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Abstract: Ecological space (ES), including forest ecological space (FES) and grassland ecological space
(GES) in this study, is the land with natural attributes and the main functions of providing ecological
services, which has a huge potential capacity for carbon sink (CS). The interannual fluctuation
of the CS in ES is severe, which is affected by factors such as precipitation and temperature, but
it is still controversial which is the dominant factor in affecting the fluctuation process of the CS
in ES. To this end, the multi-source remote sensing monitoring data on the fine-grid scale were
collected in this study, including the land use and land cover remote sensing monitoring data, the
data products of moderate-resolution imaging spectroradiometer (including land surface water
index, photosynthetically active radiation, enhanced vegetation index, gross primary productivity),
and meteorological data (including precipitation and temperature). By coupling the vegetation
photosynthesis model and soil respiration model, the CS in CES from 2010 to 2020 was calculated,
and the interannual fluctuation trends and stability of CS in CES were analyzed. Furthermore,
the correlation coefficient and partial correlation coefficient equation between the CS of CES with
precipitation and temperature were constructed to explore the correlation between interannual
fluctuation of CS in CES with meteorological factor, and to determine the dominant position of
precipitation and temperature in affecting the fluctuation process of the CS in CES. The research
results show that the annual average CS of per unit area in CES was 233.78 gC·m−2·a−1, and the
cumulative CS was 11.83 PgC. The GES and FES contributed 6.33 PgC and 5.49 PgC of CS, respectively.
From 2010 to 2020, the CS of CES showed an upward trend and was generally in a relatively stable
state (the mean value of the coefficient of variation was 0.6248). However, the year with severe
fluctuation of was found in this study (from 2013 to 2015), the reason is that the precipitation was too
low in 2014, which indicated that climate change, especially the change of precipitation, played a
important role in the fluctuation of CS in CES. The results of correlation analysis confirmed the above
analysis. The change of CS in CES is highly positively correlated with the change of precipitation (the
correlation coefficient is 0.085), and weakly positively correlation with temperature (the correlation
coefficient was 0.026). The precipitation is the dominant influencing factor, which has a positive
effect on CS in CES. Within a climate environment dominated by precipitation, precipitation and
temperature jointly affect the CS in CES. It should be noted that in some regions with variable climate,
precipitation and temperature had relatively little impact on CS in CES. Their fluctuations may
depend more on the ecosystem’s own ecological services’ regulation ability and their response degree
to changes in atmospheric CO2 concentration.
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1. Introduction

The development of economic globalization in the 21st century has led to the rapid
growth of population and vice versa. This has been followed by a surge in and the
unreasonable utilization of energy resources and land resources, which has led to a sharp
increase in greenhouse gases such as CO2 and frequent global climate change events such
as global warming and extreme climate [1–4]. The problem of how to effectively deal with
climate change, reduce excessive CO2 emissions, and solve the increasingly prominent
climate problem is an important direction of the current scientific research and is also
the goal of the joint efforts of all governments [5–9]. In September 2020, the Chinese
government pledged at the United Nations General Assembly to “strive to achieve a
carbon peak by 2030 and achieve carbon neutrality by 2060”, which means that by 2060,
China’s carbon emissions will be reduced from the current amount—near 10 billion tons
per year—to “nearly zero” emissions [10]. To this end, China has introduced a series of
policies and regulations to fully support the realization of the carbon peak and neutrality
(“dual carbon” goals) [7,8,11]. In general, China will achieve carbon neutrality in two
ways: One is to reduce carbon emissions through renewable energy utilization and the
development of energy-saving technologies [12–15]. The second is to reduce CO2 in the
atmosphere by improving carbon sink (CS) in the ecosystem and developing technologies
of CS [16–18].

Ecological space (ES) is the land with natural attributes and the main functions of
providing ecological services or ecological products [19]. In this study, the ES includes forest
ecological space (FES) and grassland ecological space (GES), which has a huge potential
capacity of CS [20–22]. According to the Global Carbon Project, the global ES net absorbed
31% of the CO2 released by human activities in the same period from 2010 to 2019 [23].
Therefore, improving the quality and stability of ES and optimizing the ES should not only
be limited to optimizing the layout of ES through afforestation but also be reflected in
optimizing the ecological service value of ES and consolidating and upgrading the function
of CS in ES. For China, the carbon peak by 2030 and carbon neutrality by 2060 have become
important long-term strategic goals [10]. Therefore, it is necessary to coordinate the macro
layout of emission reduction, carbon sink increase and carbon sequestration, promote the
low-carbon transformation of industrial structure, improve the increment of CS in ES, and
develop key carbon sequestration technologies, which are important ways and necessary
measures for China to achieve the “dual carbon” goals [24]. Inevitably, the realization of
these technologies and measures must rely on the huge potential reserves of CS in Chinese
ecological space (CES). Therefore, for China, the current primary task is to protect the ES,
establish an accurate accounting method for CS, find out the background amount of CS in
CES, and evaluate the stability and sustainability of CS.

