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Abstract: Based on China’s “carbon neutrality” strategy, this study explores the relationship between
land-use/cover change and temporal and spatial changes of ecosystem carbon storage in urban
agglomerations. Using the Plus-InVEST model, the projected spatial patterns of land use in the
Chengdu-Chongqing urban agglomeration in 2030 under natural development and ecological protec-
tion scenarios were simulated and predicted, and the characteristics of carbon storage, together with
its spatio-temporal dynamics, were evaluated under two scenarios. Results show that: (1) From 2000
to 2020, forests, water areas, construction areas, and unused land continued to increase, while the area
of cropland and grassland decreased continuously. During the last 20 years, carbon storage in urban
agglomeration showed an increasing trend, with an overall increase of 24.490 × 106 t. (2) Compared
with the natural development scenario, forest land, grassland, and water area in 2030 under the
ecological protection scenario exhibits a substantial change; the area of construction land is limited;
and an ecological spatial effect is reflected. (3) Compared to 2020, carbon storage under natural
development and ecological protection scenarios decreased by 50.001 × 106 t and 49.753 × 106 t in
2030, respectively. The stability of carbon storage under the ecological conservation scenario was
significantly higher than that under the natural development scenario. Therefore, under the ecological
protection scenario, as a result of the coordinated land use of Chengdu-Chongqing, the functions of
various regions can be coordinated and carbon storage losses can be mitigated.

Keywords: carbon storage; PLUS model; InVEST model; land use; urban agglomeration

1. Introduction

During the last few decades, the global carbon cycle has received considerable attention
due to the storage of carbon in terrestrial eco-systems [1,2]. The primary driver behind
changes in carbon storage in ecological processes is variability in land-use type [3]. Carbon
sequestration capacity varies considerably out all over land-use types. Ecological processes
store carbon in plants and soils, which are influenced by changes in land use [4,5]. Currently,
industrial development are causing a massive development of urban land areas [6]. The
rise in developed land and resulting loss of natural vegetation have had a significant
impact on regional carbon storage, posing a serious threat to sustainability and the supply
of regional ecological processes [7]. Timely and effective assessments of regional carbon
storage affected by urban agglomeration construction and development are crucial to
maintain carbon storage services while enhancing other ecosystem services [8,9]. Thus,
the sustainable development of urban agglomerations can be improved by providing
information to enable the coordination of land use [9–11].

Land-use/cover change (LUCC) impacts carbon storage using field investigations and
modeling [12]. This is a complex process that has both spatial and temporal aspects [13].
Several models, including Conversion of Land Use and its Effects at Small Region Extent
(CLUE-S) [14] and the Land Use Scenario Dynamics (LUSD) model [15], are suitable for
assessing urban areas. Additionally, the Cellular Automata-Markov (CA-Markov) model
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has gained popularity for simulating LUCC in a variety of situations and produces accurate
results [16,17]. In one study, Liang et al. (2021) combined a CA-Markov model with an
InVEST model to assess the impact of land-use change on global key ecological carbon
stocks [18,19]. In addition, the Simulation of Future Land Use (FLUS) model has been
applied in scenario analyses to a certain extent due to its different operation mode relative
to the CA model [20]. A combination of FLUS and the InVEST model was used by Deng
et al. [21], Liu et al. [22], and Gao [23] to examine the relationship between future land
use and carbon storage in the future. However, utilizing the land expansion analysis
technique, a patch-generated land-use change simulation tool refers to a network data may
more accurately assess the reasons behind diverse land-use changes (LEAS). The model
PLUS includes a multiseed growth mechanism (CARS) that better simulates patch-level
changes across multiple land uses, enabling the appraisal of multiple land-use types [24].
Depending on the use of the LEAS and CARS modules [25], under several anticipated
future scenarios, the PLUS model can also provide an accurate assessment of how urban
expansion affects carbon storage in land ecosystems.

In the upper reaches of the Yangtze River, the Chengdu-Chongqing urban agglom-
eration is located in an ecological barrier area. In response to the rapid loss of cultivated
land resources due to the expansion of urban and rural construction land as well as oc-
cupying ecological land, this urban agglomeration faces severe challenges when it comes
to production, living, and ecological spaces [26,27]. It is thus very important to explore
evolution, simulation, and scenario prediction in this region. This paper examines the
potential impacts of future urban agglomeration development on regional carbon storage.
Our study examines land change from a territorial spatial evolution perspective taking
into account the impacts of natural, social, economic, and transportation factors. We
quantitatively simulated regional land-use change in urban agglomerations between 2020
and 2030 as well as determined whether different spatial regulation scenarios might have
a significant impact on regional carbon storage in Chengdu-Chongqing. The planning
space should be used for a variety of spatial regulation purposes. The objective of the
study is to explore urban agglomerations effectively and alleviate known contradictions
between urban development and environmental conservation by attempting to explore
urban agglomeration development and alleviate the known contradictions between urban
development and environmental protection.

2. Materials and Methods
2.1. Study Area

The Chengdu-Chongqing urban agglomeration, which has its centers in Chengdu and
Chongqing, is a crucial platform for the growth of the western area and a vital ally for the
Yangtze River Economic Belt and an important area for China to promote new-type urban-
ization. The agglomeration includes 15 cities in Sichuan province and 29 districts (counties)
in Chongqing. As shown in Figure 1, the permanent population in this area was 97,709,900
in 2021, accounting for 6.8% of the national population, and its economic aggregate in the
same year accounted for 6.5% of the national total. Chengdu and Chongqing influence the
surrounding areas by virtue of their relative economic strength. The inflow of Chongqing
population into Chengdu accounted for 4.32%, while the inflow of Chengdu population
into Chongqing accounted for 7.68%, demonstrating a “dual flow” development of both
cash flow and traffic flow.
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a pixel size of 30 m for the years 2000, 2010, and 2020 (containing Thematic Mapper, En-
hanced Thematic Mapper, and Operational Land Imager) were obtained from the Geo-
graphic Information Cloud site (http://www.gscloud.cn, accessed on 6 June 2021) to cate-
gorize land use and cover. Land-use types were divided into 6 categories and 25 subcate-
gories [28]. Resource and Environment Science and Data Center (http://www.resdc.cn/, 
accessed on 12 June 2021) provided the digital elevation model (DEM), slope, gross do-
mestic product (GDP), and population data. DEM and slope data were processed at a spa-
tial resolution of 30 m, while GDP and population data were processed at a spatial reso-
lution of 1 km. Point of Interesting(POI), river, and night light data were also obtained 
from RESDC. Our road network data was derived from OpenStreetMap 
(https://www.openstreetmap.org/, accessed on 2 July 2021). With a spatial resolution of 
100 m, annual mean temperatures and annual mean precipitation data were collected 
from World Clim (https://www.worldclim.org/, accessed on 16 August 2021) [29]. 

In ArcGIS 10.8(ArcGIS 10 series created by Esri (Redlands, CA, USA)), a unified spa-
tial resolution of 100 m × 100 m was set for all of the above-mentioned spatial data, adopt-
ing the Albers geographic coordinate system. Driving factors can be divided into the fol-
lowing four categories (Figure 2): terrain, climate, location, and social and economic. As-
pect, slope, and elevation are topographic factors. Temperature and precipitation are ex-
amples of climatic factors. Location factors include distance to rivers, roads at all levels, 
and schools. Distances were calculated using the ArcGIS Euclidean distance tool. Socioec-
onomic factors include GDP per capita, population density, and nighttime lighting condi-
tions [30,31]. 

Figure 1. Map of the study area.

