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Abstract: The purpose of this study was to present a new strategy based on fusion at the decision
level for modeling the crop residue. To this end, a set of satellite imagery and field data, including the
Residue Cover Fraction (RCF) of corn, wheat and soybean was used. Firstly, the efficiency of Random
Forest Regression (RFR), Support Vector Regression (SVR), Artificial Neural Networks (ANN) and
Partial-Least-Squares Regression (PLSR) in RCF modeling was evaluated. Furthermore, to increase
the accuracy of RCF modeling, different algorithms results were combined based on their modeling
error, which is called the decision-based fusion strategy. The R2 (RMSE) between the actual and
modeled RCF based on ANN, RFR, SVR and PLSR algorithms for corn were 0.83 (3.89), 0.86 (3.25),
0.76 (4.56) and 0.75 (4.81%), respectively. These values were 0.81 (4.86), 0.85 (4.22), 0.78 (5.45) and
0.74 (6.20%) for wheat and 0.81 (3.96), 0.83 (3.38), 0.76 (5.01) and 0.72 (5.65%) for soybean, respectively.
The error of corn, wheat and soybean RCF estimating decision-based fusion strategy was reduced
by 0.90, 0.96 and 0.99%, respectively. The results showed that by implementing the decision-based
fusion strategy, the accuracy of the RCF modeling was significantly improved.

Keywords: crop residue; fusion; machine learning algorithm; reflective and radar bands

1. Introduction

Modern agricultural activities, such as plowing and using heavy machinery known
as tillage, can damage soil health [1,2]. In this case, the soil is more easily leaching by
rain and loses its top layer, which is crucial for crop growth. The leached soil will flow
downstream into the rivers and pollute the water due to elements such as phosphorus [3].
On the other hand, with decreasing soil quality, precipitated carbon is released [4]. The
release of carbon from the soil plays an important role in increasing the carbon dioxide
in the Earth’s atmosphere [5,6]. Gases are one of the parameters affecting climate change.
Therefore, maintaining soil quality in the agricultural process is very important [7,8].

One of the possible, cheap and feasible ways to reduce the damage caused by wind and
water erosion and increase water storage to soil productivity is to maintain the remaining
vegetation on the soil surface of agricultural lands at harvest time [9-11]. Crop residues
consist of various components of the crop, including leaves, seeds, stems, etc., after harvest
on agricultural land [12,13]. The presence of these residues on the soil surface can strengthen
soil organic matter, better the absorption of nutrients by the plant and increase the efficiency
of chemical fertilizers. Crop residues also have a large effect on soil, crop and environmental
factors, such as water permeability, evaporation, crop yield and erosion [7,14-16]. They can
improve the physical, chemical and biological condition of the soil and ultimately lead to a
healthier crop due to its desirable and nutritious composition. Preserving residues at the
soil surface by preventing the emission of gases, such as NH3, CO, and SO, can reduce air
pollution, while burning plant residues emits these gases [17,18].

Due to the importance of preserving crop residues on the soil surface, modeling and
mapping residues as an indicator of tillage intensity are of great importance in agricultural
management and achieving sustainable agricultural goals, including maintaining environ-
mental health [13,19]. Mapping crop residues for agricultural areas can be a criterion for
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evaluating the efficiency and quality of methods and tools used in harvesting. It is practi-
cally impossible to use traditional methods, such as field visits and sampling, to determine
the amount of residues on a large scale and in a short time [12,20]. Utilizing the capabilities
of remote sensing techniques and data can be useful in quantifying crop residues on a
large spatial and temporal scales and higher accuracy [18,21]. Previous studies have used
various satellite imagery to model the amount of residue cover fraction (RCF), including
reflective multispectral imagery, such as Landsat; Sentinel 2 [16,22,23]; radar imagery, such
as RADARSAT [13,24]; and reflective hyper Spectral imagery, such as Probe-1 [25]. Each of
these types of images has advantages and disadvantages [13].

