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Abstract: Carbon stocks in forest ecosystems, when released as a result of forest degradation, con-
tribute to greenhouse gas (GHG) emissions. To quantify and assess the rates of these changes, the
Intergovernmental Panel on Climate Change (IPCC) recommends that the REDD+ mechanism use a
combination of Earth observational data and field inventories. To this end, our study characterized
land-cover changes and forest-cover dynamics in Togo between 1985 and 2020, using the supervised
classification of Landsat 5, 7, and 8 images on the Google Earth Engine platform with the Random
Forest (RF) algorithm. Overall image classification accuracies for all target years ranged from 0.91
to 0.98, with Kappa coefficients ranging between 0.86 and 0.96. Analysis indicated that all land
cover classes, which were identified at the beginning of the study period, have undergone changes at
several levels, with a reduction in forest area from 49.9% of the national territory in 1985, to 23.8%
in 2020. These losses of forest cover have mainly been to agriculture, savannahs, and urbanization.
The annual change in forest cover was estimated at −2.11% per year, with annual deforestation at
422.15 km2 per year, which corresponds to a contraction in forest cover of 0.74% per year over the
35-year period being considered. Ecological Zone IV (mountainous, with dense semi-deciduous
forests) is the one region (of five) that has best conserved its forest area over this period. This study
contributes to the mission of forestry and territorial administration in Togo by providing methods
and historical data regarding land cover that would help to control the factors involved in forest area
reductions, reinforcing the system of measurement, notification, and verification within the REDD+
framework, and ensuring better, long-lasting management of forest ecosystems.

Keywords: land-cover change; REDD+; Google Earth Engine; random forest; landsat; Togo

1. Introduction

Forests contribute greatly to soil conservation and climate change mitigation and
represent one of the simplest and most effective means of establishing or maintaining
carbon sinks [1]. As one of the most important global carbon reservoirs, tropical forests
are home to between half and two-thirds of the Earth’s species [2]. Unfortunately, these
forest carbon stocks are not stable, given that conversion to other land cover is occurring at
an alarming rate despite the increased awareness of climate change [3,4]. Between 2000
and 2005, land-use and land-cover (LULC) changes resulted in forest cover reductions of
0.6% per annum worldwide [5]. Between 2015 and 2020, annual deforestation rates were
estimated at 10 million hectares globally [6]. Such land-cover changes occur mainly as a
result of anthropogenic disturbances, including deforestation, together with the expansion
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of croplands and urban areas [7]. LULC changes, mostly caused by agriculture and defor-
estation, contribute to about one-third of global greenhouse gas (GHG) and worsen the
adverse effects of climate change [8,9]. Faced with these increasingly significant effects of
climate change, ongoing demands for action are becoming more urgent to curb the extent
of deforestation and forest degradation, while enhancing carbon storage through better
accounting of carbon sources and sinks. To this end, the United Nations Framework Con-
vention on Climate Change (UNFCCC) has established the REDD+ (Reducing Emissions
from Deforestation and forest Degradation Plus) mechanism, which is seen as a global
system of centralized forest governance. Aimed primarily at developing nations, REDD+
provides financial compensation for these countries to preserve their forests to reduce
carbon emissions and, thus, mitigate the risks of climate change [10,11].

In order to qualify for financial offsets by implementing REDD+, these countries are
required to establish National Measurement, Reporting, and Verification (MRV) systems
within a national forest monitoring system (NFMS) that must provide national estimates
of changes in forest carbon stocks and emissions every two years. The Intergovernmen-
tal Panel on Climate Change (IPCC) recommends a combination of Earth observation
data and field inventories to estimate forest area, carbon stocks, and changes that follow
disturbance [12]. Regular analysis of forest dynamics and LULC changes using satellite
data could effectively establish the baseline for the MRV reporting requirement in this
context. However, many concerned developing countries are generally faced with a lack of
quantitative data on forest degradation-induced changes and limited technical capabilities
and material capacity to produce such data for GHG emissions monitoring [12].