2.2. Data Acquisition and Processing

For the simulation of land use and carbon storage in this article, the following data used
here are briefly described, including the land use and carbon storage simulation data used
in this paper. Given the accessibility of remotely sensed data, Landsat pictures with a pixel
size of 30 m for the years 2000, 2010, and 2020 (containing Thematic Mapper, Enhanced
Thematic Mapper, and Operational Land Imager) were obtained from the Geographic
Information Cloud site (http://www.gscloud.cn, accessed on 6 June 2021) to categorize
land use and cover. Land-use types were divided into 6 categories and 25 subcategories [28].
Resource and Environment Science and Data Center (http://www.resdc.cn/, accessed on
12 June 2021) provided the digital elevation model (DEM), slope, gross domestic product
(GDP), and population data. DEM and slope data were processed at a spatial resolution
of 30 m, while GDP and population data were processed at a spatial resolution of 1 km.
Point of Interesting(POI), river, and night light data were also obtained from RESDC. Our
road network data was derived from OpenStreetMap (https://www.openstreetmap.org/,
accessed on 2 July 2021). With a spatial resolution of 100 m, annual mean temperatures and
annual mean precipitation data were collected from World Clim (https://www.worldclim.
org/, accessed on 16 August 2021) [29].

In ArcGIS 10.8 (ArcGIS 10 series created by Esri (Redlands, CA, USA)), a unified spatial
resolution of 100 m × 100 m was set for all of the above-mentioned spatial data, adopting
the Albers geographic coordinate system. Driving factors can be divided into the following
four categories (Figure 2): terrain, climate, location, and social and economic. Aspect, slope,
and elevation are topographic factors. Temperature and precipitation are examples of
climatic factors. Location factors include distance to rivers, roads at all levels, and schools.
Distances were calculated using the ArcGIS Euclidean distance tool. Socioeconomic factors
include GDP per capita, population density, and nighttime lighting conditions [30,31].

http://www.gscloud.cn
http://www.resdc.cn/
https://www.openstreetmap.org/
https://www.worldclim.org/
https://www.worldclim.org/
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land use will contribute. The CARS module simulates autonomous plaque production un-
der the constraint of development probability by combining the mechanisms of random 

Figure 2. Main drivers behind land usage in the urban agglomeration of Chengdu and Chongqing.

2.3. Research Methods
2.3.1. PLUS Model

A model of land-use change called PLUS is based on patches of grid data. The
modeling can replicate diverse changes in land use and properly characterize them at
the component level. Two modules make up the PLUS model: Based on several random
patch seeds, CARS is a CA model and LEAS a land extension analysis technique [24]. The
LEAS module may harvest and sampling land expansion between two periods of land-use
change, utilizing the random forest algorithm to mine and determine the likelihood that
different land uses will emerge as well as the percentage of driving variables that each land
use will contribute. The CARS module simulates autonomous plaque production under
the constraint of development probability by combining the mechanisms of random seed
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formation and cutoff decline. Based on the PLUS model, the LEAS module was used to
analyze land expansion from 2000 to 2020. Subsequently, the demand for land use by 2030
was estimated using the Markov chain algorithm. Under two distinct 2030 development
scenarios, the CARS module was used to simulate and predict land-use changes.

The development risk surfaces Pd=1
i,k for land use and overall likelihood OPd=1,t

i,k may
be calculated using the Monte Carlo method when Ωt

i,k is 0 [32], as follows:

OPd=1,t
i,k =

{
Pd=1

i,k × (r × µk)× Dt
k if Ωt

i,k = 0 and r < Pd=1
i,k

Pd=1
i,k × Ωt

i,k × Dt
k all others

(1)

where r varies between 0 and 1; the threshold for creating new land-use patchwork for
land-use type k is represented by µk, which the user chooses. Ωt

i,k is the percentage of
land-use k that makes up the area around cell i; and Dt

k denotes the gap between present
and future land-use demands at iteration t. τ is used to evaluate the nominated land use c,
which is selected by the roulette wheel, if land-use c is more common than land-use k:

If
N

∑
k=1

∣∣∣Gt−1
c

∣∣∣ N

∑
k=1

∣∣Gt
c
∣∣ < Step Then, l = 1 + 1 (2)

{
Change Pd=1

i,c > τ and TMk,c = 1
No change Pd=1

i,c ≤ τ or TMk,c = 0
τ = δl × r1 (3)

where Step refers to the step size needed by the PLUS model to roughly represent the land-
use requirement; as δ is the decay factor for τ, which ranges from 0 to 1, the decay factor
is set by the expert; l is the total number of decay steps, and r1 is a normal distributions
stochastic variable with a mean of 1 and a range of 0 to 2. The transition matrix, TMk,c,
determines whether land-use type k may change to type c [24,33].

The interaction between various land-use types and various land-use divisions within
the neighborhood is another neighborhood component [24], which can be said in the
following manner:

Ωt
p,k =

∑N×N con
(

Ct−1
p = k

)
N × N − 1

× wk (4)

where Ωt
p,k is the local effect factor for the cell p at time t and is the entire amount of cells

that land type k occupied in the Moore neighborhood window of N × N in the previous
iteration t − 1; and wk represents the neighborhood factor parameter of each land-use type.
The neighborhood factor parameter ranges from 0 to 1, with a value proportional to land
expansion capacity [34]. The land-use factor parameters in this paper are primarily based
on current situations and future development trends of land use in the study area (Table 1).

Table 1. Neighborhood factor parameters.

Land Use Type Cultivated
Land Forest Grassland Water Construction

Land
Unused

Land

Natural development neighborhood factor 0.07 0.11 0.01 0.29 1 0.09
Ecological protection neighborhood factor 0.07 0.31 0.10 0.34 0.95 0.09

2.3.2. Validation of Model Accuracy

The applicability and reliability of the model for forecasting changes in land use and
cover were assessed using quantifiable correctness and the kappa coefficient. The overall
agreement between simulation findings and observation data is tested using the kappa
value. Kappa values greater than 0.75 signify good simulation accuracy. Taking 2010 as
the base period data, the paper uses the above methods to simulate 2020 land-use patterns,
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then cross-checks the simulation graph of 2020 and the current situation graph of 2020.
Calculating the kappa coefficients is as follows:

Kappa =
OAO − OAE

(1 − OAE)
, OAO =

(
n

∑
k=1

OAkk

)
/N (5)

where OAO is the classification’s overall accuracy and denotes the likelihood that each
random sample’s simulation outcome would match the data on land use. OAE is the
likelihood that the simulation’s findings match the data on current land use; the number
n represents the number of types of land use; N is the overall sample count; the quantity
of samples that were accurately identified for the k type of land use is called OAkk. The
range of values for the kappa coefficient is −1 to 1, with a higher number indicating a more
appropriate prediction.

2.3.3. Setting the Scene

Natural development scenario (NDS): In light of the land-use development trend
between 2000 and 2020, With the Markov chain, it was possible to determine the demand
for land usage in 2030 underneath the historical development trend (Table 2) [35,36].
According to historical changes, cultivated land has become grassland or construction land,
so we set it to 1. Since it is unlikely to turn to other ground classes, it is set to 0. A similar
situation exists for woodlands and arable lands. Despite its particularity, construction land
cannot be converted to other land classes, so it is set at 0. In the past, unused land has more
often migrated to OTHER land classes than to the rest of the land class.

Table 2. Natural development scenario cost matrix.

Land Use Type Cultivated
Land Forest Grassland Water Construction

Land
Unused

Land

Cultivated land 1 1 0 0 1 0
Forest 1 1 0 0 1 0

Grassland 1 1 1 0 1 0
Water 1 1 0 1 1 0

Construction land 1 0 0 0 1 0
Unused land 1 1 1 1 1 1

Ecological protection scenario (EPS): The EPS’s goal is to improve the safeguards for
ecological regions including grasslands and forests. According to CP, the development of
Chengdu-Chongqing Urban Agglomeration Development Plan, the conversion of wetland
to built-up area, pasture, forest, and farming were all strictly regulated (2016–2020) (Table 3).
In comparison with natural development, conversion of woodlands and grasslands to the
rest of the land class represents the biggest difference. Aside from construction land, other
types of land are more easily converted to woodlands and grasslands, and conversion
between them is also easier. The probability of woodland and grassland being set to 1
increases as a result.