In previous studies, several remote sensing-based indices, such as Normalized Dif-
ference Senescent Vegetation Index (NDSVI) [26], Normalized Difference Residue In-
dex (NDRI) [27], Normalized Difference Tillage Index (NDTI) [28], Shortwave Green
Normalized Difference Index (SGNDI) [29], Shortwave Infrared Normalized Difference
Residue Index (SINDRI) [30], Broadband spectral Angle Index (BAI) [8], Dead Fuel In-
dex (DFI) [31], Normalized Difference Index (NDI) [32], Normalized Difference Vegeta-
tion Index (NDVI) [8], Simulated crop residue cover (MCRC) [29], Simple tillage index
(STI) [28], Simulated cellulose absorption index (3BI1) [33], Simulated lignin Cellulose
Absorption Index (3BI2) [33], Simulated NDRI (3BI3) [33] and Short-wave near-infrared
Normalized Difference residue Index (SRNDI) [34], etc., have been proposed to identify
and quantify the RCF [14,34]. In some studies, the efficiency of different spectral indices
was compared [29,33]. The results showed that each of these indicators can have different
performances, some of them are suitable for dry areas and some for wet areas. A number of
indicators do not perform well in areas with high vegetation. Each of the developed indica-
tors has advantages and disadvantages. Yue, Tian, Dong, Xu and Zhou [29] showed that
single indices are not highly capable of modeling RCF in the complex surface conditions of
agricultural areas. Hence, in some studies, multivariate regression based methods, such
as Random Forest Regression (RFR), Support Vector Regression (SVR), Artificial Neural
Networks (ANN), etc., were proposed to model RCF [33]. The researchers used experi-
mental regression methods to examine the linear or nonlinear relationship between actual
RCF and remote sensing-based indices related to RCF [7,14,33], the spectral angle [8] or
spectral unmixing [35] used to estimate the amount of RCF. Raoufat, Dehghani, Abdolabbas,
Kazemeini and Nazemossadat [9] utilized Landsat 8 and drone data for RCF mapping and
found that Landsat 8 data was more accurate than drone data although the drone data
had its own advantages. Yue and Tian [36] used the spectral and laboratory data for RCF
mapping. They evaluated RS data and triangle technique using RFR method in their study.
They concluded that their proposed method was very effective in the accurate modeling of
RCF and decreased the negative effect of soil moisture on it. Wang et al. [37] used MODIS
and ground data to quantify some crop-related indices in a large-scale area using ground
data and building a linear regression relationship between them. They showed that their
used method was successful in monitoring soil conditions, including soil erosion.

Although the research in RCF modeling is limited, summarizing previous studies
show that several models have been developed over the years to estimate the RCF, each
with its own advantages and disadvantages. Selecting the appropriate model to estimate
the amount of RCF has a high impact on the modeling accuracy of this parameter. Therefore,
providing an integrated model based on using the capabilities of different models and
indicators in estimating RCF can be useful in improving the modeling accuracy of this
parameter. Sentinel 1 satellite imagery is one of the well-known and widely used radar data
in various agricultural applications. However, our knowledge shows that the capability
of this radar image’s bands in estimating the amount of RCF has not been evaluated.
Therefore, evaluating the performance of the satellites and combining the capabilities of
these bands with the indicators presented in previous studies to improve the accuracy of
modeling RCF can be useful and crucial.

The purpose of this study was to present a new strategy based on fusion at the
decision level for modeling the RCEF. In this study, (1) the efficiency of spectral indices
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based on reflective multispectral images presented in previous studies in modeling RCF
were compared. (2) The importance of using Sentinel 1 radar satellite imagery bands
in improving the accuracy of RCF modeling was assessed. (3) The efficiency of RFR,
SVR, ANN and Partial-Least-Squares Regression (PLSKR) algorithms in modeling RCF was
evaluated and compared. A new strategy was proposed to integrate the results obtained
from different algorithms at the decision level to improve the accuracy of modeling RCF.

2. Study Area

Ontario is one of Canada’s most important agricultural centers, with a wide variety of
agricultural products and orchards. Major agricultural products in Ontario include corn,
wheat and soybeans, barley, forage, oat, canola, etc. A region in southern of Ontario was
selected as the study area. This region is located at 82.5 degrees West and 42.5 degree North.
The agricultural products of this area include the three main crops of corn, wheat and
soybeans (Figure 1). The area of the study region is about 4324 km? and the area under corn,
wheat and soybean cultivation in this area is 1218, 284 and 1087 km?, respectively. The
study area in terms of climatic division, has a warm summer humid continental based on
the Képpen climate classification. The average annual temperature and rainfall are 17.0 °C
and 424 mm, respectively. Therefore, due to the weather conditions and long winters in
this area, most agricultural products are harvested by September. Criteria for selecting
the study area were (1) high diversity of agricultural products, especially important crops
in Canada; (2) proximity of the harvest time of the three types of agricultural products
available in the region and the different farms available for each product; (3) access to the
suitable cloud-free satellite image corresponding to the harvest date of all three crops for
that area; and (4) easy access of the area in order to conduct field studies.
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Figure 1. Maps of (a) the geographical location of the study area, (b) the land crop classes of the study
area and (c) the geographical location and spatial distribution of RCF samples of different land crops.

