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Abstract: The spatiotemporal changes of inundation frequency in the Yellow River Delta (YRD) have
profound influences on sustainable ecological protection and are also closely relevant to economic
development scarcity on the coast of China. However, long-term changes of inundation frequency
have remained poorly characterized. Using the Google Earth Engine (GEE) cloud platform, this
study processed Landsat images to explore inundation frequency changes from 1990 to 2020 in the
YRD. The results indicated that (1) The existing water index combining the classification results
based on the MLM (Maximum Likelihood Method) is suitable for the mapping of the long-term
water bodies, especially in the coastal regions; (2) The inundation frequency showed a clearly uneven
temporal–spatial distribution. The low inundation area (LIA) is mainly intertidal natural wetlands
with a declining trend, while the high inundation area (HIA) is dominated by constructed wetlands
with a rising trend; (3) The use frequency of artificial ponds determines the inundation frequency of
the constructed wetland. The industry development has gradually matured, causing the inundation
frequency from dispersion to concentration in the constructed wetland; and (4) In the natural wetland,
the LIA have increased since 2010 and have accounted for 30% in 2020. The large-scale appearance of
LIA occurs with the emergence of high vegetation abundance. Spartina alterniflora salt marshes with
strong reproductive ability and high abundance lead to the difficulty of wetland flooding and reduce
the inundation frequency.

Keywords: coastal wetland; Landsat image; Google Earth Engine; nature-based solutions

1. Introduction

Coastal wetlands, which lie between the land and the ocean, are threatened from both
human activity and natural hazards, such as climate change, sea level rise, local subsidence,
decreased sediment supply, and harmful invasion [1–4]. Under those impacts, coastal
wetland areas have been losing biodiversity and productivity has been diminishing [5].
The changes of wetland ecological pattern are directly reflected in the inundation frequency,
which is the most important hydrological factor affecting the wetland ecosystem [6,7].
Therefore, it is of great significance to identify the spatial distribution and temporal varia-
tion characteristics of inundation frequency, and then reveal its impact on the distribution
and succession of the wetland ecosystem.

Earlier work on detecting the spatial and temporal changes of flood inundation areas
has been carried out, with some studies focusing on delineating wetlands in order to
map the actual inundation extent, timing, and intensity for them to be able to understand
floodplain vegetation dynamics [8–12], whereas others assessed the damage brought about
by floods in urban areas [13–18]. To achieve their goals, they required a tool that was
more effective and accurate than the collection of in situ field data, because some wetlands
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were large and inaccessible. Recently, the Google Earth Engine (GEE) has enabled much
wider access to satellite image time series, along with the capacity to process and analyze
geospatial data [19–21]. So far, the GEE has been widely used, including mapping of
built-up areas [22,23], crops [24,25], and wetlands [26,27], as well as open-surface water
bodies [28–30]. Therefore, the GEE gives us a new insight to investigate the inundation
dynamics in the river delta area.

The Yellow River Delta (YRD) has the youngest and most complete tidal wetlands in
China [31]. There were a few studies about the losses of tidal wetlands in the YRD. For
example, Fan et al. [32] found that reclamation and manipulation in eroded coasts strongly
constrains the potential for wetland retreat to higher elevations. Other studies paid more
attention to the distribution of natural wetlands and its driving factors [33,34]. However,
due to the changes of wetland pattern, the inundation frequency experienced remarkable
changes in this area, which also need to be explored. In general, few studies paid attention
to the dynamics of inundation for the whole YRD using high-resolution Landsat images.

Thus, the objectives of this study are: (1) proposing a new framework to map inun-
dation frequency of YRD in the GEE platform; (2) applying this method for analyzing the
long-term dynamics of inundation frequency in the wetland ecosystem from 1990 to 2020;
and (3) discussing the response relationship between wetland vegetation and changes of
inundation frequency. Furthermore, the study can promote the development of coastal
wetland protection in the YRD.