When searching for “ecosystem” and “net ecosystem productivity (NEP), a total of
3197 related articles were published from 2018 to 2022 on Web of Science. The vocabulary
of these articles mainly includes topics in the study of “ecosystem”, “climate change”,
“carbon cycle”, “forests”, “grassland”, etc. This indicates that the carbon cycle and CS
of ES are attracting unprecedented attention with major national demands such as the
construction of ecological civilization and “dual carbon” goals of China. On the global
scale, Wang et al. [25] used multi-scale remote sensing monitoring and inversion data, com-
bined with the atmospheric inversion method, ecosystem carbon cycle model and machine
learning model, to generate a 1◦ × 1◦ global terrestrial carbon flux dataset, discussed the
mechanism of interannual variation in the global CS, and the impact of temperature and
water changes on global terrestrial carbon sink in space the influence of temperature and
water on the global CS in space. they thought that it is necessary to pay more attention to the
differential effects of temperature change on the global terrestrial CS in the Northern Hemi-
sphere to reveal the interannual variation therein. On the national scale, Zhang et al. [26]
used eddy covariance measurement to measure the NEP and gross primary productivity
(GPP) of three typical grasslands in China, and analyzed the characteristics and driving
forces of their interannual dynamic changes. Their research results show that both climatic
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factors such as temperature and precipitation, and ecosystem responses affected the inter-
annual variation in grassland carbon fluxes. On the daily scale, carbon fluxes were mainly
driven by climate factors, while on the annual scale, ecosystem responses weakened the
effects of climate variability on carbon fluxes in the three grasslands. On the regional scale,
Liu et al. [27] used the soil respiration model and the improved Carnegie–Ames–Stanford
approach model, estimated the vegetation NEP in Qinghai Plateau from 2000 to 2015 based
on remote sensing data and analyzed the interannual dynamic variation characteristics
and influencing factors of vegetation NEP. Their research results show that the annual
NEP of Qinghai Plateau was gradually improved and became stable, precipitation and
temperature jointly affect the change of vegetation NEP in Qinghai Plateau. The average
correlation coefficient between vegetation NEP and precipitation in Qinghai Plateau is 0.075,
and precipitation mainly promoted the vegetation NEP; the average correlation coefficient
between vegetation NEP and temperature in Qinghai Plateau is –0.20, and temperature
mainly inhibited vegetation NEP.

Although the above studies provide a wide range of ideas and methods for the
assessment and quality improvement of CS in ES, the following problems remain to be
solved. For the study area and scale, current studies have focused on the global to regional
scale, but they either study the common problems in large regions from a macro perspective
or analyze the characteristics of CS in ES from a small regional perspective. The total area of
Chinese ecological space (CES) is about 5.48 million km2, accounting for 57.13% of the total
area of China [28]. With such a large area proportion, the potential of CS in CES is bound to
be very large, and there are also large interannual fluctuation characteristics and regional
differences. However, there is no research on the accurate accounting of the interannual
CS at the fine-grid scale in CES, and there is a lack of analysis of the spatial and temporal
evolution characteristics of the whole region based on the grid data and the horizontal
comparison of the CS at the provincial scale. As a result, there is still a great debate on
the causes and mechanisms of the sharp interannual fluctuation of CS in ES. Therefore,
a fine-grid scale accounting of CS in CES is necessary and urgently needed, which is of
great significance when assessing CS in CES, exploring its fluctuation and change rules
and formulating precise optimization and quality improvement policies to promote the
realization of the “dual carbon” goals.

For the research content, it is well known that CS in ES are jointly affected by climate
conditions such as temperature and precipitation, and the internal structure and process of
ES are changed due to climate change. The CES spans five temperature zones, resulting
in great differences in climatic conditions in the whole region, and it is these changes that
affect the fluctuations of CS in CES. Although current studies have explored the relationship
between CS in ES and climate change, we are concerned with determining the impact of
temperature and precipitation on CS in CES under a more refined accounting system as
well as finding out which factor plays a dominant role in promoting the differential change
of ES in China. In addition, differences in climate conditions also manifested difference in
the distribution of CES. The FES is mainly located in the southeast of China, and the GES is
mainly located in the northwest of China. How does this distribution affect the overall CS
in CES? How much difference is there in the capacity of CS between FES and GES? How
much CS do they contribute for CES? These questions are also insufficiently addressed in
the current studies.

Based on the above analysis, this study combined the vegetation photosynthesis
model (VPM) and soil respiration model to establish an accounting method of CS on
the grid scale. The model comprehensively considers vegetation photosynthesis, soil
respiration, temperature, and precipitation, and then, the interannual variation trend and
spatio-temporal stability of CS in CES from 2010 to 2020 were analyzed, and the influence
of temperature and precipitation on the spatio-temporal variation of CS in CES from 2010 to
2020 was quantitatively analyzed in this study. The purpose of this study is to generate the
spatial distribution data of CS in CES at the grid scale from 2010 to 2020, to more accurately
understand and assess the status and potential of CS in CES at the fine-grid scale, to analyze
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the fluctuation characteristics of CS in different regions of China, especially the differences
of CS between FES and GES, and to determine the dominant factors of the annual change
of CES. The data and conclusions obtained in this study will be welcomed by government
policy-makers and scholars in the field of CS in ES.