3. Data and Methods
3.1. Data
A set of satellite images and ground data were used to evaluate different models

and data in RCF modeling. Satellite imagery included the Landsat 8 Collection 2 Surface
Reflectance image for 13 October 2020 and the Sentinel 1 Ground Range Detected (GRD)
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image for 7 October 2020. The spatial resolution of the Landsat 8 and Sentinel 1 image
bands is 30 and 10 m, respectively. The Landsat 8 bands, including Blue, Green, Red,
NIR, SWIR 1 and SWIR 2, and Sentinel 1 bands, including VV and VH, were used in
this study. Some criteria were considered when selecting the date of the images: (1) a
lack of cloud cover in the area during the Landsat 8 overpass time, (2) the absence of
precipitation in the study area a few days before the satellite overpass time and (3) prox-
imity to the date of harvest of agricultural products. Landsat 8 image downloaded from
https:/ /earthexplorer.usgs.gov/ (accessed on 13 February 2021) and sentinel 1 downloaded
from https:/ /scihub.copernicus.eu/ (accessed on 16 February 2021). The land crop map
prepared by Agriculture and Agri-Food Canada (AAFC) in 2020 with the spatial resolution
of 30 m was used to mask various agricultural products. This data is produced annually
and can be downloaded from https://open.canada.ca/data/en/dataset?q (accessed on
2 March 2021) website.

Ground data collection includes determining the RCF in autumn from a number of
corn, soybean and wheat fields that were performed after harvest on the 9 October 2020,
10 October 2020 and 9 November 2020 dates. For this purpose, RCF values were determined
at 57 land points for wheat, 149 points for corn and 128 points for soybeans. The selection
of land areas was carried out in such a way that there was a suitable distribution in the
fields of these crops in the whole study area (Figure 1b). The minimum distance between
sampling points was 500 m. Additionally, based on the initial and complete field visit of
the study area, the suitable distribution of absolute values between the highest and lowest
actual values of RCF in the study area was also considered when selecting the sampling
points. Little to no rain (less than 0.25 cm) had fallen the week before the sampling, and
the soil moisture levels were constantly dry. When field sampling took place, the weather
was identical to the weather when taking images the day before. Ordinary camera images
were used for sampling. A Phantom 3 SE drone was used to produce images from each
selected sampling point. The flight height of the drone for imaging was 20 m, and a digital
orthophoto with a spatial resolution of 20 cm was prepared for each sampling point. Then,
for each image, the position of product residues was manually digitized. After processing
the images taken by the camera, the remaining coverage fraction was calculated for an area
of 900 m? around each sampling point. Agisoft Metashape 1.8.3, developed by Agisoft LLC
(St. Petersburg, Russia) and ArcMap 10.6.1, developed by Esri (Environmental Systems
Research Institute), (Redlands, California, United States) software were used to determine
the RCF based on the images prepared with the drone (digital orthophoto preparation
and digitization).

3.2. Methods

Firstly, a map of common spectral indices in RCF modeling was prepared based on
the Landsat 8 and Sentinel 1 VV and VH spectral bands. Then, these maps were masked
to areas with NDVI < 0.3 to limit analysis to areas without significant green vegetative
ground cover [16] and was also masked to agricultural crop fields using the AAFC map.
Then, the efficiency of each of these indicators in modeling the RCF was evaluated for each
agricultural product. Secondly, the efficiency of different algorithms, including RFR, SVM,
ANN and PLSR in modeling RCFE, was evaluated and they were compared with each other.
Furthermore, different algorithms’ results were combined based on the modeling error in
order to increase the accuracy of receipt modeling. This strategy used the fusion capability
at the decision level to improve the accuracy of RCF modeling.