Table 3. Budget matrix for ecological conservation scenarios.

Type of Land
Usage

Cultivated
Land Forest Grassland Water Construction

Land
Unused

Land

Cultivated land 1 1 0 0 1 0
Forest 1 1 1 1 1 1

Grassland 1 1 1 1 1 1
Water 1 1 0 1 1 0

Construction land 1 0 0 0 1 0
Unused land 1 1 1 1 1 1
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2.3.4. InVEST Model

Using the InVEST model, a regional carbon storage evaluation was conducted. Further,
it was investigated if spatial management might successfully stop the loss of region carbon
storage [34]. In order to calculate the total carbon storage in a region, the following
calculations were made:

CT =
n

∑
i=1

Ci−T =
n

∑
i

Ai ×
(
Ci−above + Ci−below + Ci−dead + Ci−soil

)
(6)

where CT stands for region net carbon storage, Ci−T for i land-use type’s carbon storage, Ai
for i land-use type’s area, and Ci−above , Ci−below , and Ci−dead but instead Ci−soil for i land-
use type’s above-ground, below-ground, dead organic matter, and soil carbon densities,
respectively.

The carbon density of various land-use types is the fundamental element of the InVEST
model, and it is based on previous research findings that have been modified in accordance
with the characteristics of the Chengyu Cities Group (Table 4).

Table 4. Carbon density based on land-use/cover type included in the InVEST model (t/ha).

Land-Use Type
Aboveground

Carbon
Density

Underground
Carbon
Density

Density of
Soil

Carbon

Carbon
Density of

Dead
Organic

Materials

Sources

Cultivated land 38.70 80.70 92.90 1.00 [37–39]
Forest 55.56 144.87 206.45 3.50 [39–41]

Grassland 29.30 52.90 135.00 1.00 [37–40]
Water 21.40 73.10 113.00 1.00 [41,42]

Construction land 3.30 87.30 115.30 0 [42,43]
Unused land 22.60 136.90 171.80 0 [38,42]

3. Results
3.1. LUCC Dynamics during 2000–2020

From 2000 to 2020, land use in the Chengdu-Chongqing urban agglomeration was
dominated by cultivated land, accounting for more than 57% of the total land area of the
urban agglomeration. Woodland occupied more than 29% of the total land area; however,
the areas of grassland, water, construction land, and unused land were relatively small,
accounting for only 10% of the total area of urban agglomeration land (Table 5). During
the past 20 years, land use has changed in different ways, among which the largest change
reflects the area of construction land. Increases in unused land, water, building, and forests,
are in the increments of 1473, 495, 4393, and 96 km2, respectively. The largest percentage
increase occurred for construction land, with an increase of 58.82%. The areas of arable
land and grassland decreased by 3609 and 2848 km2, respectively. From 2000 to 2010,
under the influence of regional development orientation, continuous urbanization led
to the rapid expansion of urban and rural construction land, whereas cultivated land
gradually decreased. In addition, the policy of “returning farmland to forest” piloted in the
Chengdu-Chongqing region restored forestland area, which was another important reason
for the decreasing area of cultivated land. From 2010 to 2020, with further urbanization,
urban agglomerations become increasingly large, resulting in a further decrease in the
area of cultivated land. Additionally, the expansion of the “returning farmland to forest”
project encouraged the ongoing expansion of the forest, while the arable area continued
to decrease.
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Table 5. Area and percentage of the study area’s various land-use classifications through 2000 to
2020.

Land Use Type 2000 2010 2020 Area
Change
(km2)Area (km2)

Percentage
(%) Area (km2)

Percentage
(%) Area (km2)

Percentage
(%)

Cultivated land 122,591 58.84 121,014 58.08 118,982 57.10 −3609
Forest 60,696 29.13 61,812 29.66 62,169 29.84 1473

Grassland 18,944 9.09 17,021 8.17 16,096 7.73 −2848
Water 2839 1.36 3080 1.48 3334 1.60 495

Construction land 3076 1.48 5120 2.46 7469 3.58 4393
Unused land 211 0.10 310 0.15 307 0.15 96

3.2. Analysis of Prediction Results of Various Land Use Situations

In an urban agglomeration, agricultural area, forest areas, grass, water area, and
unoccupied land are all expected to shrink by 361, 599, 438, 488, and 20 km2 by 2030,
respectively, under the natural outcome measurement (NDS in Figure 3). Conversely,
construction land area has a projected increase of 25.52%. According to the direction
of land-use area transfer (Figure 3), arable land, grassland, and water area will mainly
be converted to construction land, whereas forest land and unused land will be evenly
transferred to other land types. Although the change range of construction land is the
largest, it seldom changes to other land types, and its increase mainly results from the
transfer of large areas of cultivated land.
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Compared with 2020, under the ecological protection scenario, woodland, grassland,
and construction land will continue to increase by 101, 345, and 1906, respectively (EPS
in Figure 3), While the amount of water, agricultural lands, and undeveloped land will
all fall by 2100, 232, and 20, respectively. According to Figure 3, most cultivated land is
converted to forest and construction land, most forest land is changed to farmland and
grasslands, most grassland is transformed to forestry land and water, and any unused
land is evenly distributed to various land types. Relative to the natural development
scenario, the change trend of cultivated land, forest land, grassland, and water area under
the ecological protection scenario undergoes great changes (Table 6). This primarily results
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from the use of land for construction to meet the ecological security patterns of urban
agglomeration in the near future. The proportion of forest land, grassland, and water area
in the total area of urban agglomeration increased significantly from −0.96%, −2.72%, and
−14.64% to 0.16%, 2.14%, and −6.96%, respectively.

Table 6. Area of each region in 2030 under the concept of environmental preservation and natural
development, and its ratio to 2020.

Land Use Type 2020
2030 Change from 2020 to 2030

NDS EPS NDS EPS

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Rate
(%)

Area
(km2)

Rate
(%)

Cultivated land 118,982 57.10 118,621 56.93 116,882 56.10 −361 −0.30 −2100 −1.77
Forest 62,169 29.84 61,570 29.55 62,270 29.89 −599 −0.96 101 0.16

Grassland 16,096 7.73 15,658 7.52 16,441 7.89 −438 −2.72 345 2.14
Water 3334 1.60 2846 1.37 3102 1.49 −488 −14.64 −232 −6.96

Construction
land 7469 3.58 9375 4.50 9375 4.50 1906 25.52 1906 25.52

Unused land 307 0.15 287 0.13 287 0.13 −20 −6.52 −20 −6.52

3.3. Accuracy Verification and Driving Factor Contribution Analysis

Land-use data from 2010 and 2020 were used as examples to simulate changes in land
use based on Markov’s predictions for every land-use level in 2020. The results were then
compared to the actual values for 2020 to assess the PLUS model’s simulation accuracy
(Figure 4). The method was employed to determine the reliability overall and the kappa
coefficient. Values and the kappa coefficient that are near 1 denote simulation accuracy that
is higher. The simulated performance of the model reaches a sufficient level in statistical
significance whenever the kappa coefficient is higher than 0.75 [44]. The accuracy of kappa
was confirmed to be 0.83.
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According to the historical development trend between 2000 and 2020, predictions
were made for the contribution ranking of the influencing factors of various land-use
probabilities over the next decade (Figure 5). It is obvious from the figure that DEM has the
greatest impact on cultivated land expansion, whereas the degree of contribution of other
factors is not significantly different. When it comes to the contribution of forest land, the
slope factor ranks highest among the fifteen selected driving factors. In addition, DEM has
a strong contribution to grassland and water area, indicating that natural environmental
factors play an important role. The degrees of contribution of various factors in construction
land showed a ladder type. Population factors and DEM factors had the least influence on
the unutilized land protrusion.
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3.4. Changes of Carbon Storage between 2000 and 2030