This study is of significance for accurately understanding the potential of CS in CES,
estimating the future changes of CO2 concentration in the atmosphere, and accurately
formulating effective policies to optimize ES quality and improve the capacity of CS
according to the differences in ES.

2. Study Area and Data
2.1. Study Area

The distribution of CES is centralized and extensive. According to the data of China’s
Third National Land Survey, China has a total forest area of 2.84 million km2 and grassland
area of 2.64 million km2 [28], The area proportion of FES and GES in different provinces is
shown in Figure 1. The total area of FES and GES account for 57.13% of the total Chinese
land area, which makes the CES carbon sink a feasible means for China and the world
to cope with climate change and realize sustainable development. In terms of spatial
distribution, the FES and GES are generally separated by the Heihe–Tengchong Line (also
known as Hu Line, is the boundary line proposed by Hu [29] in 1935 to reveal the laws of
population distribution in China [30]. It is highly coincident with 400 mm isohyet of China,
which is the product of China’s climate change and the dividing line of China’s ecological
environment.). The FES is mainly distributed in the east and southeast of China, while the
GES is mainly distributed in the west and northwest of China (Figure 2). This is determined
by the climate environment in China, and the distribution characteristics are caused by the
climate differences between the two sides of the Heihe–Tengchong Line. For FES, the main
resource types include coniferous forests, mixed coniferous and deciduous broad-leaved
forests, broad-leaved forests, and so on [31]. The main resource types of GES are grassland
and meadow [32]. The complex resource types lead to the large interannual fluctuation
in CS in CES. As a result, the CS in CES is more significantly affected by temperature,
precipitation, and other factors, showing obvious differences in spatial distribution. As
mentioned above, the CS in ES is one of the more important factors in helping China to
achieve carbon neutrality by 2060. With the support of policy documents such as The
Fourteenth Five-Year Plan [8] and the Implementation Plan for Carbon Peaking and Carbon
Neutrality Supported by Science and Technology (2022–2030) [11], the accounting of CS in
ES has been elevated to the national level. Establishing a more scientific and reasonable
accounting system to clarify the interannual variation in ecological spatial carbon sink, and
exploring the leading factors affecting this, are very important for accurately predicting
the future change of atmospheric CO2 concentration and formulating targeted policies to
consolidate and improve the capacity of CS. Based on China’s developmental needs, this
study accounted for and analyzed the capacity of CS in CES using refined grid data and
explored the leading effects of temperature and precipitation on CS in CES in order to
provide scientific and technological support for China’s sustainable development and the
realization of the “dual carbon” goals.

2.2. Data Analysis

The boundary data used in this study include China’s administrative boundaries and
the scope of the CES. The vector data of China’s administrative boundaries were obtained
from the National Administrative Division Information Query Platform, which includes the
boundary areas of 34 provinces, municipalities, or special administrative regions in China.
(http://xzqh.mca.gov.cn/map (accessed on 24 September 2022)). It is mainly used to
analyze the differences of CS in different regions at the administrative unit scale. The scope
of CES has been extracted from the multi-period remote sensing monitoring dataset of
China’s land use/cover changes (CNLUCC), obtained by the Resource and Environmental
Science and Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/

http://xzqh.mca.gov.cn/map
https://www.resdc.cn/
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(accessed on 24 September 2022)) [33]. The time of the data is 2020, and the spatial resolution
of the data is 1000 m × 1000 m, including woodland, shrubland, sparse woodland, other
woodland, high-coverage grassland, medium-coverage grassland, low-coverage grassland
and other vegetation-covered areas. The dataset is constructed by human–computer
interactive visual interpretation. Its basic data is the remote sensing data of Landsat MSS,
TM/ETM, and Landsat 8 satellites and supplemented by the charge-coupled device multi-
spectral data of China Environment 1 Satellite. In the process of interpretation, Liu et al. [34]
referred to the existing grass map, vegetation map, and topographic map to ensure the
reliability of the dataset and verified the accuracy of the dataset by randomly sampling
the verification line, which reached 95.66%. In addition, before extracting the boundary
of CES, the boundaries of forest and grassland were compared between this dataset with
the land cover data of Moderate-resolution Imaging Spectroradiometer (MODIS) [35] and
global land 30 [36]. It was found that in China, due to the lack of field verification points,
the land cover data of MODIS and Global 30 were not well evaluated and corrected. There
is a small estimate of the area of ES in China. Therefore, we finally adopted the boundary
of CES extraction from CNLUCC.
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In this study, the land surface water index (LSWI), photosynthetically active radiation
(PAR), enhanced vegetation index (EVI), temperature and precipitation were obtained
by using the Google Earth Engine (GEE), and were used to establish the VPM model to
calculate the gross primary productivity (GPP). The calculation results were corrected by
the GPP product of MYD17A2H Version 6 [37].