3.2.1. Effective Variables

In previous studies, various spectral indices, including MCRC, SGNDI, DFI, STI,
NDSVI, NDTI, NDI5, NDI7, NDVI, 3BI1, 3BI2, 3BI3, BAI and SRNDI, have been developed
for RCF modeling [16,25,30,32-34]. Reflective band information was used to calculate these
indices. In this study, in addition to spectral indices based on reflective band information,
backscatter data obtained from VV and VH bands of Sentinel 1 were also used in RCF
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modeling. The details of spectral indices and radar bands used as independent and primary
variables in RCF modeling are shown in Table 1. To compare the efficiency of each of these
independent variables in RCF modeling, their correlation coefficient with the values of RCF
at the validation sampling points was calculated.

Table 1. Spectral indices and radar bands used as independent and primary variables in RCF modeling.

Type Spectral Indices Equation Reference
MCRC (OLI6 — OLI3)/(OLI6 + OLI3) [29]
SGNDI (OLI3 — OLI7)/(OLI3 + OLI?7) [29]
DFI 100 x (1 — OLI7/OLI6) x (OLI4/OLI5) [31]
STI OLI6/OLI7 [28]
NDSVI (OLI6 — OLI4)/(OLI6 + OLI4) [26]
NDTI (OLI6 — OLI7)/(OLI6 + OLI7) [28]
. . NDI5 (OLI5 — OLI6)/(OLI5 + OLI6) [32]
Reflective-based index NDI7 (OLI5 — OLI7)/(OLI5 + OLI?) [32]
SRNDI (OLI7 — OLI4)/(OLI7 + OLI4) [34]
NDVI (OLI5 — OLI4)/(OLI5 + OLI4) [33]
3BI1 100 x (0.5 x (OLI2 + OLI7) — OLI4) [33]
3BI2 (OLI2 — OLI4)/(OLI2 — OLI7) [33]
3BI3 (OLI7 — OLI4)/(OLI7 + OLI6) [33]
BAI - [8]
Backscatter bands 2/71\_/1 _ _

3.2.2. Machine Learning Methods

Multivariate modeling based on four common algorithms in agricultural and environ-
mental modeling, including RFR, SVM, ANN and PLSR, was used to model the RCE. In the
first scenario, all reflective band-based spectral indices were used as independent variables.
In the second scenario, in addition to spectral indices based on reflective bands, VV and
VH band information was also used in the modeling process. Each RFR, SVM, ANN and
PLSR algorithm was calibrated based on training data (96 samples for corn, 38 samples
for wheat and 84 samples for soybean). Then the efficiency of each of these algorithms in
estimating the RCF fraction using test data (53 samples for corn, 20 samples for wheat and
43 samples for soybean) was evaluated.

PLSR breaks down both dependent and independent variables into a number of major
components. PLSR is a two-line calibration algorithm that converts a large number of
correlated linear variables into several non-correlated variables based on data compression.
Hence, this algorithm can solve the challenges of high correlation between variables and
overfitting in the modeling process [38].

In recent years, artificial neural networks have been widely used to estimate various
environmental variables based on satellite data [39,40]. In this study, a back-propagation
ANN was used to model the residue. This algorithm consists of input, hidden and output
layers. Sigmoid and linear functions were used for activation in hidden and output nodes,
respectively. To calibrate synaptic coefficients, the Levenberg-Marquardt minimization
algorithm was used [41]. The number of nodes in the hidden layers varied between 4 to 8.
To optimize the structural parameters of the ANN algorithm for the network, we changed
the momentum coefficient and learning rate from 0.1 to 1.0 with a step of 0.05. The number
of nodes in the hidden layer varied from 3 to 7. Mean squared error was used as a measure
of the performance threshold and the determination of a network with optimal structure in
receipt fraction modeling. The optimal network was selected in terms of mean absolute
error between validation and predictions data.

The SVR model is a widely used algorithm for solving nonlinear problems [42]. In the
SVR method, n-dimensional input variables are transferred to the new feature space with
higher dimensions using the core functions and, as a result, optimal separator super planes
are developed [43]. In this study, different Gaussian, linear, nonlinear quadratic, cubic, etc.,
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kernels were evaluated, and finally the Gaussian kernel was selected and used as a function
in the receipt fraction estimation process. The optimal values of box constraint, kernel scale
and epsilon were set to 909, 857 and 0.04, respectively.