The InVEST model was used to calculate carbon storage in the Chengdu-Chongqing
urban agglomeration for 2000, 2010, and 2020. In order to simulate and forecast land
use outcomes in 2030 and to forecast carbon storage capacity within gradual progression
and ecological preservation scenarios, this was integrated with the PLUS model. In 2000,
2010, and 2020, the carbon storage of the Chengdu-Chongqing urban agglomeration was
5648.610 × 106 t, 5669.267 × 106 t, and 5673.100 × 106 t, respectively, showing a continuous
upward trend with an overall increase of 24.490 × 106 t and an average annual increase
of 1.225 × 106 t. From 2000 to 2010, carbon storage in the urban agglomeration increased
significantly, with an added value of 20.657 × 106 t, which is an increase of 0.37%. In
contrast, from 2010 to 2020, carbon storage in the urban agglomeration increased slightly,
with an increment of 3.833 × 106 t, which is an increase of 0.07%.

In the case of natural development, the carbon storage of the agglomeration in 2030
is predicted to be 5623.099 × 106 t, a decrease of 50.001 × 106 t compared with 2020 and
reflecting an average annual decrease of 5.0001 × 106 t. In contrast, under the ecological
protection scenario, the carbon storage of the agglomeration in 2030 is predicted to be
5623.347 × 106 t. The corresponding average annual decrease of 4.9753 × 106 t indicates
that the carbon storage deceleration is small. Under the ecological protection policy, which
improves the effectiveness of regional ecological protection and carbon sequestration effects
achieved in the Chengdu-Chongqing urban agglomeration. During 2020–2030, compared
with the two typical development scenarios, the carbon storage of urban agglomerations
under ecological protection measures that restrict the transfer of forest land and grassland
to other land types tends to be more stable, avoiding a rapid decline.

Regarding the spatial distribution and evolution of carbon storage (Figure 6), carbon
storage in the northwest region with Chengdu as the core of the urban agglomeration
decreased slightly between 2000 and 2020 by 0.095 × 106 t. On the contrary, the south-
east region, with Chongqing as the core, exhibits a large increase in carbon storage by
22.722 × 106 t. From 2020 to 2030, carbon storage of all cities in the Chengdu-Chongqing ur-
ban agglomeration decreased under the natural development scenario. Compared with the
previous two decades, the northwest region with Chengdu as the core is still the region with
the largest reduction in carbon storage, decreasing by 27.923 × 106 t, accounting for 55.84%
of the total reduction. Secondly, the carbon storage in the southeast region with Chongqing
as the core exhibited a smaller decreased 22.078 × 106 t, accounting for 44.16% of the total
reduction. Under the ecological protection scenario, the northwest region with Chengdu as
the core is still the city with the largest reduction of carbon storage at 27.840 × 106 t, which
corresponds to 99.70% of the natural development scenario, reflecting the effectiveness of
ecological protection. The carbon storage of the southeast region with Chongqing as the
core also decreased slightly, further reflecting the necessity of ecological protection.

3.5. Characteristics of Change in Carbon Storage Caused by Land Type Conversion

Due to area transfer and carbon density differences among different land types, the
corresponding effects of change and transformation on carbon storage are different. Due
to the change from a single land type to several land types between 2000 and 2020, the
Chengdu-Chongqing urban agglomeration lost 25.447 × 106 t of carbon storage. Quan-
titative conversion of cultivated land to construction land together with the conversion
of forest land and grassland to cultivated land and construction land leads to decreased
carbon storage in soil and vegetation. Because water area has a lower carbon density than
other land types, converting it to another type of land can help create a carbon sink, which
increases the amount of carbon that can be stored overall in the urban agglomeration.
During the past 20 years, the transfer of cultivated land to other land types resulted in a
reduction of carbon storage of 114.940 × 106 t, with cultivated land mainly being converted
into forest land, grassland, and construction land. Increasing conversion of forest land to
other land types also increased, and the corresponding added value was 148.844 × 106

t. The carbon storage of grassland correlated with the area change observed over the last
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20 years; i.e., with a decrease in area, its carbon storage also decreased, and the conversion
between different land types decreased by 57.241 × 106 t. Because the carbon density of
water areas is low and because its area does not change greatly, the carbon storage value of
water areas does not change significantly between land type conversions. Due to its strong
expansion, construction land increased continuously during the past 20 years and was
mainly converted to arable land, forest land, and grassland. The unused land showed an
overall trend of fluctuating growth, resulting in a small increase of carbon storage between
land conversion, with an added value of 0.360 × 106 t.
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Compared with 2020 (Table 7), the carbon storage of the Chengdu-Chongqing ur-
ban agglomeration decreased by 2.955 × 106 t under the natural scenario by 2030 and
significantly increased by 393.057 × 106 t under the ecological protection scenario. The
main reason for this is the different transfer probability of cultivated land, forest land,
grassland, and water area. In addition, guided by ecological protection, the conversion of
other land types is restricted, and the transfer area to construction land decreases, resulting
in increased carbon storage. Under the two tested scenarios, the carbon storage of forest
land is the most significant. Despite the fact that each scenario indicated an upward trend,
the carbon storage of forestland increased significantly under ecological protection scenario.
First, there is a decline in the transformation of forested areas to agricultural land. Second,
forestland controls the transfer of construction land and unused land, achieving the goal
of regional carbon stability and reflecting the effectiveness and necessity of ecological
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protection policies. The change of carbon storage in grassland and water area was not
obvious. The ability to store more carbon is significantly increased by converting water
areas, building sites, and unused land into agricultural land, forest areas, and grassland.
Overall, the conversion of various land types mainly results in increased construction
land, which will prevent the metropolitan agglomeration from growing its carbon store
in the foreseeable.

Table 7. Under scenarios of natural progression and ecological protection in 2020–2030, land type
conversion will influence the amount of carbon stored in the atmosphere.

Land Use Type Area (km2) Change in Carbon Stock (×106 t) Total (×106 t)