The LSWI was obtained based on surface reflectance data from MOD09A1 Version 6
product [38]. The time period of original surface reflectance data is every 8 days, and the
spatial resolution is 500 m × 500 m. The original surface reflectance data was corrected
according to atmospheric conditions such as gas, aerosols, and Rayleigh scattering. Based
on this surface reflectance data, the LSWI dataset was extracted on GEE platform according
to the principle that the absorption of vegetation in near-infrared band is low, but in the
short infrared band it is high.

The photosynthetically active radiation (PAR) is an MCD18A2 Version 6.1 product [39].
The data are generated by the Terra and Aqua MODIS combined surface radiation algorithm.
The original data was generated by using the multi-temporal characteristics of MODIS
data to derive the surface reflectivity. The time period of the data is daily, and the spatial
resolution is 5000 m × 5000 m. The data product has been verified in Phase 1.

The enhanced vegetation index (EVI) is calculated from the bidirectional surface re-
flectance with atmospheric correction provided by MOD13A2 Version 6 product [40]. The
time period of the original data is every 16 days, and the spatial resolution is 1000 m × 1000 m.
The algorithm of this product would select the best available pixel value from all the collec-
tions during the 16-day period, and the standard used is the lowest cloud cover, the lowest
viewing angle, and the highest value of EVI, which guarantees the data quality. At the
same time, this data also shielded water, clouds, heavy aerosols, and cloud shadows and
used blue tape to remove the residual air pollution caused by smoke and sub-pixel thin
clouds. The data product has been verified in phase 3, which has high reliability.

The mean temperature and precipitation datasets were obtained from the National Qinghai–
Tibet Plateau Scientific Data Center (http://data.tpdc.ac.cn/ (accessed on 24 September
2022)) [41,42]. The spatial resolution is 0.0083333◦ × 0.0083333◦ (about 1000 m × 1000 m)
and temporal resolution is monthly. This dataset was generated by downscaling the Delta
spatial downscaling scheme for China based on the global 0.5◦ × 0.5◦ climate dataset
published by Custom Resolution Utility (CRU) (The CRU dataset is one of the most widely
used climate datasets at present and has relatively accurate assessment results in China.
The average mean absolute error (MAE) is 1.598, and the average root mean squared error
(RSME) is 1.759. This dataset that has been updated to the version 4. [43]) and the global
high-resolution climate dataset published by WorldClim. The dataset was generated in
China through the Delta spatial downscaling scheme. In addition, 496 independent meteo-
rological observation point data were used for verification, the verification results show
that the MAE and RMSE of the new dataset are all better than the original dataset; that is,
the reduced dataset has higher precision than the original CRU dataset, and the verification
results can be trusted to have higher reliability for this study [44].

In this study, after all data were acquired, ArcGIS 10.5 software was used for data
preprocessing such as unified coordinate system and spatial resolution. All data coordinates
have been converted to GCS_WGS_1984. Datum is D_WGS_1984. The Prime Meridian is
Greenwich. The Angular Unit is Degree. The spatial resolutions of all the raster data are
uniformly 1000 m × 1000 m.

3. Methods
3.1. Research Framework

In this study, the capacity of CS in CES and its dominant influencing factors were
calculated through the following steps:

Step 1: The estimation of CS in CES. Based on the VPM model and the soil respiration
model, the interannual CS in CES at the grid scale was estimated from 2010 to 2020;

http://data.tpdc.ac.cn/
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Step 2: Analysis of temporal and spatial variation characteristics of CS in CES. Based
on the estimation results of CS in CES at the grid scale, the spatial distribution characteristics
and interannual variation trends of CS in CES from 2010 to 2020 were discussed. The spatial
variation characteristics of CES at the grid scale were analyzed by constructing a linear
regression equation;

Step 3: Stability analysis of CS in CES. By constructing the coefficient of variation
equation of CS in CES, the spatial and temporal variation rates of CS in CES at the grid
scale were calculated, and the stability of CS in CES were studied;

Step 4: Study of the dominant influencing factors in CES. By calculating the correlation
between CS in CES with precipitation and temperature, the influence of temperature and
precipitation over CS in CES capacity was explored.

3.2. The Estimation Model of CS

NEP is the net primary productivity (NPP) minus the photosynthetic products con-
sumed by heterotrophic respiration (soil respiration) [45]. NPP represents the fraction of
organic carbon fixed by vegetation minus its own respiratory consumption. GPP represents
the amount of organic carbon fixed by organisms (mainly green plants) through photo-
synthesis in unit time, which can be estimated by VPM model [46]. NEP is often used to
measure the CS of CES per unit time and area [47]. When NEP > 0, there is a net amount of
carbon storage in the ES. When NEP < 0, it indicates that the ES is mainly carbon source.
Therefore, the calculating of NEP can accurately measure the carbon budget of ES, which is
of great significance to the research of the global carbon cycle and the research of global
climate change under the influence of CO2. In this study, the interannual NEP of CES was
estimated by coupling the VPM model [48] with the soil respiration model [49], and the CS
in CES was finally obtained on the grid.