RER is an ensemble-learning algorithm that combines a large set of decision trees
to improve the accuracy of estimating a variable [44]. RFR has several advantages in
modeling environmental variables, including (1) low sensitivity to noise and over-fitting,
and (2) the use of a large number of quantitative and qualitative variables in the modeling
process [45,46]. To implement this algorithm, two parameters, the number of trees and the
number of attributes, must be set. The number of trees varied from 30 to 300 with step size
30 and the number of trees 150 was selected as the optimal value.

The optimal model for each of these four algorithms was selected to estimate the RCF
and the mean absolute error between the validation data and the predictions.

3.2.3. Decision-Based Fusion Approach

To reduce the error of modeled RCF based on remote sensing data due to the weak-
nesses of different algorithms, in the proposed strategy, the results of four RFR, SVM, ANN
and PLSR algorithms were combined based on Equation (1).

n
RCF = )" WiRCF,0461(:) (1)
i=1

In Equation (1), RCF; is the modeled RCF based on the remote sensing data by
combining the results of different algorithms, RCF0qel(;) is the fraction of the modeled
RCF based on the remote sensing data obtained from the ith algorithm, Wi is the degree of
importance of the ith algorithm and n is the number of used algorithms. Equation (2) is
used to calculate the significance of the ith algorithm.

RMSE 1 odel (i)

Wi = 2
?:1 RMSEmodel(i)

In Equation (2), RMSE ,,,gel(i) is the mean squares root of the of the estimated fraction
and is based on the ith algorithm. The lower the RMSE of an algorithm in estimating the
RCE the greater its impact and importance in the result of the RCF estimation. MATLAB
2019a software was used to implement various indices and algorithms for RCF modeling.

4. Results

The mean (sd) of the RCF for the calibration data of corn, wheat and soybean were
17.8 (9.6), 20.1 (11.2) and 19.2 (7.7)%, respectively (Figure 2). These values were 17.4 (9.4),
18.2 (10.3) and 18.6 (8.5)% for validation data, respectively. The RCF means and sd values
based on the calibration and validation datasets were close to each other. The highest
frequency of calibration data for corn, wheat and soybean crops was in the 10.9-18.3,
10.5-17.3 and 17.4-23.4% categories, respectively. For validation data, the highest frequency
for these products was in the 12.2-18.4, 11.1-16.6 and 18.8-25.0% categories, respectively.

The efficiency of spectral indices based on reflective bands in RCF modeling was
different. The efficiency of NDI5, NDI7, NDTI, NDVI, STI, DFI and BAI was higher than
other indices, such as 3BI1, 3BI2, MCRC, NDSVI, SGNDI, and SRNDI (Table 2). The R2
between BAI and corn, wheat and soybean residues were 0.63, 0.66 and 0.61, respectively,
which was higher than other spectral indices. The R? between the VV (VH) bands and the
corn, wheat and soybean residues were 0.25 (0.29), 0.28 (0.36) and 0.20 (0.25), respectively.
The efficiency of radar bands in RCF modeling was less than the spectral indices.

In the first scenario (dataset including reflective band-based spectral indices), based
on calibration data, the R> (RMSE) between the actual and modeled RCF using ANN,
RFR, SVR and PLSR algorithms for corn crop were 0.86 (3.13), 0.91 (2.63), 0.82 (3.92) and
0.79 (4.22%), respectively (Figure 3). These values were 0.84 (4.22), 0.88 (3.72), 0.81 (5.25) and
0.77 (5.85%) for wheat and 0.85 (3.14), 0.89 (2.73), 0.79 (3.81) and 0.75 (4.04%), respectively,
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for soybean. The efficiency of RCF modeling using different machine learning algorithms
based on spectral indices was different. The RFR and PLSR algorithms had the highest and
lowest accuracy in forming an optimal network for RCF modeling, respectively.
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Figure 2. Frequency distribution of RCF values of corn, wheat and soybean crops for calibration and

validation data in different classes.
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Table 2. The R? between the effective variables and the residues for different crops.
Corn Wheat Soybean
3BI1 0.09 0.08 0.11
3BI2 0.15 0.10 0.33
3BI3 0.46 0.35 0.56
MCRC 0.13 0.38 0.13
NDI5 0.54 0.48 0.41
NDI17 0.60 0.51 0.45
NDSVI 0.07 0.11 0.11
NDTI 0.42 0.48 0.61
NDVI 0.43 0.51 0.22
SGNDI 0.20 0.08 0.22
SRNDI 0.24 0.15 0.21
STI 0.43 0.50 0.60
DFI 0.55 0.59 0.52
BAI 0.63 0.66 0.61
\'A% 0.25 0.28 0.20
VH 0.29 0.36 0.25
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Figure 3. R? and RMSE between real and modeled RCF based on calibration data.