2. Materials and Methods
2.1. Study Area

The YRD is located on the northern coast of China adjacent to the Bohai Sea and one
of the largest estuarine deltas in the world [35,36]. The main body of the YRD is located in
Dongying City, Shandong Province [37]. In order to accurately grasp the boundary of the
Delta, this paper takes the administrative boundary of Dongying City as the land boundary
of the YRD (Figure 1a,b).
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Figure 1. (a,b) Geographic location of the Yellow River Delta (YRD). (c) Land use in the YRD, and the
active estuarine area is circled by the blue dotted line.
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Based on the Landsat remote sensing image on 17 July 2020 and combined with the
field survey, we obtained the latest land use in the study area, as shown in Figure 1c.
Coastal wetlands in the Yellow River Delta can be divided into natural wetlands and
constructed wetlands. Natural wetlands are concentrated below the high tide line at a
lower altitude, mainly herbaceous swamps and shrub swamps, of which the dominant
species are Phragmites australis, Suaeda salsa, and Spartina alterniflora. The mid altitude areas
between industrial and agricultural land (farmland and construction land) and the natural
wetlands are constructed wetlands, produced by human reclamation activities, such as
aquaculture ponds and salt ponds. According to statistics, the area of natural wetlands
reaches 1000 km2, accounting for 12.1% of the land area of Dongying, and the area of
constructed wetlands reaches 1300 km2, accounting for 15.7%.

2.2. Data

To acquire more information of the inundation frequency, this study used a dense
time series of Landsat images of the entire YRD, including all available Landsat 5, 7, and
8 images. Complete coverage of the study area is achieved with one tile (path 121, row
34) of the Landsat Worldwide Reference System (WRS). In this study, a total of 2343 of
these images was 306, including 42 from 1989 to 1991, 53 from 1999 to 2001, 51 from 2009 to
2011, and 67 from 2019 to 2021 respectively for the water bodies extracted for 1990, 2000,
2010, and 2020. Detailed statistical information about the Landsat Thematic Mapper (TM),
Enhanced Thematic Mapper (ETM+), and Operational Land Imager (OLI) data used in this
study is given in Table 1.

Table 1. Properties of remote sensing selected used in this study.

Period Sensor Time Image Count

1990 Landsat 5 TM From 1 January 1989 to 31 December 1991 42

2000
Landsat 5 TM From 1 January 1999 to 31 December 2001 53Landsat 7 ETM+

2010
Landsat 5 TM From 1 January 2009 to 31 December 2011 51Landsat 7 ETM+

2020
Landsat 5 TM

From 1 January 2019 to 31 December 2021 67Landsat 7 ETM+
Landsat 8 OLI

Moreover, GF-1/2 images were used to evaluate the accuracy of the extracted surface
water bodies. GF-2 imaged on 1 March 2019 and GF-1 imaged on 16 July 2020 were used
to deploy edge-points for confusion matrix [38]. GF-2 and GF-1 images were radiomet-
rically calibrated and atmospherically corrected by ENVI software, and fused with their
panchromatic bands to generate 1 m and 2 m resolution multispectral images, respectively.

2.3. Methods
2.3.1. Water Body Extraction and Assessment

To extract the water bodies, several imaging systems were employed. The Normalized
Difference Water Index (NDWI) provides a greater accuracy and has been demonstrated
in highly turbid coastal areas. It has been used in the tidal flats of Bohai Rim [39], the
tidal flats along the Jiangsu coast [40], and other intertidal regions across East Asia [41].
Therefore, it was adopted in the study. The formulation of NDWI is expressed in the
equation: NDWI = (G − Ni)/(G + Ni), where “G” represents the green light band and “Ni”
represents the near-infrared band.

