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Abstract: Land use/cover change (LUCC) can change the energy balance of the earth’s surface
by altering its biophysical properties (surface albedo), and it also has an important impact on the
ecological climate. In this paper, using surface energy balance algorithms, the differences in energy
balance and the resulting ecoclimatic effects under different land use changes in the Yangtze River
basin from 2000 to 2020 were analyzed. The results showed that: (1) from 2000 to 2020, the energy
uptake of surface net radiation (Rs) in the Yangtze River basin showed a downward trend with
increasing intensity of impact from human activities. This indicated that human activities could
weaken the positive trend of Rs uptake and increase the warming effect; (2) Rs and latent heat flux
(LHF) showed an upward trend, which was more obvious in natural and semi-natural regions and
mixed pixel regions; (3) LHF − Rs energy uptake showed a decreasing trend, indicating that the
effect of Rs on surface absorbed energy was greater than that of LHF, which was more significant
in old urban areas and urban expansion areas. This research highlights the variation in the surface
energy budgets of the five land use types with different levels of human activities. This will provide
a theoretical reference for future land planning and management. It will also provide a theoretical
basis for judging climate change trends and urban heat island effects in the Yangtze River basin from
the perspective of bio-geophysics.

Keywords: Yangtze River basin; land use; albedo; land surface temperature; human activities

1. Introduction

As an important branch of the land surface process, the surface radiation budget and
energy balance process are the source of ground energy and the basis of material and energy
exchange, which reflects the role of energy bonds during the coupling of the earth and the
atmosphere [1]. The surface energy process is primarily characterized by the balance of
surface radiation and thermal radiation in the exchange of energy on the land surface, and
it plays a key role in ecological climate and urban planning [2,3]. Furthermore, the process
of energy conversion between the land and air is affected by natural and human activities,
which is reflected in the energy cycle in the land, plants, and the atmosphere [4]. This
means that the changes in land cover could affect climate by altering the physical properties
of the surface (surface albedo, roughness, and specific emissivity), causing changes in the
energy balance at the surface [5,6].

Studying the driving mechanisms and internal influences of land cover change on
surface albedo and surface temperature can help to explore the relationship between land
use change and biophysical factors, especially at the regional scale. However, the surface
energy balance mechanism is complex. For example, the air temperature can be controlled
by many energy-balance processes, such as the albedo, emissivity, solar radiation, the
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distribution of latent heat, and sensible heat flux [7,8]. In theory, changing the energy
balance process can bring the same or more significant climate effects, such as land use
change which can bring biophysical changes (albedo) directly, as well as effective net
radiation, which includes sensible heat flux, latent heat flux (LHF) and surface heat flux.
This can affect the surface radiation budget [9,10].

Apart from the regional background climate, studies have shown that at the global aver-
age level of evapotranspiration is equivalent to the total precipitation on the surface [11,12].
This indicates that when vegetation increases the absorption of solar radiation, with the
additional energy distributed to evaporation, a cooling effect may occur [13]. Moreover,
due to high spatial heterogeneity, the parameters related to biophysical factors (albedo)
could be more complicated, which might lead to warming or cooling [14,15]. In order to
measure the level of warming or cooling, land surface temperature (LST) is always selected
in the study of global and regional land surface processes and climate models [16]. It can
be used to reflect the changes of material and energy balance between the ground and the
atmosphere, which causes a chain reaction between the spatial and temporal patterns of
temperature, precipitation, and vegetation [17].

Furthermore, the interaction between land and air is achieved by regulating the
energy exchange at the interface, which is a key driver of the earth’s climate system [18].
Eco-climatic effects could be considered as a manifestation of various climate-influencing
ecological processes [19] presented through the interaction of various ecological factors
(e.g., temperature and rainfall). At the same time, ecosystems also can affect climate change
in a variety of ways, such as land use change [20]. Moreover, the land use/cover change
also changes accordingly with the impact of human activities, such as urban expansion and
afforestation, with subsequent effects on the ecological and climatic environment of the
region to varying degrees.

