
larger than 90%. The AI value changes with map resolution and measurement resolution,
but fixing them makes the results comparable. As shown in Table 7, all the urban AI values
are larger than rural ones, which means that the degree of aggregation in urban areas is
higher than that in rural areas. Hence, on the level of patterns, there exists a significant
difference between urban and rural built-up land distinguished by the urban boundary.
There is also a clear difference between urban and rural built-up land density, indicating
that the area proportion of urban built-up land in urban scope is much higher than that of
rural land in rural scope, as expected.

3.2. Spatiotemporal Changes of Urban Boundaries

Figure 12 reveals the sprawl extent in Shanghai at the level of District/township. Four
periods basically follow the rule that urban sprawls are more severe at the urban boundary.
Non-sprawling and light sprawling areas are mainly distributed in the city center and
outskirts, whereas the majority of medium and high sprawling areas are more likely to
appear near the boundary. Table 8 shows statistical results for the number and land area
percentage of District/township in four kinds of sprawl and new urban area per year
during four periods. In view of the number of Districts/townships in different sprawls,
non-sprawl becomes the main force. New urban area per year reflects fast urban sprawl
from 1994 to 2000, whereas since 2000, the speed of urban sprawl slows down gradually.
However, considering the percentage of land area in different sprawls, it is obvious that
the scope of urban sprawl is expanding, and the percentage of more severe urban sprawl
is increasing, which implies that the sustainable relationship between development and
nature has worsened even further.
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Table 8. Statistical information about the extent of different sprawls.

1994–2000 2000–2003 2003–2006 2006–2016

Unit number (LAP) of A 131 (71.33%) 142 (64.17%) 137 (52.12%) 114 (23.85%)
Unit number (LAP) of B 32 (15.41%) 28 (20.38%) 35 (25.98%) 46 (35.91%)
Unit number (LAP) of C 27 (11.00%) 19 (11.57%) 17 (15.02%) 22 (25.60%)
Unit number (LAP) of D 7 (2.26%) 8 (3.88%) 8 (6.88%) 15 (14.64%)

New urban area (km2/year) 76.0 172.8 153.4 132.6

A: non-sprawl; B: light sprawl; C: medium sprawl; D: high sprawl; LAP: land area percentage.

4. Discussion and Conclusions

Most recent studies delineating urban area are based on data from remote sensing
images, such as Landsat data or night-time stable light data (NTL), have developed many
common methods such as a Bayesian approach, cluster-based method, quantile-based
model and land-use information entropy [53,54]. However, these methods have several
shortcomings: (1) the rough resolution of remote sensing images essentially results in an
ambiguous urban boundary; (2) it is difficult for local government or small-scale countries
to benefit from these models; and (3) in a similar context, it is difficult to determine the
strengths of different methods.

In this paper, we improve the fractal-based method of [25,26] based on raster built-up
land maps, which resolves two problems: (1) how to deal with the resolution problem
when applying such a method to built-up raster maps; and (2) how to automatically
distinguish urban and rural clusters from rank-size distribution. It is noteworthy that
there are three major challenges to this method. First, the resolution of a built-up land
map has a lack of standards. In theory, the higher the resolution, the more accurate the
boundary would be, but computational efficiency must decline paradoxically. On the other
hand, too low a resolution may ignore the necessary scaling behavior difference and cut
down the amount of statistical data. Second, built-up land must remove roads, which
raises difficulties in data acquisition. Finally, it is difficult to evaluate the accuracy of urban
boundaries directly, owing to different official criteria for defining urban areas and setting
urban boundaries [55]. Most official land use classification maps used to assess urban
boundary extraction methods have been handled by researchers according to different
standards; thus, past urban boundaries are not comparable.

In this study, multidimensional indices were applied to reveal the characteristics of
urban morphological boundaries and the possible quantitative difference between urban
and rural built-up land. Our results present extraordinarily different fractal dimensions
(e.g., the number of boxes), aggregation and density and similar average compactness
between built-up land in urban and rural areas. This indicates that the fractal method used
in this research can effectively distinguish the boundary between two spatial distribution
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organizations in morphology, which may contribute to identifying the urban boundary in
other modern cities.

Urban boundary delineation as the basis of urban sprawl measurement and analysis
has been emphasized and used for policy assessment by many scholars [13,28]. Different
from most urban sprawl analysis methods, this paper proposes an integrated urban sprawl
analysis approach based on the urban boundary mentioned above. A new urban area visual
map for different periods presents the extent of local sprawling all over the city. In addition
to the urban boundary, urban–rural differences in multidimensional indices are developed.
The urban/rural dichotomy seems increasingly insufficient for distinguishing urban and
rural scope due to blurred urban–rural differences according to a world economic and
social survey [55]. However, given the demand for sustainable development in the rapid
urbanization context, the urban boundary still has significant functions. First, the urban
boundary as defined in this study presents the spatial discontinuity of built-up land in
scaling behavior, which is valuable in exploring the urban morphology and development
history. In addition, if the proposed method could not identify the distance threshold, it
means the scaling behavior of the whole built-up land seems homogeneous, implying that
there hardly exists a morphological difference between urban and rural areas. Second,
many policy assistance tools and assessment indices of sustainable development may be
integrated, improved or reconstructed based on urban boundaries, such as urban–rural
difference monitors, urban sprawl measurement and driving force analysis. In addition,
urban boundaries can assist in decision making and facilitate urban–rural synergistic
planning. For example, a local boundary where excessive changes appear needs enhanced
land use monitoring by a local department. It also supplies a reference for making or
evaluating UDB, which has been proposed in many pilot cities, such as Shanghai (Shanghai
City Master Plan, 2017–2035). We thus argue that monitoring urban boundaries should
be taken into account and put into practice, because it can reflect urban morphology and
the extent of sprawl. Establishing a normative urban sprawl evaluation system to track
rapid urbanization can be valuable for land use planning. Local surveying and mapping
departments should unify the type and precision of land use, keeping the annual land use
map comparable.

Different from most urban sprawl analysis methods, this paper proposes an integrated
urban sprawl analysis approach based on the urban boundary mentioned above. A new
urban area visual map for different periods presents the extent of local sprawling all
over the city. Finally, establishing a normative urban sprawl evaluation system to track
rapid urbanization is another necessary measure. Local departments of surveying and
mapping should unify the type and precision of land use, keeping the annual land use
map comparable. Monitoring urban boundaries should be taken into account and put into
practice, because it can reflect urban morphology and the extent of sprawl. In addition to
the urban boundary, urban–rural differences in multidimensional indices, a new urban area
map and the driving force analysis proposed in this paper can also facilitate evaluating
urban sprawl and decision-making.

However, there are several limitations to this study. First, this paper did not explore
the meaning of changing distance thresholds by time. It is hard to ensure that a digital
land use map is strictly accordant in the aspects of properties and precision. In addition, an
interval of three years is a relatively high temporal resolution for the comparison between
distance thresholds. In theory, urbanization brings a more compact built-up land pattern
that results in a narrower distance threshold to a monocentric city. Secondly, such urban
boundaries may cover the natural landscape such as rivers, lakes and mountains. Some
geo-processing operations such as overlap or cutting will optimize the urban boundary.
Thirdly, dilation in this study was not real or could not be developed given the sea and
Yangtze River delta urban limit. Future research should focus on the following issues:
(1) How and how much does the resolution influence the urban boundary delineation?;
(2) How can one assess the accuracy and validity of the urban boundary with a more
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scientific approach?; and, (3) How can one predict complex urban boundaries in the future
and then curb urban sprawl?
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