CS(x, t) = NEP(x, t)× S

NEP(x, t) = NPP(x, t)− RH(x, t)

NPP(x, t) = GPP(x, t)× rNPP/GPP

where CS(x, t), NEP(x, t), NPP(x, t), RH(x, t), and GPP(x, t) indicate carbon sink, net
ecosystem productivity, net primary production, soil microbial respiration, and gross
primary productivity of grid x at time t, respectively. S indicates the area. rNPP/GPP
represents the carbon utilization rate, which refers to the efficiency of the vegetation in ES
to convert the productivity into biomass and store it in ES. With reference to the research of
Chen et al. [50] and Parton et al. [51] the value is 0.55 in this study.

GPP is estimated based on VPM model, and the formula is as follows:

GPP(x, t) = ε× APARchl

where APARchl is the photosynthetic effective radiation absorbed by chlorophyll. ε is the
actual light energy utilization rate.

APARchl = PAR× FPARchl

FPARchl = (EVI − 0.1)× 1.25

where PAR is the photosynthetically active radiation. FPARchl is the proportion of photo-
synthetic effective radiation absorbed by chlorophyll. EVI is the enhanced vegetation index.

ε = εmax × Tscalar ×Wscalar

Tscalar =
(T − Tmin)(T − Tmax)

(T − Tmin)(T − Tmax)−
(
T − Topt

)2
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Wscalar =
1 + LSWI

1 + LSWImax

where εmax is the maximum utilization rate of light energy. The εmax of FES is 1.106 gC/MJ,
and the εmax of GES is 0.608 gC/MJ [52]. Tscalar is temperature stress factor. Wscalar is water
stress factor. T is the temperature. LSWI is the land surface water index.

RH is estimated by the soil respiration model. The formula is as follows:

RH(x, t) = 0.22× (exp(0.0912·T(x, t)) + ln(0.3145·P(x, t) + 1))× 30× 46.5%

where T and P indicate temperature and precipitation, respectively.

3.3. Analysis on Interannual Fluctuation of CS

In this study, the change rates of CS in CES at interannual scales were obtained by
calculating the slope of the regression trend line of each grid [53].

θslope =
n×∑n

i=1 i× CSi −∑n
i=1 i·∑n

i=1 CSi

n×∑n
i=1 i2 − (∑n

i=1 i)2

where n indicates the number of estimated years. This study covered the period from
2010 to 2020; that is, n is 11. CSi is the CS of time i. θslope indicates the trend slope.
θslope > 0 indicates that CS increases gradually over time; otherwise, it decreases gradually.
According to the variation trend of θslope, the CES is divided into five zones: θslope < −5
is the “significant deterioration zone”. −5 ≤ θslope < −1 is the “slight deterioration zone”.
−1 ≤ θslope < 2 is the “basically stable zone”. 2 ≤ θslope < 6 is the “slight improvement
zone”. θslope ≥ 6 is the “significant improvement zone”.

3.4. Stability Analysis of CS

In this study, the coefficient of variation was used to analyze the stability of CS at grid
scale [54].

Cv =
σ

|x|
where Cv, σ and x indicate the coefficient of variation, standard deviation, and average
respectively.

According to the calculation results, the stability of NEP in CES was divided into five
levels: Cv > 5 is the “highest” variation level. 2.5 < Cv ≤ 5 is a “higher” variation level.
1.5 < Cv ≤ 2.5 is the “medium” variation level. 0.5 < Cv ≤ 1.5 is a “lower” variation level.
0 < Cv ≤ 0.5 is the “lowest” variation level.

3.5. Correlation Analysis between Climate Change and CS

In order to further explore the response relationship between the temporal and spatial
variation of CS and climate change, the correlation of CS with temperature and precipitation
was established [27].

Correlation coefficient:

Rxy =
∑n

i=1
[(

xi − xp
)(

yi − yp
)]√

∑n
i=1
(
xi − xp

)2
∑n

i=1 (yi − yp)
2

Partial correlation coefficient:

Rxy·z =
Rxy − RxzRyz√

(1− Rxz)
2(1− Ryz

)2

where xi and xp indicate the CS and the average CS over many years. yi and yp indicate the
value and the average value of influencing factors. rxy·z is the partial correlation coefficient
between x and y after fixed z.
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The t-test method was used to test the significance of the correlation coefficient and the
partial correlation coefficient. At a confidence level of 0.95, the coefficients were classified as
“significant positive correlation”, “significant negative correlation”, “insignificant positive
correlation”, and “insignificant negative correlation”.