Under the condition that the level of remote sensing technology has gradually im-
proved, it is convenient to obtain information regarding the earth’s radiation budget and
to determine the relationship between vegetation structure observation and surface ra-
diation [21]. On this basis, it is conducive to explore the internal relationship between
LUCC and the energy budget. Furthermore, it is important to understand the biophysical
mechanisms of surface energy balance, urban heat island, and climate system [22]. Based
on the surface energy balance algorithm, this paper took the Yangtze River basin as the
study area, and various radiation factors (long-wave radiation, short-wave radiation, and
net radiation), LHF and other relevant variables affecting the surface energy balance were
calculated to explore the ecological climate effects of different land use changes.

The Yangtze River is the longest river in China, with a total length of 6357 km. It spans
three economic regions in southwest, central, and eastern China. These economic zones
are also areas of rapid social and economic growth in China [23]. Currently, eco-climate
transformation is the most active natural factor in the study area, as well as hydrology and
climate, which are inextricably linked. Therefore, it is imperative to fully and promptly
grasp the evolution law and process of eco-climate change in the Yangtze River basin at
different time and space scales [24]. In recent years, it has taken a series of actions to carry
out “ecological priority and green development” in the Yangtze River basin [25]. Thus,
proper land use planning can play an essential function in the human social development in
this area and can play a positive role in ecological climate protection [26–29]. The results of
this study can provide guidance for ecoclimatic assessment and land management aspects
of the Yangtze River basin [30].

2. Materials and Methods
2.1. Study Area

The Yangtze River Basin is an important ecological screen and agricultural production
base in China. It originates from the highest peak (in a mountain range) of the Tanggula
Mountain in the Qinghai-Tibet Plateau and covers an area of over 1.8 × 106 km2. From
Figure 1, the main river in the research area flows through Qinghai, Tibet, Sichuan, Yunnan,
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Chongqing, Hubei, Hunan, Jiangxi, Anhui, and Jiangsu. The topography of the basin is
complex and diverse, showing a 3-level ladder-like distribution trend of high northwest and
low southeast. Furthermore, this basin spans the Qinghai–Tibet alpine region, southwest
tropical monsoon climate zone, and sub-tropical monsoon climate zone in central China,
from west to east, and the annual average temperature basically decreases from east to
west. The Yangtze River Basin is located in different climatic zones with different altitudes,
and the geographical differentiation is so significant. However, it is distributed in the
same latitude zone, which has similar levels of illumination and radiation on the whole.
Therefore, it is very appropriate to compare the influence of land use change with the
surface energy balance.
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Figure 1. Location map of the Yangtze River basin.

2.2. Data Resource

Land use products were obtained from the satellite observation data of ESA Climate
Change Initiative-Land Cover (http://maps.elie.ucl.ac.be/CCI/viewer/download.php,
visited on 26 March 2022). Air temperature data were from the National Meteorological
Information Center (http://data.cma.cn/data/detail/dataCode/A.0013.0001.html, visited
on 26 March 2022), and we spatially interpolated and visualized the temperature based
on the inverse distance weighted (IDW) method, and transformed this into raster data
format uniformly for processing. Solar radiation data was obtained from the Laboratory
of Environmental Ecology, Seoul National University (https://www.environment.snu.ac.
kr/bess-rad, visited on 26 March 2022), and solar radiation data in 2020 were from ERA5
hourly data on single levels of ECMWF (https://www.ecmwf.int/, visited on 28 March
2022). The water vapor pressure data was obtained from ECMWF (https://www.ecmwf.
int/en/forecasts/datasets, visited on 26 March 2022), and the data format was the network
common data format, which was uniformly converted to raster data format. The MODIS
data products (albedo, temperature, latent heat flux, and emissivity) were from National
Aeronautics and Space Administration (NASA) (https://lpdaac.usgs.gov/data/, visited
on 26 March 2022). As shown in Table 1, detailed information of MODIS variables was
illustrated. During the process of data calculation, all the data had a uniform resolution
and were converted into 1 km.

http://maps.elie.ucl.ac.be/CCI/viewer/download.php
http://data.cma.cn/data/detail/dataCode/A.0013.0001.html
https://www.environment.snu.ac.kr/bess-rad
https://www.environment.snu.ac.kr/bess-rad
https://www.ecmwf.int/
https://www.ecmwf.int/en/forecasts/datasets
https://www.ecmwf.int/en/forecasts/datasets
https://lpdaac.usgs.gov/data/
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Table 1. MODIS data products items and descriptions.