The extraction of water bodies was supported by the GEE cloud platform [28,29].
Firstly, for each image, the cloud, cloud shadow, and snow/ice were corrected by Landsat
quality band generated by the Fmask algorithm [42]. Then, the NDWI was applied to
obtain a preliminary mapping of water bodies. Moreover, the Maximum Likelihood
Method (MLM) was used to calibrate and classify the remote sensing image data, and
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two surface types of water and vegetation are obtained. Combining the classification
results of NDWI and MLM, the final water bodies were obtained. The results of the image
classification make up for the defect of image pure end member selection, which has more
advantages in the water land interaction area and is more in line with the actual situation
of the YRD.

Confusion matrix is a commonly used classification accuracy evaluation method, and
it displays the number of correctly classified objects and the wrong categories in the form
of a matrix [43]. In order to express the overall accuracy of the classification results, the
confusion matrix derives two indicators: the overall classification accuracy and kappa
coefficient. The overall classification accuracy refers to the ratio of the number of correctly
classified categories to the number of total categories, which represents the overall classifi-
cation consistency degree in the error matrix, but its stability is affected by the imbalance of
the number of samples in each category. Kappa coefficient refers to the proportion of error
reduction between classification results and completely random classification, indicating
the degree of coincidence between actual categories and classification results.

2.3.2. Change Analysis of Water Bodies

The Water Body Frequency (WBF) of each pixel can be calculated from the following:

WBF =
∑N

i=1 w
N
×100% (1)

where N indicates the number of all the good observations in a specific period, and w is a
binary variable. WBF ranges from 0% to 100%. According to WBF, inundation frequency in
the YRD can be divided into three types: long-term inundation frequency (WBF > 70%),
mid-term inundation frequency (20% < WBF ≤ 70%), and short-term inundation frequency
(WBF ≤ 20%). The areas covered by long-term water bodies are defined as high inundation
areas (HIA), the areas covered by mid-term water bodies are defined as medium inunda-
tion areas (MIA), and the areas covered by short-term water bodies are defined as low
inundation areas (LIA).

2.3.3. Vegetation Distribution Response

Vegetation biomass can be expressed by vegetation distribution area and vegetation
fractional coverage, namely vegetation abundance. Integrated with the changes of vegetation
abundance, which were extracted based on Linear Spectral Mixture Analysis (LSMA) [44], we
further discuss the response of inundation frequency to the vegetation development.

LSMA is a method physically based on image processing, assuming that spectrum
measured by a sensor is a linear combination of the spectra of all components within the
pixel, and can be expressed as:

Ri =
n

∑
k=1

fkRik+ERi (2)

where i = 1, . . . , m (number of spectral bands); k = 1, . . . , n (number of endmembers);
Ri is the spectral reflectance of band i which contains one or more endmembers; fk is
the proportion of endmember k within the pixel; Rik is the known spectral reflectance of
endmember k within the pixel on band i; and ERi is the error for band i. Root mean square
was used to measure the accuracy of solution:

RMS =
√
(∑m

i=1 ERi
2)/m (3)

From Equation (3), we can see that the smaller the RMS is, the smaller the error will be.
Selecting suitable endmembers is the key factor determining the overall accuracy during
the unmixing process. As the spectral information of delta land cover is so complicated,
and atmosphere also influences the spectra in addition, image endmembers can give a
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higher accuracy. Thus, in this study, image endmembers were chosen and derived from the
Landsat TM/ETM+ image, based on geometric vertices.

The plants in YRD wetland are at their most thriving from the end of September to the
beginning of Octobe every year [45]. Considering that the growth of wetland vegetation
is not only affected by water inundation, but also controlled by its own seasonal growth
rhythm, the vegetation abundance value in the corresponding research period is calculated
based on the remote sensing image in October. All in all, the workflow of this study is
shown Figure 2.
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Figure 2. The flowchart of the extraction of surface water bodies and vegetation abundance in the YRD.