4. Results
4.1. Spatial Distribution of CS in CES

Figure 3 shows the multi-year average NEP of CES on the grid from 2010 to 2020.
According to Figure 3, the spatial distribution pattern of the capacity of CS in CES is signifi-
cantly different. In terms of the types of ES, the CS per unit area of FES is high in eastern
and southeastern China, and this advantage is even more pronounced in Heilongjiang,
Jilin, and Liaoning, as well as in the intersecting regions of Shaanxi, Hubei, and Henan. The
GES is located in the western and northwestern regions of China, although their very wide
distribution area contributes greatly to the CS of CES, and the CS per unit area is lower
than that in FES. There are still a large number of areas with negative NEP values, meaning
that they do not have CS but carbon sources. Specifically, the annual average NEP of CES
was 233.78 gC·m−2·a−1, and the annual average CS was 1075.04 TgC/a. Here, the annual
average NEP of FES was 255.12 gC·m−2·a−1, and the annual average CS was 499.51 TgC/a.
The annual average NEP of GES was 212.45 gC·m−2·a−1, and the annual average CS was
537.52 TgC/a.
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Figure 4 shows the annual average NEP of ES in different provinces of China. Ac-
cording to Figure 4, in terms of the capacity for CS per unit area in CES, the province
with the highest annual mean value of NEP was Taiwan, at 317.41 gC·m−2·a−1. Jilin
(309.40 Gc·m−2·a−1) and Chongqing (308.12 Gc·m−2·a−1) followed. These areas are widely
distributed with FES, and the strong capacity of CS in FES makes the annual average NEP in
these areas high. The lowest NEP is found in Ningxia, with an average of 99.97 Gc·m−2·a−1.
Tibet, Inner Mongolia, Xinjiang, Qinghai, and other regions have the lowest average NEP
from 2010 to 2020. The main reason for this is that these areas are dominated by GES (the
area of GES accounts for 87.96% of the total area of ES), and the capacity for CS in GES
is more affected by temperature and precipitation than of FES, resulting in relatively low
annual NEP in these areas. Furthermore, Figure 5 shows that the region with the largest
annual average CS is Inner Mongolia, whose annual average CS from 2010 to 2020 was
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104.37 TgC/a. Tibet (88.10 TgC/a) and Yunnan (75.85 TgC/a) follow. The ES in these re-
gions was huge, especially in Inner Mongolia, where the it covered 880,000 km2, accounting
for 74% of the region’s total land area. It can be concluded that for China, it is not only
necessary to improve the capacity of CS in ES but also necessary to ensure the area of ES
and maintaining the ecological red line, which are of important significance for China’s
construction of ecological civilization and the realization of the “dual carbon” goals.
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Figure 5 shows the cumulative NEP of CES from 2010 to 2020. According to Figure 5,
the cumulative NEP of CES was 2571.58 Gc·m−2, and the cumulative CS was 11.83 PgC.
The cumulative NEP of FES was 2086.18 Gc·m−2, and the cumulative CS was 5.49 PgC.
The cumulative NEP of GES was 2336.99 Gc·m−2, and the cumulative CS was 6.33 PgC.
According to the cumulative CS of CES from 2010 to 2020, carbon source areas and CS areas
were further extracted, as shown in Figure 6. It can be seen from Figure 5 that the CS area
(NEP > 0) from 2010 to 2020 was about 4.45 million km2, accounting for 95.25% of the total
area of CES, with a cumulative NEP and CS of 2643.33 Gc·m−2 and 12.75 PgC, respectively.
The carbon source area (NEP < 0) was about 221,900 km2, accounting for 4.75% of the total
area of CES. The cumulative NEP and CS were −364.12 Gc·m−2 and 0.08 PgC, respectively.
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4.2. Interannual Fluctuation of CS in CES

Figure 7 shows the overall interannual variation trend of NEP and CS in CES from
2010 to 2020. As shown in Figure 7, The annual average NEP and CS of CES fluctuated
significantly but generally showed an upward trend. In 2011, the CS in CES was at the
lowest level, the NEP was 224.80·Gc·m−2·a−1, and the CS was 1049.17 TgC/a. After 2011,
the CS in CES gradually fluctuated and increased. In 2019, the CS in CES reached its highest
value in nearly 11 years; the NEP was 242.36·Gc·m−2·a−1, and the CS was 1131.10 TgC/a.
It is worth noting that the NEP and CS in CES decreased significantly in 2014, and then
recovered to a pre-decline level. The survey found that the average annual precipitation
in the study area was much lower in 2011 and 2014 than in other years. Taking 2014 as
an example, the average annual precipitation in the study area was 386.38 mm, and the
average annual precipitation was 416.19 mm in 2013 (before NEP and CS went down) and
421.32 mm in 2015 (after NEP and CS went down). Therefore, we suspect that the changes
in precipitation play a crucial role in influencing the CS of CES.
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Figure 8 shows the interannual variation rate of CS in CES by grid. As shown in
Figure 8, the interannual variation rate of CS in CES is in the obvious improvement zone
and the slight improvement zone, accounting for 84.14% and 4.35% of the total area of
CES, respectively. The area in the basic stability zone accounts for about 5.47%. The area
of deterioration is less than 10%. The area proportion of the significant deterioration zone
is about 1.86%, and the area proportion of the slight deterioration zone is about 4.18%. It
can be seen that the CS in CES has been significantly improved in recent years, and the
overall increase trend is obvious. Further analysis shows that the obvious improvement
zone and slight improvement zone are mainly located in the southeast of the country, while
the significant improvement zone and slight improvement zone are mainly located in the
northwest of the country. This distribution feature is highly consistent with the boundary
of the 0 ◦C isotherm and 400 mm isohyet in China.
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4.3. Spatio-Temporal Stability of CS in CES