Data Items Time Resolution Spatial Resolution Data Resource

Albedo daily 500 m MCD43A3
Temperature (LST) daily 1 km MOD11A1

Latent heat flux (LHF) 8 daily 500 m MOD16A2
Emissivity daily 1 km MOD11A1

2.3. Research Methodology
2.3.1. Land Use Reclassification

In order to study the spatial change of regional land use, the land in the study area was
divided into urban areas, cropland, and natural and semi-natural areas. After overlaying
the data of the 2 periods, the reclassification results were OU, UE, PP, MP, and CP. Among
the 5 types of land use, UE represented the area of urban outward expansion. The area
converted from cropland and natural/semi-natural areas to each other was called the mixed
pixel area (MP). The urban areas from 2000 to 2020 were classified as old urban areas (OU).
PP represented natural or semi-natural areas that had not changed during the period of
2000–2020. CP represented cropland areas (Figure 2). According to the summary of land
transfer situation from 2000 to 2020, the following change permutations were obtained
(Table 2). In the study area, the land converted into urban land was remarkable for years
2000–2020. Among them, the urban expansion accounted for a large proportion (1.24%).
Unchanged urban, cropland, and natural and semi-natural areas accounted for 0.46%,
33.58%, and 63.25% of the total area, respectively.
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Table 2. Statistics on the proportion of land type change.

Land Use Change from 2000 to 2020 Unchanged Land Types from 2000 to 2020

Categories Percentage Categories Percentage

cropland to urban areas 0.95% urban areas 0.46%
natural and semi-natural areas to urban areas 0.29% cropland 33.58%

natural and semi-natural areas to cropland 0.74% natural and semi-natural areas 63.25%
cropland to natural and semi-natural areas 0.73%
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The land use types after reclassification are shown in Figure 2. To sum up, the area of
land cover had significant change; its area was 4.8 × 104 km2, accounting for 2.71% (Table 2).
The proportion of the 5 land use types from high to low was PP > CP > MP > OU > UE. It
can be observed that PP and CP accounted for the largest proportion of the 5 land use types,
which were 1.1 × 106 km2 and 5.9 × 105 km2. The area covered by UE was the smallest,
which was 4951.86 km2.

2.3.2. Calculation of Surface Energy Balance and Research Framework

Using the radiation balance algorithm, differences of various factors of energy balance
under different underlying surfaces in the study area were calculated. As shown in Figure 3,
land use types in the study area were reclassified as CP, MP, UE, PP, and OU, which
were used to analyze the relationship between the change of energy budget and various
parameters. Each energy balance formula was calculated as follows:

Rs = Srn + Lrn (1)

where Rs represents surface net solar radiation; Srn represents net short-wave radiation;
and Lrn represents net long-wave radiation. Calculation formulas of Srn and Lrn were
as follows:

Srn = Srn(d) − Srn(u) = (1 − A)Srn(d) (2)

Lrn = Lrn(d) − Lrn(u) = EmLrn(d)(Ta, Ei)− Lrn(u)(Ts, Em) = EmδEiTa
4 − δEmTs

4 (3)

where Lrn(d) indicates long-wave radiation downwards; Lrn(u) indicates long-wave ra-
diation upwards; Srn(d) indicates short-wave radiation downwards; and Srn(u) indicates
short-wave radiation upwards, and its unit is W/m2. Em is the emissivity; δ represents
5.67 × 10−8 W/m2/K4; and A is surface albedo. Ta is the air temperature; Pw is the water
vapor pressure, and abbreviation of this unit is hPa. Ei is the emissivity of air, its formula is:

Ei = 1.24(Pw/Ts)
1
7 (4)

where Ts is the land surface temperature, its unit is K.
According to the equilibrium Equation (2), it can be found that Rs will be decreased

with increasing albedo, while −Rs refers to the energy absorption caused by biophysical
factors (albedo, solar radiation). Meanwhile, the latent heat flux (LHF) represents the
energy consumption of Rs, and LHF − Rs represents the final change in energy balance
caused by LUCC [19]. In practice, the LHF − Rs is typically sensitive to latent heat fluxes
and soil fluxes in the radiation balance. The larger the LHF − Rs, the less energy would be
available to the land and atmosphere, also leading to weaker correspondence with global
warming feedback [27]. Based on the radiation balance algorithm, the effects of LUCC and
biophysical factors can be combined [31]. Hence, on the basis of surface energy uptake and
consumption under different land use changes, ecological climate changes can be explained
from this point of view.

In this study, using the surface energy balance algorithm, we calculated various energy
factors (e.g., shortwave radiation and net radiation) which related to the energy balance.
We then used zonal statistics to calculate the average of all pixels within the different land
use types. In the results section, the trend changes of different energy factors were analyzed
for the 5 land use types from 2000 to 2020 using linear regression, Pearson correlation
analysis, and trend analysis methods.
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3. Results
3.1. Changes of Surface Energy Intake
3.1.1. Net Short-Wave and Long-Wave Radiation

According to the different changes of various energy factors in 2000 and 2020, spatial
variations of net short-wave (Srn) and net long-wave radiation (Lrn) were calculated for
the study period. Shown in Figure 4, Srn and Lrn had a positive trend in most areas, for
which the multi-year average values were 122.37 W/m2 and 55.39 W/m2, respectively. The
increment of Srn was larger in the west and smaller in the east, where the value of Srn was
relatively smaller in the OU region. Lrn increased significantly in Hubei, Jiangsu, Jiangxi,
and Henan provinces, mainly in the CP region, while the negative values of Lrn were
concentrated in the PP region, mainly in northwestern China (Qinghai, Tibet, and Sichuan).

As shown in Figure 5, the highest value of Srn was in the PP region, where its multi-
year average maximum value was 130.2 W/m2, while the lowest value was located in the
OU area, where the multi-year average minimum value was 110.3 W/m2. The results of
Lrn showed the maximum value of the multi-year average was located in the OU region,
where its value was 68.1 W/m2, followed by the MP, CP, UE, and PP regions, and their
values were 63.1 W/m2, 59.4 W/m2, 58.8 W/m2, and 52.3 W/m2, respectively.
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based on five land types in the Yangtze River basin from 2000 to 2020.

3.1.2. Changes of Surface Net Solar Radiation

The surface net radiation is the sum of Srn and Lrn, which is the key parameter of
land–atmosphere interactions and an important index for estimating the surface energy
budget [32]. From the results of Lrn and Srn data, the variation of net radiation (Rs) could
be inferred. As shown in Figure 6, the multi-year average value of Rs was 176.15 W/m2

in the Yangtze River basin from 2000 to 2020. Moreover, Rs had an increasing trend in the
southwest, while it decreased in the south. On the whole, Rs showed an upward trend, but
its increase was not significant.

The trend of Rs changes for different land use types showed significant differences
(Figure 7). Considering the increasing impact of human activities, the net radiation showed
a downward trend. The Rs value of the PP region was much larger than that of the other
four land use types, with a multi-year average value of 181.86 W/m2, followed by MP and
OU regions. Moreover, the Rs values of OU and UE areas, which were more influenced by
human intervention, were relatively small and both showed negative trends during the
study period. From 2000 to 2020, although the Yangtze River Basin suffered some human
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intervention, the Rs value of different land use types showed an upward trend on the whole.
However, these changes did not pass significance (p > 0.1).
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3.2. Analysis of Surface Energy Balance
3.2.1. Changes in Surface Energy Consumption