Converted
from Converted to

NDS Natural
Development

Scenario

EPS
Ecological
Protection
Scenario

NDS Natural
Development

Scenario

EPS
Ecological
Protection
Scenario

NDS Natural
Development

Scenario

EPS
Ecological
Protection
Scenario

Cultivated
land

Forest 411.76 380.44 −8.115 −7.498

−6.970 −6.341
Grassland 32.08 26.89 −0.016 −0.013

water 22.48 12.75 0.011 0.006
Construction land 1557.73 1576.12 1.153 1.166

Unused land 0.23 0.24 −0.003 −0.003

Forest

Cultivated land 215.28 203.13 4.243 400.321

5.395 401.655
Grassland 50.17 59.49 0.964 1.143

water 1.16 1.09 0.023 0.022
Construction land 7.68 7.87 0.157 0.161

Unused land 1.00 1.01 0.008 0.008

Grassland

Cultivated land 42.01 28.14 0.021 0.014

−1.362 −2.230
Forest 88.56 119.67 −1.702 −2.300
water 270.12 0.70 0.262 0.001

Construction land 54.92 53.23 0.068 0.065
Unused land 0.92 0.87 −0.010 −0.010

Water

Cultivated land 23.16 21.05 −0.011 −0.010

0.071 0.067
Forest 1.49 1.49 −0.030 −0.030

Grassland 1.00 0.71 −0.001 −0.001
Construction land 458.90 442.21 0.119 0.115

Unused land 0.53 0.54 −0.006 −0.007

Construction
land

Cultivated land 72.96 72.88 −0.054 −0.054

−0.118 −0.121
Forest 3.02 3.16 −0.062 −0.065

Grassland 0.76 0.75 −0.001 −0.001
water 2.38 2.45 −0.001 −0.001

Unused land 0.06 0.04 −0.001 0.000

Unused
land

Cultivated land 0.19 0.21 0.002 0.002

0.030 0.026
Forest 1.81 2.08 −0.014 −0.016

Grassland 0.89 0.85 0.010 0.010
water 1.66 1.46 0.020 0.018

Construction land 0.89 0.99 0.011 0.012

Total (×106 t) −2.955 393.057

4. Discussion
4.1. PLUS Analysis of Model Uncertainty

Currently, the majority of research on LUCC-related alterations to ecosystem car-
bon cycles is based on model simulations. Due to its complexity, LUCC can affect the
energy flow in the ecosystem, but the existing models are hindered by uncertainties in
simulating changes in the ecosystem carbon cycle caused by LUCC [34,45]. The reliability
of prospective land-use change modeling scenarios largely determines the accuracy of
modeling findings.

The driving factors selected for the PLUS model simulation used in this paper are
terrain conditions, climate environment, social economy, and transportation accessibility,
including fifteen factors, such as DEM, slope, aspect, temperature, precipitation, GDP,
population, railway networks, and national road networks. These factors result in an
accurate simulation of various land types and have different contributions to different
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types of land (Figure 4). Nonetheless, the PLUS model still has some limitations. First, in
addition to natural factors, cultural factors feature many complex choices, such as cultural
concepts, industrial output value, and POI; however, because it is challenging to quantify
these elements inside the PLUS model, we do not incorporate them in our simulation
method. Secondly, national policy orientation plays an important role in LUCC. Policy
factors such as ecological protection red line, permanent basic farmland protection red line,
and urban development red line—which all play a very important role in China’s territorial
space change—are difficult to assign specific values in the simulation process due to their
complexity. Therefore, in order to better adapt to real scenarios of future land-use change,
it is necessary to consider introducing more influencing factors in subsequent studies.

4.2. InVEST Model Uncertainty Analysis

The InVEST model can intuitively determine the effects of different types of conversion
on carbon storage. Its results clearly reflect spatial and temporal variations of carbon
storage in urban agglomerations and highlight the relationships between different land
types, which can provide new ideas for regional development in terms of coordinating
economic and ecological aspects. Nonetheless, it is important to note that the InVEST
model makes more estimates for large-scale land changes based on established available
carbon density values. In the carbon module, the change of carbon storage value due to
vegetation growth and the internal structure of land use are ignored, resulting in errors in
the change of spatial patterns of carbon storage and leading to uncertainty in the results [27].
In addition, although the carbon density values obtained from existing studies are close to
those in the study area, these values may be influenced by human activities and changes
in the natural environment. Therefore, the carbon density value also has a certain degree
of uncertainty. Finally, while the carbon module considers differences in carbon density
between different land-use types, it ignores differences in carbon sinks related to land-use
types and the age organization of vegetation, which hinders the simulation of the estimation
of the spatial pattern of carbon storage services. Therefore, in the study of future urban
agglomeration, it is necessary to strengthen and verify the timeliness of data acquisition of
carbon density values, carry out localized calibration, conduct field measurements of core
indicators, and accurately estimate changes in regional carbon storage and based the on
scientific and reasonable assumptions in order to better maintain the carbon balance of the
regional ecosystem.

4.3. Advantages and Limitations of the Linkage Model

The Link PLUS and InVEST models have broad applications for guiding ecosystem
services. The PLUS model’s LEAS module extracts the growth of different types of property
between the two steps for land-use change, which collects samples from the growing
section. In order to investigate the variables of development probability related to each
land-use type and assess the impact of each factor driving on land-use type expansion, the
advancement and pushing factors of each land-use type are then paired using the random
forest method [46]. This allows land-use change simulations combined with the InVEST
model to be used as a means for studying future changes in regional carbon storage spatial
patterns within urban agglomerations.

Although linkage models can effectively simulate the effects of ecosystems on carbon
storage over short time scales, their application on longer time scales faces several limita-
tions. The regional climate of the Chengdu-Chongqing urban agglomeration is humid all
year, causing vegetation and soil carbon density to change constantly [47]. Consequently,
the consequences of climate change could be disregarded whenever relational models are
utilized for long-term projections. In addition, the original spatial resolution of LUCC data
used was 30 m × 30 m. To ensure consistency, all spatial data were resampled to a grid of
100 m × 100 m. In future studies, data accuracy could be further improved to ensure the
validity of simulation sampling and carbon storage measurements.
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4.4. Spatial Structure of Urban Agglomerations and Carbon Storage

Urban agglomeration is a highly integrated urban complex with compact spatial
organization and close economic ties formed by different levels of cities relying on trans-
portation and communication and other infrastructure networks in a specific geographical
area [48,49]. Agglomerations of urban space are dependent on land as a space carrier for
social, economic, and ecological activities [50]. The land is also one of the most essential spa-
tial attributes of urban development. Further, land-use type and its cover change represent
the concrete expression of land as well as the main manifestation of urban agglomeration
structure. Therefore, LUCC, which is crucial to the carbon cycle in terrestrial ecosystems, is
at the heart of the urban agglomeration-carbon storage relationship.

In this study, we analyze the changes in carbon reserves caused by LUCC in Chengdu-
Chongqing urban agglomerations, based on the relationship between urban spatial struc-
ture and carbon reserves. There was a significant change in cultivated land from 2000 to
2020. By converting this land type to another, the total area decreases, resulting in the
largest decrease in carbon reserves. By contrast, forest land increases its carbon reserves as
its transfer area increases. Other land types are similarly affected. In accordance with the
historical development, the relationship between the spatial structure and carbon reserves
of the natural scenario will remain the same in ten years. The total amount of carbon
stored also increases as forest land is converted to grassland in the ecological scenario.
There is no doubt that changes in land use will affect carbon reserves over time. There is
a direct correlation between urban agglomeration’s spatial structure and carbon storage.
This relationship is traceable. According to Nicodemus Nyamari [51] and Cai [7], carbon
reserves have changed in Kenya and China’s Yangtze River Delta due to LUCC. In general,
it can be observed that urban agglomerations and carbon reserves have a close relationship,
and any changes in one will inevitably affect the other.

4.5. Development Strategy for Urban Agglomeration and Carbon Storage

In recent years, with the continuous development of urban agglomerations, con-
tradictions of land use caused by urban expansion have become increasingly common.
Continuously changing the land-use type can have a negative impact on the carbon sink
of terrestrial ecosystems [52]. Consequently, China’s territorial space planning must ad-
vance in order to achieve regional economic development goals while ensuring ecological
protection in urban agglomerations. First, it is necessary to strictly abide by the “three red
lines for protection” guided by national policies and appropriately control the increase of
land used for construction. An example is Chengdu-Chongqing’s urban agglomeration.
Construction land in Chengdu and Chongqing as well as their surrounding large cities
should be developed at a reduced pace. It is anticipated that small- and medium-sized cities
will grow moderately because they are not occupying arable land. Further, the city needs
to renovate the new construction space in order to tap into the potential of low-efficiency
land and increase urban public and ecological space. Increasing construction land inten-
sity is crucial to achieving limited growth and spatial transfer incentives in small towns
and villages within urban agglomerations. Second, the ratio of forestland to grassland
area should be increased to strengthen the ecological protection of high carbon density
regions [53,54]. Therefore, it is imperative that the Chengdu-Chongqing urban agglomera-
tion not only increase forest cover through afforestation in large areas but also optimize the
urban vegetation structure. The objective is to guide the sustainable development of urban
forest land and grasslands and to realize a harmonious coexistence pattern of life ecology.
Enhance the total carbon storage capacity of the urban agglomeration and create an urban
ecosystem that is healthy and stable as well as a harmonious living environment. Finally,
it is imperative to focus on the complex function of land uses in order to complete the
transformation from single land type to a production-life-ecological complex function. It is
necessary to increase participation in ecological preservation, promote ideal land layouts,
minimize carbon dioxide emissions, and enhance ecological efficiency thru the utilization
of resources and large-scale land management. For urban agglomerations and metropolitan
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areas in other regions, this has certain reference value. Building an ecological security
pattern and promoting an effective carbon cycle are the meanings of national development
from the perspective of urban agglomeration.