3. Results and Discussion
3.1. Accuracy Assessment

The reference samples consisted of two categories, water and non-water, as the focus
of this study is the spatio-temporal dynamics of surface water. In the GF-1/2 images,
1000 test samples, including 505 water samples and 495 non-water samples, were randomly
generated. Based on this, the confusion matrix of accuracy assessment was established.
Table 2 shows the accuracy. The user accuracy and producer accuracy have reached above
95%, and the overall accuracy and kappa coefficient was 96.89% and 0.934, respectively.
The results showed that the detected water products in the YRD had higher accuracy and
then can be used for further analysis.

Table 2. The confusion matrix for accuracy assessment.

Samples
GF-1/2

Total User’s Accuracy
Water Non-Water

Landsat
Water 492 13 505 97.43%

Non-water 18 477 495 96.36%
Total 510 490 1000 Overall accuracy = 96.89

Producer’s accuracy 96.47% 97.35% Kappa coefficient = 0.934
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3.2. Dynamics of Inundation Frequency
3.2.1. The Mapped Inundation Frequency

Based on above-mentioned methods, we produced maps of inundation frequency
in the YRD for the years 1990, 2000, 2010, and 2020. As shown in Figure 3, the blue bar
indicates the area of the inundation area. The darker the color, the higher the inundation
frequency, and the lighter the color, the lower the inundation frequency. All other non-
inundation regions are masked off in white.

Land 2022, 11, 1647 7 of 16 
 

The inundation frequency in the YRD showed a clearly uneven temporal–spatial dis-

tribution. Generally speaking, the LIA is mainly the intertidal natural wetland and the 

impervious surface of urban construction land. In addition to the sea area, the HIA also 

includes rivers, lakes, reservoirs, and constructed wetlands. With the development of ur-

banization and human construction, the areas of low inundation frequency expand from 

coastal low-altitude intertidal zones to inland urban construction areas where the diffu-

sion trends of the HIA appearing in the low-altitude intertidal zone are very obvious. 

 

Figure 3. The spatial extent of different inundation area of (a) 1990, (b) 2000, (c) 2010, and (d) 2020 

in the YRD. 

3.2.2. Area Changes of HIA and MLIA  

The erosion and accretion areas along the YRD coast are important factors causing 

the change of inundation frequency. Newly deposited land develops into coastal wet-

lands, which usually covers intermittent water bodies. The sea water brought by coastal 

erosion invades the land, making the MIA or LIA turn into long-term water bodies. There-

fore, the accretion area can be regarded as the transformation from HIA to MLIA (Com-

bined name of MIA and LIA), and the erosion area can be regarded as reverse transfor-

mation. For more accurate statistics, we analyzed and calculated the change of coastal 

erosion and accretion areas in each period (Figure 4) respectively, as the MLIA to be added 

Figure 3. The spatial extent of different inundation area of (a) 1990, (b) 2000, (c) 2010, and (d) 2020 in
the YRD.

The inundation frequency in the YRD showed a clearly uneven temporal–spatial
distribution. Generally speaking, the LIA is mainly the intertidal natural wetland and
the impervious surface of urban construction land. In addition to the sea area, the HIA
also includes rivers, lakes, reservoirs, and constructed wetlands. With the development of
urbanization and human construction, the areas of low inundation frequency expand from
coastal low-altitude intertidal zones to inland urban construction areas where the diffusion
trends of the HIA appearing in the low-altitude intertidal zone are very obvious.
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3.2.2. Area Changes of HIA and MLIA