From the perspective of spatial distribution, the LHF value was higher in some eastern
areas, and it ranged from 29.7 W/m2 to 237.9 W/m2 (Figure 8). The results found that the
spatial variation of LHF was positive in the study area from 2000 to 2020, where the multi-
year average value of LHF was 64.88 W/m2. Under the influence of human activities, there
were obvious differences in the range of LHF values corresponding to different land use
types. The highest multi-year average value of LHF was located in the MP area, which was
76.03 W/m2, followed by the PP, CP, UE, and OU regions. Figure 9 showed the changing
trend of LHF under different land use types in the Yangtze River basin from 2000 to 2020,
where the multi-year average trend value of LHF was 0.4773 W/(m2·year). Among the



Land 2022, 11, 1636 9 of 16

five land use types, the order of multi-year trend values of LHF from high to low were
MP > CP > PP > UE > OU. It is worth mentioning that the LHF growth trend in OU and
UE regions was much slower than in MP, CP, and PP regions, which indicated that the
influence of human activities had a certain weakening effect on the increase in LHF. For the
trend analysis of LHF, all statistical results have passed the significance test (p < 0.1).
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3.2.2. Comparison of Net Radiation and Latent Heat Fluxes

The spatial distribution of LHF − Rs was found to be significantly different from that
of LHF. The LHF − Rs values were negative in most areas of the Yangtze River basin. In
the eastern part of the study area, the increment of LHF − Rs was relatively large, with a
multi-year average of −114.3 W/m2. Moreover, the multi-year average values of LHF − Rs
from high to low were CP > MP > OU > PP > UE (Figure 10b). As can be seen from
Figure 11, the multi-year mean trend value of LHF − Rs was 0.3994 W/(m2·year), and
LHF − Rs generally showed an increasing trend from 2000 to 2020, especially in OU and
UE areas (p < 0.1). The results indicated that the feedback effect of regional warming from
land use change also enhanced as the intensity of human activity impacts increased.
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To further specify the effects of LHF, Rs, and LHF − Rs, we analyzed the relationship
of these three energy factors. The differences between the LHF among different land use
types were more obvious compared to Rs. As shown in Figure 12, the correlation between
LHF − Rs and Rs was more significant, which showed a closer relationship than with
LHF, indicating that the change in energy balance was closely related to the change in Rs.
Moreover, the correlation coefficients between LHF − Rs and Rs were greater in the UE
and PP regions than in the CP, MP, and OU regions. Among the five land use types, the
correlation coefficient between LHF − Rs and LHF in descending order was OU > UE > CP
> MP > PP. Compared with LHF − Rs and Rs, the areas with higher correlation coefficients
between LHF − Rs and LHF were distributed in the OU and UE regions.
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In terms of radiation balance, the results indicated that under the influence of human
activities, the changes in biophysical processes (LHF, LST, and Rs) caused by LUCC could
have a great impact on climate change [33]. Furthermore, the sensitivity reflected by the
correlation between LHF − Rs and Rs was different among the five land use types, which
referenced the ways of energy intake to the warming or cooling effect [27]. Therefore, when
considering the effect of land use change on energy balance, it may be more meaningful to
adjust the net radiation coefficient related to biophysical factors for regulating the energy
balance in the Yangtze River basin.

4. Discussion

Owing to the continuous development of China’s economy and the rapid increase in
population, the land use types of the Yangtze River Basin had changed enormously from
2000 to 2020. Meanwhile, the changes in land cover have altered the energy exchange
between land and atmosphere, thereby affecting the local eco-climate [34]. The results
of this study showed that the change pattern of Srn was not significant for different land
use types, but with the increase in human activity intensity, the change pattern of Rs was
obvious for each land use type after it was superimposed with Lrn, and Rs, showing a
downward trend during the period of 2000–2020 in the OU and UE areas.

In this paper, the values of LHF corresponding to net radiation were the lowest in the
OU and UE areas of five land use types, indicating that the increase in human activities
weakened the positive trend of LHF increase. Zhao et al. [35] found that the bio-geophysical
warming caused by urbanization was mainly caused by the decrease in LHF caused by
evapotranspiration, and the results were very similar to the results of this study.