For the validation data, the R? (RMSE) between the actual and modeled RCF based on
ANN, RFR, SVR and PLSR algorithms for corn were 0.83 (3.89), 0.86 (3.25), 0.76 (4.56) and
0.75 (4.81%) (Figure 4). These values were 0.81 (4.86), 0.85 (4.22), 0.78 (5.45) and 0.74 (6.20%)
for wheat and 0.81 (3.96), 0.83 (3.38), 0.76 (5.01) and 0.72 (5.65%), respectively, for soybean.
The results showed that the RFR algorithm had the highest accuracy in RCF modeling. The
efficiency of this algorithm in corn RCF modeling was higher than soybean and wheat.
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Figure 4. R? and RMSE between actual and model RCF based on validation data.

The addition of radar bands to the spectral indices dataset in the corn RCF modeling,
caused an increase in the accuracy of RCF estimation using machine learning algorithms
(Table 3). Considering the radar bands, the RMSE of corn RCF modeling using ANN, RFR,
SVR and PLSR decreased by 0.44, 0.57, 0.54 and 0.30%, respectively. The reduction rates of
RMSE for wheat (soybean) were 0.71 (0.37), 0.61 (0.49), 0.55 (0.51) and 0.38 (0.64), respectively.

Table 3. R? (RMSE) between the actual and modeled values of the RCF based on different machine
learning algorithms, considering spectral indices and radar bands as dependent variables.

Corn Wheat Soybean
ANN 0.85 (3.45) 0.84 (4.15) 0.85 (3.59)
RFR 0.89 (2.68) 0.87 (3.61) 0.89 (2.89)
SVR 0.80 (4.02) 0.80 (4.90) 0.80 (4.50)
PLSR 0.77 (4.51) 0.77 (5.58) 0.75 (5.01)

The R2 between the actual and modeled RCF based on the fusion strategy at the deci-
sion level for corn, wheat and soybean crops was 0.92, 0.89 and 0.88, respectively (Figure 5).
RMSE values were 1.78, 2.65 and 1.90%, respectively. The error of estimating the RCF of
corn, wheat and soybean products based on the proposed strategy was reduced by 0.90,
0.96 and 0.99%, respectively, compared to the results of the best machine learning algorithm.

The RCF map of corn, wheat and soybean crops prepared based on the fusion strategy
at the decision level showed that the spatial distribution of the residue varied across the
study area (Figure 6). The RCF of three crops varied between 0 and 62%. The RCF of corn
on farms located in the eastern parts of the study area was less than the western part. Corn
fields located in the northwestern parts of the study area had the highest values of residue.
The lowest values of soybean RCF were in farms located in the central parts of the study
area. The number of wheat fields in the study area was less than corn and soybean fields.
The number of wheat fields with low RCF was lower than wheat fields with high RCF.
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Figure 5. R> and RMSE between the actual and modeled RCF based on the fusion strategy at the
decision level for corn, wheat and soybean crops. ORCF: observed residual cover fraction; MRCF:
modeled residual cover fraction.
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Figure 6. RCF maps for different land crop in the study area.

The mean RCF for corn, wheat and soybean crops in the study area were 18.2%, 19.39%
and 17.7%, respectively (Figure 7). RCF was higher in wheat fields than in corn and soybean
fields. The values of the standard deviation (5d) of the RCF for corn, wheat and soybean
fields in the study area were 8.3%, 10.23% and 7.4%, respectively. The highest and lowest
variation of RCF in this study area was related to wheat and soybean crops. The range of
variation in the RCF amount for corn fields as greater than wheat and corn crops.
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Figure 7. Frequency histogram and statistical parameters of the modeled RCF values of corn, wheat
and soybean crops in the study area based on the proposed strategy.

5. Discussion

An accurate RCF map is crucial in agricultural planning and management [19,22,33].
Unlike terrestrial methods, satellite images have high application and high efficiency
in preparing these maps due to their extensive spatiotemporal coverage and their low
cost [8,29,30,34]. However, the accuracy of different crops’ RCF mapping using satellite data
is dependent on various factors, including (1) dependent variables used in the modeling
process, (2) the quality of calibration and validation data and (3) the algorithms used to
construct the appropriate model between the effective variables and the RCF [8,29,33]. In
this study, the effect of dependent variables and algorithms used in the RCF modeling
process was investigated.