The erosion and accretion areas along the YRD coast are important factors causing the
change of inundation frequency. Newly deposited land develops into coastal wetlands,
which usually covers intermittent water bodies. The sea water brought by coastal erosion
invades the land, making the MIA or LIA turn into long-term water bodies. Therefore,
the accretion area can be regarded as the transformation from HIA to MLIA (Combined
name of MIA and LIA), and the erosion area can be regarded as reverse transformation.
For more accurate statistics, we analyzed and calculated the change of coastal erosion and
accretion areas in each period (Figure 4) respectively, as the MLIA to be added and the
HIA to be subtracted, and obtained corrected area, namely MLIAc and HIAc. The shoreline
used to calculate erosion and accretion area was extracted from the Landsat images of the
corresponding year.
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The area change curves of MLIA and HIA are shown in Figure 5a, including before
and after correction. Although their overall change trend has not changed before and after
correction, the period of 2010~2020 needs our focus. During this period, MLIA decreased
slightly before correction, from 5069 km2 to 5034 km2, but changed to an increasing trend
after correction, from 5164 km2 to 5218 km2. This shows that the trend of MLIA in this
period can be attributed to the coastal erosion and accretion.

In terms of the proportion in the total water body area, MLIAc accounted for 55.25%
in 1990. With the passage of time, its proportion experienced decreased continuously, with
40.76% in 2020 (Figure 5c). The proportion of HIAc experienced continues to increase, from
44.75% in 1990 to 59.24% in 2020. An important reason for the opposite trend is the artificial
reclamation in the natural wetland. Reclamation activities converted natural wetlands that
were originally short-term or medium-term inundation areas into constructed wetlands,
such as aquaculture ponds and salt ponds. As shown in Figure 5a,b, the change trend of
the proportion of natural wetlands and constructed wetlands is consistent with that of
MLIAc and HIAc. The feature of these constructed wetlands is the need for continuous
water storage to ensure their efficient economic value. During 2000–2010, the proportion
of natural wetlands decreased, and the proportion of constructed wetlands increased the
most (Figure 5b). Our previous research work also shows that the reclamation activity was
the fastest during this period [32]. This fact explains that the changes of MLIAc and HIAc
were the largest during 2000–2010. In addition, with the implementation of the saline alkali
land transformation project in the YRD, some saline-alkali land has been transformed into
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fishery breeding land [46,47], resulting in the transformation of the non-water area into
long-term water bodies and the significant increase of HIAc.
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Figure 5. The area and proportion change of different inundation frequency and wetland landscapes
in the YRD from 1990 to 2020. (a) The area of MLIA, MLIAc, HIA, and HIAc. (b) The proportion
change of natural and constructed wetlands. (c) The proportion of MLIAc and HIAc.

3.3. Inundation Frequency in Wetland Ecosystem

In this study, the pixel size of the remote sensing image is unified as 30× 30 m2. Therefore,
the number of pixels with different inundation frequencies represents the area with different
inundation frequencies. According to the changes of the number of pixels in natural wetland
and constructed wetland, we can observe the dynamic change characteristics and laws of
wetland. The spatial distribution information of natural wetland and constructed wetland
was interpreted from the Landsat images of the corresponding years. As shown in Figure 6,
each color bar from left to right represents the inundation frequency from 0 to 100%. The
light and dark of the color bar represents the number of pixels. The darker the red represents
the more corresponding pixels, which gradually changes to yellow, light blue and dark blue,
representing the decrease of the number of pixels.
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3.3.1. Constructed Wetland

For its high economic production value, constructed wetlands should be dominated by
high inundation areas, but the inundation frequency of constructed wetlands in the YRD is
in dynamic change. Its overall trend gradually changed from dispersion to high inundation
concentration (Figure 6a). In 1990 and 2000, the inundation frequency distribution span was
in the range of 40~90%, while in 2010 and 2020, the inundation frequency was concentrated
in the range of 70~90%.
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The constructed wetlands in the YRD are mainly coastal aquaculture ponds and salt
drying ponds. The use frequency of these artificial buildings determines the inundation
frequency of the constructed wetlands. Their use frequency is related to the development
and perfection of the industry. The change of aquaculture products per unit area can
spy on the development degree of aquaculture industry. From the change of aquaculture
products per unit area, the development degree of aquaculture industry can be clarified.
According to the data published in the statistical yearbook of Dongying City, the amount of
seawater aquaculture yield perunit area has gradually stabilized at about 3 t/ha after 2005
(Figure 7a), and the amount of freshwater aquaculture yield per unit area has gradually
stabilized at about 4 t/ha after 2009 (Figure 7b). It can be seen that the period of 1990~2010
is the development stage of aquaculture industry in the YRD. During this period, some
aquaculture ponds have been completed and used for water injection, while some are
under construction and not put into use. Naturally, the use frequency is high and low,
resulting in scattered inundation frequency. After 2010, the stable amount of aquaculture
products per unit area means that the aquaculture industry has developed maturely, and
the inundation frequency is relatively concentrated in a small range.
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3.3.2. Natural Wetland