The coefficient of variation was further used to measure the stability and volatility
of CS in CES. The larger the coefficient of variation is, the more frequently the CS in this
region changes, and the more it fluctuates. Figure 9 shows the spatial distribution of the
coefficient of variation of CS in CES. As shown in Figure 9, the mean coefficient of variation
of CS in CES was 0.6248, generally indicating a relatively stable state. Most areas of CES
showed the lowest level of variation, that is, high stability, accounting for about 80.20%
of the total area of CES, mainly in the area east of the isohyet line, and the main type of
ES was FES. The lower variation and medium variation level accounted for 13.76% and
2.68% of the total area of CES, respectively, and were distributed in the west and around
the 400 mm isohyet. The areas with higher and the highest variation level accounted for
1.73% and 1.63% of the total area of CES, respectively. These areas are widely distributed
near the 40 mm isohyet, especially the GES in Inner Mongolia. They are jointly affected
by climate conditions and human grazing activities, and the CS fluctuates significantly.
Therefore, China should focus on these regions to achieve the goal of improving the quality
of CES and capacity of CS in CES.
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4.4. Dominant Factors Analysis of CS in CES

Figure 10 shows the correlation coefficient of CS in CES with temperature and pre-
cipitation. As shown in Figure 10, the CS in CES is highly positively correlated with
precipitation change, with an average correlation coefficient of 0.085. The area showing a
significant positive correlation between CS and precipitation accounted for 53.12% of the
total CES area, and these areas were widely distributed in the whole area of CES. The area
with the most significant negative correlation between CS and precipitation accounted for
25.49%, and these regions were highly coincident with the regions with low spatio-temporal
stability, as described above, and were located around the 400 mm isohyet of China. The
areas showing significant positive correlation between CS and temperature accounted for
41.63% of the total CES area, and the distribution area was relatively scattered, indicating
that the promotional effect of temperature on CS in CES was obviously weaker than that
of precipitation. The areas showing a negative correlation between CS and temperature
accounted for 32.37% of the total area of CES. They were distributed in a concentrated way,
and mostly located in GES. This may be due to the fact that temperature rise leads to an
unsynchronized water and heat demand for vegetation growth in grassland, which inhibits
the CS of grassland to a certain extent [29].

Figure 11 shows the partial correlation coefficient of CS in CES with temperature and
precipitation. The partial correlation analysis between CS and precipitation shows that the
proportion of significant positive correlation area increased to 62.58% of the total area of
CES, while the proportion of insignificant correlation area decreased significantly. This
further verifies the positive role of precipitation in promoting CS in CES. However, the
weak promoting effect of temperature and the large range of consistent effects, to a certain
extent, affect the response process of CS to precipitation. The partial correlation analysis
of CS and temperature shows that the proportions of significant positive correlation and
significant negative correlation areas decreased significantly, accounting for about 36.84%
and 22.53% of the total area of CES, respectively, while the insignificant correlation areas
increased to a large area. In general, precipitation and temperature jointly affect the CS in
CES, but the influence of temperature on CS in CES is weaker than that of precipitation,
with primarily a weak positive correlation, or even a large range of negative correlation.
The influence of precipitation on CS in CES is mainly positive. Under the coupling effect
dominated by precipitation, they jointly promoted the gradual increase in CS in CES.
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5. Discussion

Guided by national needs, this study has established a grid-scale-based accounting
method for carbon sink (CS) in Chinese ecological space (CES), assessed the capacity of
CS in CES and discussed the impact of climate factors on CS in CES. The results show that
the multi-year average CS in CES per unit of time and area was 233.78 Gc·m−2·a−1, and
the multi-year cumulative CS was 11.83 PgC, including 5.49 PgC CS in forest ecological
space (FES) and 6.33 PgC CS in grassland ecological space (GES). It should be noted that, in
terms of per unit area, the capacity of CS in FES is higher than that in FES, with values of
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255.12 Gc·m−2·a−1 and 212.45 Gc·m−2·a−1, respectively. This may be because the capacity
of CS in GES is far more affected by temperature and precipitation than that in FES. At the
same time, there were still many areas where the GES was a carbon source area, but its very
wide distribution area has contributed more to the CS of CES, and the total CS of GES was
greater than the total CS of FES.

The study further determined the carbon source area and CS area of CES, which were
12.75 PgC and −0.08 PgC, respectively. The analysis of the time change trends of CS in CES
shows that the total amount of CS trended upward from 2010 to 2020, but it was extremely
low in 2011 and 2014. The statistical results of precipitation show that the annual average
precipitation in these 2 years was far lower than that in other years, which confirms that
the change in precipitation has a significant impact on the CS of CES. This may have been
caused by the decrease in precipitation, which led to a decrease in CES distribution area
and the weakening of soil respiration, thus causing the decrease in CS. The results of the
temporal and spatial variation trend of CS in CES on the grid scale show that the boundaries
at which the capacity of CS in CES becomes better and worse are highly correlated with the
boundary lines of China’s 0 ◦C isotherm and 400 mm isohyet. Specifically, ’the regions to
the south of the 0 ◦C isotherm and 400 mm isohyet, driven by high precipitation, gradually
evolve towards a better capacity of CS. However, in the area north of the 0 ◦C isotherm and
400 mm isohyet, the capacity of CS fluctuates significantly, and gradually becomes worse
under the influence of climate factors. In addition, this study also analyzed the stability
of CS in CES. The average variation coefficient of CS in CES is 0.6248, which generally
indicates a relatively stable state. However, there are areas with higher variability, and the
highest variability is found near the 400 mm isohyet, which mainly focuses on GES, further
verifying that GES is greatly affected by temperature and precipitation.