The variation of surface temperature (LST) in the Yangtze River basin from 2000 to 2020
showed the multi-year average values for different land use types from high to low were
OU > UE > CP > PP > MP (Figure 13). It is worth noting that LST showed an upward trend
during 2000–2020, which was consistent with the climate background of global warming.
Usually, as the influence of human activity increases, the regional surface temperature will
increase correspondingly, especially in urban centers, densely populated areas, impervious
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surfaces, and areas with low vegetation cover [36]. Therefore, rapid urbanization is an
important factor that leads to the rise of land surface temperature [37] and affects vegetation
within the administrative boundaries of cities [38]. As the feedback impact of land use
change on regional warming enhanced, low temperature areas (such as the PP region
(Figure 13)) also appeared within the Yangtze River basin, which means appropriate
measures can be taken to control local temperature rises.
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Moreover, the results of this study showed that LHF − Rs was more sensitive to Rs
than LHF within the Yangtze River basin from 2000 to 2020, and the results indicated that
the regulation of net radiation was greater than the latent heat flux. As the energy balance
was directly affected by land surface temperature, and the energy consumption process also
responded to LST [27], the relationship between surface energy and temperature (Figure 14)
was explored. It can be found that the relationship between LST and LHF−Rs was stronger
than that between Rs and LHF, but the correlations did not pass the significance test (p = 0.1).
In addition, relationship between LST and Rs was more significant in OU and UE areas,
indicating that the regulation of Rs on LST was more obvious, especially in the case of high
population density. This was consistent with the results of previous studies [19].

It is generally agreed that local warming is not generated by a single factor [39] and it is
closely related to the local ecological-climatic environment. The difference of land use type
and spatial structure will make the energy budget and temperature different [40,41], and
when analyzing the urban heat island effect the influence of different land use types and
regional patterns on climate cannot be ignored. Furthermore, according to the comparisons
of climate change, many studies have confirmed that vegetation-dominated ecosystems
could play an important role in regulating the urban heat island effect, and it can affect the
urban temperature through transpiration of vegetation and soil, thus assuming important
ecological functions [42].
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5. Conclusions

Based on human activity influences, the land use types within the Yangtze River basin
were divided into five categories: OU, CP, MP, UE, and PP. In this study, the differences
and changes of Rs and LHF of five land use types from 2000 to 2020 were analyzed, and the
relationship between energy budget and temperature was discussed. The main conclusions
are as follows:

(1) During the past 21 years, Rs and LHF showed an increasing trend, which was more
obvious in natural and semi-natural regions (PP) and mixed-pixel regions (MP). This
study found that the Rs and LHF of OU and UE areas with severe human intervention
were much lower than those of other land use types, which indicated that human
intervention and urbanization weakened the impact of surface net radiation and latent
heat flux.

(2) From 2000 to 2020, the energy absorption of LHF − Rs showed a downward trend,
indicating that the influence of Rs on surface energy absorption was greater than LHF,
which was more obvious in OU and UE areas. With the continuous improvement of
living standards, the impact on the surrounding nature was also expanding. Therefore,
when analyzing the relationship between LUCC and radiative forcing, it is necessary
to consider the influence of LHF and Rs on LUCC.

(3) The trend values of LST in the Yangtze River basin during 2000–2020 from high to
low were OU > UE > CP > PP > MP. Among them, the values of LST were higher in
OU and UE areas, and lower in the PP area, indicating that the trend of LST increased
significantly with the increase in human activities.

Based on the land use changes in the Yangtze River basin from 2000 to 2020, this study
analyzed surface energy change trends and ecological climate effects under different land
use types in the past 21 years using the surface energy balance algorithm. The variation of
surface temperature under different LUCC changes was elaborated from the perspective of
energy balance. The results showed that there were significant differences in energy balance
due to different degrees of human intervention. It is of reference value for exploring climate
change trends and urban heat island effects from a biogeographic perspective. Currently,
the data and methods based on this research were gained at a large regional scale, so there
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is a need for quantitative studies at a finer regional scale, which will help future land
management practices.
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