There are three color highlighted areas of natural wetland inundation frequency
(Figure 6b), which are located in 5~15%, 45~60%, and 80~90% respectively. The 45~60%
inundation area accounts for the largest proportion over the years. It shows that the natural
wetland is dominated by mid-term water bodies, with a small area of short- and long-term
water bodies.

From the distribution of inundation frequency over the years, we observe that the
inundation frequency has both a change zone and a stable zone. The stable zone is the MIA,
accounting for 60~80%, which is the core area with the most stable vegetation growth in the
natural wetland ecosystem. The change zone is the relatively small proportion of LIA and
HIA. This too shows the opposite trend, that is, the former shows an upward trend and the
latter shows a downward trend. The wetland inundation frequency map from 1990 to 2000
(Figure 3a–c) shows that the HIA is mainly the salt marsh area near the sea-land boundary.
This area, namely the lower intertidal zone, is strongly affected by tidal inundation [48], so
it has become a long-term water body naturally. From 2010 to 2020, the proportion of HIA
decreased significantly, while the proportion of LIA increased. To 2020, the proportion of
LIA has reached a certain scale, accounting for 30% of the total area of natural wetlands.
The wetland inundation frequency diagram (Figure 3d) reveals a phenomenon worthy of



Land 2022, 11, 1647 10 of 14

focus, that is, the low inundation area expanded in 2020 is mainly located in the lower
intertidal zone near the current estuary, and even a large area of no-water body appears.

3.4. Response to Vegetation Distribution

The reasons for the large-scale appearance of LIA in natural wetlands are either
the change of water volume or are related to the habitat change of natural wetlands.
The amount of water entering and then flooding the wetland is determined by the river
discharge and the change of sea level. We selected the daily average flow of Lijin Station
(118◦19′31.65′′ E, 37◦33′27.74′′ N) on the Yellow River to represent the amount of water
entering the sea or wetland, and selected the multi-year daily average tide level value of
Gudong Station (119◦4′34.54′′ E, 37◦56′31.21′′ N) to represent the sea level, and compared
the changes of the two values in different years. The large discharge processes in 2010
and 2020 shown in the box diagram are significantly more than those in 1990 and 2000
(Figure 8a). The daily average tide level of Gudong Station also shows a stable trend
(Figure 8b). It can be seen that the water volume is not the main reason for the large number
of low inundation areas in natural wetlands.
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In order to explore the impact of wetland habitat changes on the expansion of LIA
in natural wetlands, we compared the relationship between vegetation abundance and
inundation frequency in the active estuarine area (see Figure 1c for the scope). From the
scatter diagram of inundation frequency and vegetation abundance (Figure 9), it can be
seen that there is a certain correlation between them. The higher the inundation frequency,
the lower the corresponding vegetation abundance. In 1990 and 2000, the inundation
frequency was concentrated at 45~60%, and the corresponding vegetation abundance was
between 45~55. In 2010, 5~15% of the low inundation areas began to appear large, and its
corresponding vegetation abundance was more than 60. By 2020, the patches with high
vegetation abundance corresponding to the low inundation frequency continued to expand.