In this study, in order to further explore the dominant influencing factors of the
fluctuation of CS in CES, the correlation of CS in CES on precipitation and temperature were
calculated. The results show that CS in CES was positively correlated with precipitation,
with an average correlation coefficient of 0.085. Temperature showed a weak positive
correlation, with an average correlation coefficient of 0.026. When one factor was kept
unchanged, the results of the partial correlation coefficient show that precipitation and
temperature jointly affected the CS of CES within the given climate environment, but
this effect was dominated by precipitation. In addition, there were large areas of overlap
between regions showing a significant negative correlation between CS and temperature
and regions showing significant negative correlation between CS and precipitation in CES.
Under the influence of multi-variable climate conditions, the fluctuation was less affected
by climate conditions and more likely depended on the ecological service regulation ability
of itself and its response degree to the change of atmospheric CO2 concentration [28].

In short, this study has established a grid-scale estimation model for the CS in CES.
Based on the detailed analysis of the spatio-temporal evolution characteristics and stability
of CS in CES, the influence of precipitation and temperature on the change of CS in CES was
discussed, and their dominant positions were analyzed. The ideas and results of this study
provide a new direction in the planning and optimization of “production–living–ecological”
space (PLES) in China, focusing not only on the optimization of land use but also on
improving the quality of the interior space so as to promote the gradual transformation
of PLES in a more coordinated and sustainable direction. At the same time, the study
also provides a direction for the realization of China’s Sustainable Development Goals
(SDGs) and carbon peak and neutrality (“dual carbon” goals). Although studies on the
interannual scale can reveal the correlation of temperature and precipitation changes with
CS to a certain extent, this process ignores the impact of different seasonal changes on CS.
Andrew et al. [55] have shown that the phenological transition in spring and autumn has a
significant positive impact on NEP. The research of Wang et al. [25] also shows that spring
warming promotes CS, while summer warming inhibits CS. These studies all show that
seasonal change has a significant impact on the CS of ecological space (ES), confirming the
results of this study. However, as far as the CS in CES is concerned, the accuracy of their
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research results is lacking at the macro level. Therefore, it is necessary to carry out studies
at the fine-grid scale (1000 m × 1000 m, or more fine), which can help us to more deeply
understand the contribution mechanism of the increasing and decreasing sources of the
CES carbon cycle and support the realization of China’s ”dual carbon” goals with more
accurate data. In addition, the impact of land use change and use pressure through time on
CS in ES, and the CS of finer categories under FES and GES are not considered in this study,
which will also be the focus of future work.

6. Conclusions

Based on a grid-scale accounting method for carbon sink (CS) in Chinese ecological
space (CES), this study estimated the CS of CES from 2010 to 2020,and discussed its spatio-
temporal change characteristics. The results show that the potential of CS in CES is huge.
From 2010 to 2020, the multi-year average CS per unit area was 233.78 Gc·m−2·a−1, and the
cumulative CS was 11.83 PgC. In terms of unit area, the capacity of CS in forest ecological
space (FES) was higher than that of grassland ecological space (GES) (255.12 Gc·m−2·a−1

and 212.45 G Gc·m−2·a−1, respectively). As the area of GES was much larger than that
of GES, the CE contribution of GES was generally larger than that of FES. Some GES was
affected by climate conditions. The research results show that their location belongs to the
carbon source area, with a total area of 22,1900 km2. The focus should be on improving and
optimizing the quality of the interior space so as to realize a transformation from source to
sink. The results of the spatio-temporal change trend and stability of CS in CES show that
the NEP and CS were, for many years, generally increasing, and were in a relatively stable
state (coefficient of variation is 0.6248). The study found that the GES was greatly affected
by environmental factors such as precipitation, which led to a lower level of CS in CES in
years with low annual precipitation, as well as significant differences in the stability of CS
in the ecological space (ES) on the east and west sides of the 400 mm isohyet (taken as the
separation line). Further, the analysis of the correlation of CS in CES with precipitation
and temperature also confirmed the above. The correlation coefficients of precipitation and
temperature with CS in CES were 0.085 and 0.026, respectively. Precipitation plays a major
positive role in promoting CS in CES, while temperature plays a weak role, and may even
inhibit it. The overall fluctuation of CS in CES is the result of their coupling effect within a
climate environment where precipitation is the leading factor. This study provides a new
way of thinking regarding the internal optimization and quality improvement of CES and
provides technical support for decision-making departments to improve the capacity of CS
in ES. The research is of great significance in achieving China’s carbon peak and neutrality
(“dual carbon” goals) and Sustainable Development Goals (SDGs).
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