4.6. Contribution to Research

Several contributions make this study different from others. On the one hand, this
article quotes the latest simulation prediction model, PLUS, which has characteristics
that the previous forecast model lacks. Various types of land can be better understood
through this method. In addition, it contains a new multi-type seed growth mechanism
that can simulate changes in plaque-level and land-level changes for a variety of land
types. Moreover, it is coupled with a variety of target algorithms, enabling better planning
decisions to be made. A FLUS model was used in previous research by Zuo et al. [55] to
simulate land-use changes in 2020 in Chongqing. Additionally, Zhang et al. [56] simulated
mainland China’s ecosystem value using the FLUS model. In their research, they only
needed to extract the first phase of the land in order to use the data for training, based on
the probability of emergence and land competition. There is a lack of time concepts in this
method as well as the ability to dig the changes in land use compared to the PLUS model.

On the other hand, Chengdu-Chongqing urban agglomeration is the largest urban
group in southwestern China. In national strategic development, the Chengdu-Chongqing
urban agglomeration plays a significant role due to their geographical location and histori-
cal significance. Carbon reserves in this area not only meet the needs of local ecological
development but also get closer to the national dual carbon strategic planning goals. Data
integration is also performed from a macro perspective, and different models can be used
to better position Chengdu-Chongqing urban development. For the remaining urban ag-
glomerations, this is of more guiding significance. Previous simulation prediction research
using the PLUS model focused mostly on middle and small regions, similar to cities or
specific places. In their analyses of the Hanzhong ecosystem and the southeast coastal
protective forest ecosystem, Yang [57] and Bao [58] used the PLUS models. Study area
is small and does not have universality for urban areas, urban agglomerations, or other
regions. The main contributions of this study are therefore the two aspects above. The
study presents multiple suggestions to improve the reference value of national strategic
planning and regional development based on the results of the scenario simulation.

5. Conclusions

This study made projections for the carbon storage of something like the Chengdu-
Chongqing metropolitan agglomeration in 2030 using the PLUS and InVEST models. These
are its conclusions:

(1) Land use in the Chengdu-Chongqing urban agglomeration has changed significantly
between 2000 and 2020, primarily due to a continuous increase of forest land area,
water area, construction land area, and unused land area, together with a decrease of
cropland and grassland areas. The driving force behind this change mainly comes
from urbanization and the implementation of the “returning farmland to forest” policy.
Carbon storage in the urban agglomeration has increased by 24.490 × 106 t in the past
20 years.

(2) In comparison, the accuracy of kappa is 0.83. According to the historical development
trends from 2000 to 2020, the contribution of the probability impact factors of regional
expansion have been calculated and ranked. The DEM exerts a significant influence,
but other factors also contribute differently in specific situations.

(3) From 2020 to 2030, the cultivated lands, forests, grasslands, water areas, and unused
lands in Chengdu-Chongqing will decline continuously under the natural develop-
ment scenario. The area of construction land will continue to grow. The urban agglom-
eration’s carbon storage will decrease from 5673.100 × 106 t in 2020 to 5623.099 × 106 t
in 2030, i.e., a total decrease of 50.001 × 106 t.
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(4) In the scenario of ecological preservation, crop land, water area, and unoccupied land
will all decrease, while woods, grassland, and building land would all continue to
grow. In this scenario, the urban agglomeration’s carbon storage in 2020 will decrease
from 5673.100 × 106 t to 5623.347 × 106 t in 2030, i.e., a total decrease of 49.753 × 106 t.

(5) Carbon storage under the ecological protection scenario can be reduced by 0.248 × 106 t
relative to the natural development model. This slower reduction rate is conducive
to the stabilization of carbon sinks. Under the ecological protection scenario, carbon
storage in northwest China with Chengdu as its core decreased by 27.840 × 106 t, i.e.,
99.70% of the natural development scenario. Carbon storage in southeast China, with
Chongqing as its core, also declined slightly.

Author Contributions: Conceptualization, C.W. (Chaoyue Wang) and X.G.; methodology, C.W.
(Chaoyue Wang), X.G. and T.L.; validation, C.W. (Chaoyue Wang), X.G. and T.L.; investigation, L.X.,
C.L. and C.W. (Chunbo Wang); writing—original draft, C.W. (Chaoyue Wang); writing—review and
editing, C.W. (Chaoyue Wang), X.G. and T.L.; software, C.W. (Chaoyue Wang) All authors have read
and agreed to the published version of the manuscript.

Funding: The Chongqing Education Commission’s Humanities and Sociology Research Program (No.
21SKGH432) and the National Sociology Foundation of China (No. 21BMZ141) provided funding for
this work. Project supported by China National Scholarship Foundation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data
can be found here: Geospatial Data Cloud Website (http://www.gscloud.cn, accessed on 6 June
2021); RESDC (http://www.resdc.cn/, accessed on 12 June 2021); OpenStreetMap (https://www.
openstreetmap.org/, accessed on 2 July 2021); World Clim (https://www.worldclim.org/, accessed
on 16 August 2021).

Acknowledgments: We value the reviewers’ critical and helpful criticism and recommendations,
which boosted this manuscript’s quality.

Conflicts of Interest: The authors say they have no competing interests. The study’s design, data
collection, analysis, or interpretation; the preparation of the paper; or the choice to publish the
findings were all made independently of the funding sponsors.

References
1. Schimel, D.S.; House, J.I.; Hibbard, K.A.; Bousquet, P.; Ciais, P.; Peylin, P.; Braswell, B.H.; Apps, M.J.; Baker, D.; Bondeau, A.; et al.

Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 2001, 414, 169–172. [CrossRef] [PubMed]
2. Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al.

Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [CrossRef] [PubMed]
3. Zhang, M.; Huang, X.; Chuai, X.; Yang, H.; Lai, L.; Tan, J. Impact of land use type conversion on carbon storage in terrestrial

ecosystems of China: A spatial-temporal perspective. Sci. Rep. UK 2015, 5, 10233. [CrossRef]
4. Cantarello, E.; Newton, A.C.; Hill, R.A. Potential effects of future land-use change on regional carbon stocks in the UK. Environ.

Sci. Policy 2011, 14, 40–52. [CrossRef]
5. Liu, W.; Zhan, J.; Zhao, F.; Yan, H.; Zhang, F.; Wei, X. Impacts of urbanization-induced land-use changes on ecosystem services: A

case study of the Pearl River Delta Metropolitan Region, China. Ecol. Indic. 2019, 98, 228–238. [CrossRef]
6. Su, M.; Guo, R.; Hong, W. Institutional transition and implementation path for cultivated land protection in highly urbanized

regions: A case study of Shenzhen, China. Land Use Policy 2019, 81, 493–501. [CrossRef]
7. Cai, W.; Peng, W. Exploring spatiotemporal variation of carbon storage driven by land use policy in the Yangtze river delta region.