The timing of the phenomenon that low inundation frequency corresponds to high
vegetation abundance is highly consistent with the time of rapid propagation outbreak
of Spartina alterniflora in this area. This fact makes us focus on the Spartina alterniflora salt
marsh. This alien species was successfully introduced in the Yellow River Delta in the
1990s. During the 11 years from 1999 to 2010, the distribution range and area of Spartina
alterniflora increased slowly [49]. After 2011, it began to enter the growth period of rapid
spread, and quickly invaded the local coastal wetland habitat [50]. By 2020, it had a
distribution area of 52.7 km2 in the active estuarine area, accounting for 31% of the total salt
marsh area [51]. Because Spartina alterniflora has strong stress resistance and reproductive
ability, the salt marsh formed by it shows higher vegetation abundance. The sedimentary
environment of salt marsh vegetation is dominated by vegetation mediated. This fact
led the high vegetation abundance area to enhance local deposition and show better



Land 2022, 11, 1647 11 of 14

elevation than areas with a low vegetation abundance area, which causes the inundation
frequency of the former to be less than that of the latter. The analysis results of Spartina
alterniflora, Suaeda salsa, and Phragmites australis also confirmed this phenomenon. The
spatial distributions of the three types of vegetation were obtained by interpreting the
Landsat image in 2020. There is a negative correlation between inundation frequency and
vegetation abundance at each sample point of the three marshes (Figure 10), among which
Spartina alterniflora salt marsh shows the best correlation (R2 = 0.68). The sample with the
highest vegetation abundance is in the Spartina alterniflora salt marsh area, with the lowest
inundation frequency, concentrated in 5~25%. The inundation frequency and vegetation
abundance span of Suaeda salsa are significantly larger than the other two, but they contain
the vast majority of samples, which shows samples with high inundation frequency and
low vegetation abundance.
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From the perspective of vegetation distribution change, we have analyzed the internal
mechanism of inundation frequency change in the natural wetland. For the YRD, the vege-
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tation distribution is only a part of its dynamic changes [52,53], and more potential effects
come from the morphodynamic changes under the action of estuarine hydrodynamics
and the coupling between vegetation [54,55]. In the future, exploring biogeomorphology
and further understanding the evolution mechanism of wetland habitats [56,57], including
inundation changes, is an important way to protect this natural wetland that is constantly
eroded by human activities and alien species.

4. Conclusions

In this study, we proposed a framework for long-term mapping of inundation fre-
quency in the GEE platform. By clustering multiple water bodies within a 3-year period
and using a percentile-based image composite method, we were able to produce maps of
inundation frequency for the years 1990, 2000, 2010, and 2020 in the YRD.

The inundation frequency showed a clearly uneven temporal–spatial distribution in
the YRD. The LIA is mainly the intertidal natural wetland and the urban construction
land with a declining trend, and the HIA includes permanent water bodies (e.g., rivers,
lakes, reservoirs) and constructed wetlands with a rising trend. In addition to coastal
erosion and accretion, which can explain a small part of this phenomenon, this trend is
mainly attributed to the artificial reclamation in the natural wetland. The use frequency
of coastal aquaculture ponds and salt drying ponds determines the inundation frequency
of the constructed wetland. The industry development has gradually matured, resulting
in the inundation frequency from dispersion to concentration in the constructed wetland.
Over the years, the inundation frequency is dominated by 45~60% in the natural wetland,
while the LIA have increased since 2010 and have accounted for 30% of the total area of
natural wetlands in 2020. The large-scale appearance of LIA is not isolated, but occurs with
the emergence of high vegetation abundance. Compared with Suaeda salsa and Phragmites
australis, Spartina alterniflora salt marsh showed the best correlation between vegetation
abundance and inundation frequency. Spartina alterniflora with strong reproductive ability
and high abundance vegetation enhances the local deposition and shows better elevation
than other salt marshes, which eventually leads to the difficulty of wetland flooding and
reduces the inundation frequency.
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