In previous studies, various spectral indices based on satellite images have been
provided to prepare this map [29,33]. In a number of these studies, the efficiencies of these
spectral indices in RCF modeling were evaluated and compared [8,33]. The results showed
a different performance of each of these indicators in different conditions. In this study,
it was also shown that the efficiency of a number of indices, such as NDI5, NDI7, NDTI,
NDVI, STI, DFI and BAI, was higher than other spectral indices when preparing the RCF
map. Even the efficiency of each spectral index in preparing a RCF map for different crops
is different. The results showed that for modeling the RCF of corn, wheat and soybean
crops, BAl efficiency was higher than other indicators. The BAI is designed to minimize the
effect of background soil moisture in the process of RCF estimating. Yue, Tian, Dong and
Xu [8] showed that BAI had a high efficiency in estimating the RCF of wheat and maize
products by reducing the effect of field soil moisture. In general, the spectral behavior of
different crops at different wavelengths and their differences with the background soil and
vegetation in the study area can affect the accuracy of the developed spectral indices. NDVI
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preparing the receipt map and agricultural products are highly sensitive to vegetation
in the study area. As a result, for areas with high vegetation cover, such as forests and
pastures, the RCF values are overestimated.

The focus of previous studies has been on the development of optimal indicators and
methods in RCF modeling and on the use of reflective bands of satellite images, including
Landsat, Sentinel 2, ASTER, etc. [16,30,33,34]. In a limited number of studies, the efficiency
of the information obtained from radar images, including RADARSAT, in RCF modeling
was evaluated [24]. However, in this study, for the first time, the efficiency of Sentinel
1 VV and VH bands in modeling this parameter was evaluated and compared with the
efficiency of spectral indices. The results showed that considering spectral indices and
VV and VH radar bands simultaneously as effective variables increases the accuracy of
RCF modeling based on machine learning algorithms. Due to the simple and free access
to Sentinel 1 images with a high frequency for different agricultural regions around the
world, the use of these images in RCF modeling can be of great practical importance. In
general, the accuracy of multivariate RCF modeling is higher than univariate modeling
using machine learning algorithms. The results of this study showed that the efficiencies of
machine learning algorithms in RCF modeling were different to one another. The efficiency
of RFR algorithm in modeling this parameter was higher than ANN, SVR and PLSR. Ding,
Zhang, Wang, Xie, Wang, Liu and Hall [33] also showed that RFR was highly efficient in
RCF mapping.

Each of these algorithms may have high or low performance under different conditions.
Therefore, providing an integrated model based on the results of these algorithms can be
useful. In various fields, such as land cover classification, improving the spatial resolution of
land surface temperature, etc., the strategy of combining the results of different algorithms
called fusion at the decision level has been used to improve the modeling accuracy of
target variable. In this study, the results of the RCF estimation obtained from different
machine learning algorithms were combined based on the degree of importance of each
algorithm to improve the modeling accuracy of this variable. The results showed that by
implementing the fusion strategy at the decision level, the accuracy of the RCF map was
significantly improved.

6. Conclusions

In this study, to improve the accuracy of RCF modeling and mapping, a new strategy
based on the fusion of different machine learning algorithms’ results at the decision level
was developed. The results showed that by considering both spectral indices based on
reflective bands and radar bands as dependent variables in machine learning algorithms, the
RCF modeling error is reduced by an average of 15%. Among the various machine learning
algorithms in RCF modeling, RF accuracy is higher than other algorithms, including
ANN, SVR and PLSR. The results of the proposed strategy showed that the integration
of the capabilities of different machine learning algorithms increases the accuracy of RCF
modeling. With the fusion of the results of different machine learning algorithms at the
decision level, the accuracy of RCF modeling for corn, wheat and soybean crops compared
to the most optimal algorithm has increased by more than 33, 25 and 34%, respectively. It is
suggested that in future studies, the efficiency of deep learning algorithms in RCF modeling
be evaluated. It could also be very useful to use the proposed algorithm to prepare a more
accurate RCF map in agricultural areas around the world and implement optimal programs
to improve the agricultural situation and conserve soil and environmental quality.
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