Land 2021, 10, 1120. [CrossRef]
8. Erik, N.; Heather, S.; Peter, H.; Marc, C.; Driss, E.; Stacie, W.; Steven, M.; Stephen, P.; Maya, M.A. Projecting Global land-use

change and its effect on ecosystem service provision and biodiversity with simple models. PLoS ONE 2010, 5, e14327.
9. Xu, Z.; Fan, W.; Wei, H.; Zhang, P.; Ren, J.; Gao, Z.; Ulgiati, S.; Kong, W.; Dong, X. Evaluation and simulation of the impact of land

use change on ecosystem services based on a carbon flow model: A case study of the Manas river basin of Xinjiang, China. Sci.
Total Environ. 2019, 652, 117–133. [CrossRef]

10. Han, J.; Meng, X.; Zhou, X.; Yi, B.; Liu, M.; Xiang, W. A long-term analysis of urbanization process, landscape change, and carbon
sources and sinks: A case study in China’s yangtze river delta region. J. Clean. Prod. 2017, 141, 1040–1050. [CrossRef]

http://www.gscloud.cn
http://www.resdc.cn/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.worldclim.org/
http://doi.org/10.1038/35102500
http://www.ncbi.nlm.nih.gov/pubmed/11700548
http://doi.org/10.1038/nature14324
http://www.ncbi.nlm.nih.gov/pubmed/25832402
http://doi.org/10.1038/srep10233
http://doi.org/10.1016/j.envsci.2010.10.001
http://doi.org/10.1016/j.ecolind.2018.10.054
http://doi.org/10.1016/j.landusepol.2018.11.015
http://doi.org/10.3390/land10111120
http://doi.org/10.1016/j.scitotenv.2018.10.206
http://doi.org/10.1016/j.jclepro.2016.09.177


Land 2022, 11, 1617 18 of 19

11. Li, C.; Zhao, J.; Thinh, N.; Xi, Y. Assessment of the effects of urban expansion on terrestrial carbon storage: A case study in
Xuzhou City, China. Sustainability 2018, 10, 647. [CrossRef]

12. Wang, J.; Zhang, Q.; Gou, T.; Mo, J.; Wang, Z.; Gao, M. Spatial-temporal changes of urban areas and terrestrial carbon storage in
the Three Gorges Reservoir in China. Ecol. Indic. 2018, 95, 343–352. [CrossRef]

13. Brown, D.G.; Verburg, P.H.; Pontius, R.G.; Lange, M.D. Opportunities to improve impact, integration, and evaluation of land
change models. Curr. Opin. Environ. Sustain. 2013, 5, 452–457. [CrossRef]

14. Anputhas, M.; Janmaat, J.J.A.; Nichol, C.F.; Wei, X.A. Modelling spatial association in pattern based land use simulation models.
J. Environ. Manag. 2016, 181, 465–476. [CrossRef]

15. He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking
the LUSD-urban and InVEST models. Environ. Modell. Softw. 2016, 75, 44–58. [CrossRef]

16. Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ash Aari, Z.H. Improving the capability of an integrated CA-Markov model to simulate
spatio-temporal urban growth trends using an analytical hierarchy process and frequency ratio. Int. J. Appl. Earth Obs. 2017,
59, 65–78. [CrossRef]

17. Etemadi, H.; Smoak, J.M.; Karami, J. Land use change assessment in coastal mangrove forests of Iran utilizing satellite imagery
and CA–Markov algorithms to monitor and predict future change. Environ. Earth Sci. 2018, 77, 208. [CrossRef]

18. Liang, Y.; Hashimoto, S.; Liu, L. Integrated assessment of land-use/land-cover dynamics on carbon storage services in the Loess
Plateau of China from 1995 to 2050. Ecol. Indic. 2021, 120, 106939. [CrossRef]

19. Sadat, M.; Zoghi, M.; Malekmohammadi, B. Spatiotemporal modeling of urban land cover changes and carbon storage ecosystem
services: Case study in Qaem Shahr County, Iran. Environ. Dev. Sustain. 2020, 22, 8135–8158. [CrossRef]

20. Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating
multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [CrossRef]

21. Deng, Y.; Yao, S.; Hou, M.; Zhang, T.; Lu, Y.; Gong, Z.; Wang, Y. Assessing the effects of the green for grain program on ecosystem
carbon storage service by linking the InVEST and FLUS models: A case study of Zichang county in hilly and gully region of
Loess Plateau. Nat. Resour. 2020, 35, 826–844.

22. Liu, X.; Wang, S.; Wu, P.; Feng, K.; Hubacek, K.; Li, X.; Sun, L. Impacts of urban expansion on terrestrial carbon storage in china.
Environ. Sci. Technol. 2019, 53, 6834–6844. [CrossRef]

23. Gao, J.; Wang, L. Embedding spatiotemporal changes in carbon storage into urban agglomeration ecosystem management: A
case study of the Yangtze River Delta, China. J. Clean. Prod. 2019, 237, 117764. [CrossRef]

24. Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a
patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput Environ Urban Syst. 2021, 85, 101569.
[CrossRef]

25. Xu, L.; Liu, X.; Tong, D.; Liu, Z.; Yin, L.; Zheng, W. Forecasting urban land use change based on cellular automata and the PLUS
model. Land 2022, 11, 652. [CrossRef]

26. Maanan, M.; Maanan, M.; Karim, M.; Ait Kacem, H.; Ajrhough, S.; Rueff, H.; Snoussi, M.; Rhinane, H. Modelling the potential
impacts of land use/cover change on terrestrial carbon stocks in north-west Morocco. Int. J. Sust. Dev. World. 2019, 26, 560–570.
[CrossRef]

27. Etemadi, N.; Rickard, J.; Anderton, H.; Spall, S.; Hall, C.; Vaux, D.; Nachbur, U.; Silke, J. Modeling multiple ecosystem services,
biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [CrossRef]

28. Chen, W.; Zhao, H.; Li, J.; Zhu, L.; Wang, Z.; Zeng, J. Land use transitions and the associated impacts on ecosystem services in the
middle reaches of the Yangtze river economic belt in China based on the geo-informatic Tupu method. Sci. Total Environ. 2020,
701, 134690. [CrossRef] [PubMed]

29. Yang, J.; Gong, J.; Tang, W.; Liu, C. Patch-based cellular automata model of urban growth simulation: Integrating feedback
between quantitative composition and spatial configuration. Comput. Environ. Urban Syst. 2020, 79, 101402. [CrossRef]

30. Clerici, N.; Cote-Navarro, F.; Escobedo, F.J.; Rubiano, K.; Villegas, J.C. Spatio-temporal and cumulative effects of land use-land
cover and climate change on two ecosystem services in the Colombian Andes. Sci. Total Environ. 2019, 685, 1181–1192. [CrossRef]
[PubMed]

31. Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West
Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [CrossRef]

32. Rodríguez-Echeverry, J.; Echeverría, C.; Oyarzún, C.; Morales, L. Impact of land-use change on biodiversity and ecosystem
services in the Chilean temperate forests. Landsc. Ecol. 2018, 33, 439–453. [CrossRef]

33. Verburg, P.H.; Overmars, K.P. Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of
abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 2009, 24, 1167. [CrossRef]

34. Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the
CA-Markov and InVEST models. Ecol. Indic. 2019, 98, 29–38. [CrossRef]

35. Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The Impact of Land-use change on ecosystem services, biodiversity and
returns to landowners: A case study in the state of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [CrossRef]

36. Chen, T.; Peng, L.; Wang, Q. Scenario decision of ecological security based on the trade-off among ecosystem services. China
Environ. Sci. 2021, 41, 3956–3968.

http://doi.org/10.3390/su10030647
http://doi.org/10.1016/j.ecolind.2018.06.036
http://doi.org/10.1016/j.cosust.2013.07.012
http://doi.org/10.1016/j.jenvman.2016.06.034
http://doi.org/10.1016/j.envsoft.2015.09.015
http://doi.org/10.1016/j.jag.2017.03.006
http://doi.org/10.1007/s12665-018-7392-8
http://doi.org/10.1016/j.ecolind.2020.106939
http://doi.org/10.1007/s10668-019-00565-4
http://doi.org/10.1016/j.landurbplan.2017.09.019
http://doi.org/10.1021/acs.est.9b00103
http://doi.org/10.1016/j.jclepro.2019.117764
http://doi.org/10.1016/j.compenvurbsys.2020.101569
http://doi.org/10.3390/land11050652
http://doi.org/10.1080/13504509.2019.1633706
http://doi.org/10.1890/080023
http://doi.org/10.1016/j.scitotenv.2019.134690
http://www.ncbi.nlm.nih.gov/pubmed/31704410
http://doi.org/10.1016/j.compenvurbsys.2019.101402
http://doi.org/10.1016/j.scitotenv.2019.06.275
http://www.ncbi.nlm.nih.gov/pubmed/31390708
http://doi.org/10.1016/j.agee.2012.12.001
http://doi.org/10.1007/s10980-018-0612-5
http://doi.org/10.1007/s10980-009-9355-7
http://doi.org/10.1016/j.ecolind.2018.10.052
http://doi.org/10.1007/s10640-010-9407-0


Land 2022, 11, 1617 19 of 19

37. Nie, X.; Lu, B.; Chen, Z.; Yang, Y.; Chen, S.; Chen, Z.; Wang, H. Increase or decrease? Integrating the CLUMondo and InVEST
models to assess the impact of the implementation of the major function oriented zone planning on carbon storage. Ecol. Indic.
2020, 118, 106708. [CrossRef]

38. Xie, X.L.; Sun, B.; Zhou, H.Z.; Li, Z.P.; Li, A.B. Organic carbon density and storage in soils of China and spatial analysis. Acta Ecol.
Sin. 2004, 41, 35–43.

39. Li, K.; Wang, S.; Cao, M. Vegetation and soil carbon storage in China. Sci. China 2004, 47, 49–57. [CrossRef]
40. Huang, M.; Ji, J.; Cao, M.; Li, K. Modeling study of vegetation shoot and root biomass in China. Acta Ecol. Sin. 2006, 26, 4156–4163.
41. Li, W.; Zhang, C.; Li, S. Forest carbon storage in Guangxi Province estimated by 8th forest inventory data. Southwest For. Univ.

(Nat. Sci. Ed.). 2017, 37, 127–133.
42. Zhang, M.; Lai, L.; Huang, X.; Chuai, X.; Tan, J. The carbon emission intensity of land use conversion in different regions of China.

Resour. Sci. 2013, 35, 792–7999.
43. Chen, L.; Liu, G.; Li, H. Estimating net primary productivity of terrestrial vegetation in China using remote sensing. Remote Sens.

2002, 2, 129–135.
44. Pontius, R.G.; Boersma, W.; Castella, J.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al.

Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [CrossRef]
45. Houghton, R.A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land

management 1850–2000. Tellus B Chem. Phys. Meteorol. 2003, 55, 378–390.
46. Wang, Z.; Zeng, J.; Chen, W. Impact of urban expansion on carbon storage under multi-scenario simulations in Wuhan, China.

Environ. Sci. Pollut. Res. Int. 2022, 29, 45507–45526. [CrossRef]
47. Pliscoff, P.; Luebert, F.; Hilger, H.H.; Guisan, A. Effects of alternative sets of climatic predictors on species distribution models

and associated estimates of extinction risk: A test with plants in an arid environment. Ecol. Model. 2014, 288, 166–177. [CrossRef]
48. Fang, C. Progress and the future direction of research into urban agglomeration in China. ACTA Geogr. Sin. 2014, 69, 1130–1144.
49. Zhu, Z.; Zhu, X.; Li, S. Evolution process and characteristics of spatial structure of urban agglomeration in the middle reaches of

the Yangtze River. ACTA Geogr. Sin. 2021, 76, 799–817.
50. Long, H. Land use transition and land management. Geogr. Res. 2015, 34, 1607–1618.
51. Nyamari, N.; Cabral, P. Impact of land cover changes on carbon stock trends in Kenya for spatial implementation of REDD+

policy. Appl. Geogr. 2021, 133, 102479. [CrossRef]
52. Wang, Y.; Meng, J.; Qi, Y.; Peng, F. Review of ecosystem management based on the InVEST model. Chin. J. Ecol. 2015, 34,

3526–3532.
53. Zhu, L.; Li, L.; Liu, S.; Li, Y. The evolution of village land-use function in the metropolitan suburbs and its in spiration to rural

revitalization: A case study of Jiangjiayan Village in Chengdu City. Geogr. Res. 2019, 38, 535–549.
54. Zhu, W.; Zhang, J.; Cui, Y.; Zheng, H.; Zhu, L. Assessment of territorial ecosystem carbon storage based on land use change

scenario: A case study in Qihe River Basin. Acta Geogr. Sin. 2019, 74, 446–459.
55. Zuo, Y.; Cheng, J.; Fu, M. Analysis of Land Use Change and the Role of Policy Dimensions in Ecologically Complex Areas: A

Case Study in Chongqing. Land 2022, 11, 627. [CrossRef]
56. Zhang, J.; Li, X.; Zhang, C.; Yu, L.; Wang, J.; Wu, X.; Hu, Z.; Zhai, Z.; Li, Q.; Wu, G. Assessing spatiotemporal variations and

predicting changes in ecosystem service values in the Guangdong–Hong Kong–Macao Greater Bay Area. Gisci. Remote Sens. 2022,
59, 184–199. [CrossRef]

57. Yang, S.; Su, H.; Zhao, G. Multi-scenario simulation of urban ecosystem service value based on PLUS model: A case study of
Hanzhong city. J. Arid. Land Resour. Environ. 2022, 36, 86–95.

58. Bao, S.; Yang, F. Spatio-Temporal Dynamic of the Land Use/Cover Change and Scenario Simulation in the Southeast Coastal
Shelterbelt System Construction Project Region of China. Sustainability 2022, 14, 8952. [CrossRef]

http://doi.org/10.1016/j.ecolind.2020.106708
http://doi.org/10.1360/02yd0029
http://doi.org/10.1007/s00168-007-0138-2
http://doi.org/10.1007/s11356-022-19146-6
http://doi.org/10.1016/j.ecolmodel.2014.06.003
http://doi.org/10.1016/j.apgeog.2021.102479
http://doi.org/10.3390/land11050627
http://doi.org/10.1080/15481603.2021.2022427
http://doi.org/10.3390/su14148952

	Introduction 
	Materials and Methods 
	Study Area 
	Data Acquisition and Processing 
	Research Methods 
	PLUS Model 
	Validation of Model Accuracy 
	Setting the Scene 
	InVEST Model 


	Results 
	LUCC Dynamics during 2000–2020 
	Analysis of Prediction Results of Various Land Use Situations 
	Accuracy Verification and Driving Factor Contribution Analysis 
	Changes of Carbon Storage between 2000 and 2030 
	Characteristics of Change in Carbon Storage Caused by Land Type Conversion 

	Discussion 
	PLUS Analysis of Model Uncertainty 
	InVEST Model Uncertainty Analysis 
	Advantages and Limitations of the Linkage Model 
	Spatial Structure of Urban Agglomerations and Carbon Storage 
	Development Strategy for Urban Agglomeration and Carbon Storage 
	Contribution to Research 

	Conclusions 
	References