The aforementioned challenges beset the West African nation of Togo (République
Togolaise), which is the subject of our study, in its quest to meet reporting requirement
needs within the framework of the REDD+ strategy, and to guide strategies for monitoring
the evolution of forest ecosystems and land cover. A few studies based on observational
data have made it possible to monitor changes in land cover in certain parts of the country,
but they generally have a starting and an ending year for a period that occasionally spans
several decades. The coarse temporal frequency of sampling does not make it possible
to detect changes that have been incurred within these periods or to discern which main
factors drive their behavior. Furthermore, the spatial extent of these studies is often very
limited (i.e., river basins, protected zones, and administrative jurisdictions, among others),
whereby changes are not perceived across an entire ecological region or on a national
scale. Land and vegetation cover have been studied, but these changes are mainly in
protected areas [13–16]. Other studies have focused on watersheds [17,18], while some
have been carried out at regional or prefectural scales [19,20]. To a much lesser extent, few
comprehensive studies have spanned several ecological zones [21]. These studies have
generally covered about 1 to 10% of the national territory, and there are regrettably very
few studies quantifying the LULC changes observed over time or analyzing the drivers of
these changes.

The spatial and temporal limitations of these previous studies in detecting land-cover
changes are related to the difficulties in finding sufficient cloud-free satellite images over
large areas. This problem could be overcome by using Synthetic Aperture Radar (SAR)
images which, even when acquired in all atmospheric and solar conditions, allow change
detection analyses [22], but SAR long historical data does not exist in our study area. These
limitations are also related to computational resource problems (large storage capacity and
access to high computing power), together with the labor-intensive nature of processing
these mega-data [23,24]. Furthermore, global-scale mapping projects often use satellite
data with a variable spatial resolution (1 km to 30 m), and generally do not involve local
experts; therefore, these approaches do not meet the standards of accuracy that are sought
at the national level [25]. With the availability of the new geospatial technology of the
Google Earth Engine (GEE), it is now possible to apply very advanced machine-learning
algorithms in an efficient manner [26]. The GEE is a cloud-computing platform with a
JavaScript code editor that integrates a long-time series of satellite imagery, thereby allowing
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the classification of large volumes of data and the production of multi-date land-cover
changes. It should be further noted that relatively few studies in the scientific literature
have focused on the use of these methods to advance operational forest monitoring in MRV
systems [27].

The major challenges to implementing Togo’s national REDD+ strategy are reversing
the process of forest degradation and savannization, while spatially containing agricultural
pressure and constraining urban expansion. These measures should eventually increase
carbon stocks and reduce greenhouse gas emissions [28]. Unfortunately, most studies that
have been conducted in Togo on progressive LULC changes are incomplete, and forest
inventories over the last three decades are very limited. The availability of historical LULC
data at a national scale is necessary to meet the challenge of better understanding the
LULC dynamics and forest developmental trends over time. This study aims to answer the
question of whether the use of multi-temporal images in the GEE would provide a picture
of land-cover changes, particularly forest cover, at the national scale. Its main objective is
to characterize vegetation dynamics over the entire national territory using a long-time
series of Landsat images from 1985 to 2020. More specifically, the study aims to quantify
the evolution of spatiotemporal changes and to analyze their effects on forest cover during
this period.

2. Study Area and Data Used
2.1. Study Area

The study area was Togo (Figure 1A). It is a coastal country in West Africa that is
bordered by Burkina Faso to the north, the Atlantic Ocean to the south, Benin to the east,
and Ghana to the west. It belongs to the Sudano-Guinean zone, which is a climatic zone
that is located south of the Sahara Desert in the continental and coastal areas, which extend
from West Africa to Central Africa. With an area of 56,600 km2, Togo has a population of
7,264,637 inhabitants unequally distributed in the administrative regions with proportions
of 42.16% in Maritime, 22.16% in Plateaux, 9.99% in Centrale, 12.44% in Kara and 13.26%
in Savanes [29]. It experiences a tropical Sudano-Guinean climate with rainfall ranging
from 900 to 1100 mm year−1 in the northern regions (distinct wet and dry seasons), and
from 1000 to 1600 mm year−1 in the southern regions (with four seasons), and an average
temperature of 27 ◦C [30].
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Due to its position in the Dahomey Gap (a remarkable interruption in the extent of
continuous tropical rainforest covering Central to West Africa), Togo has a low forest cover
with a deforestation rate of 0.73% per year for the period from 1990 to 2000 [31]. To ensure
the protection of the country’s forest resources, 14.2% of its territory was classified between
1939 and 1957 as 83 protected areas (classified forests, national parks, and reserves). Yet,
human populations seeking arable land and wood for energy have encroached upon nearly
one-third of these areas [32]. Vegetation formations are composed of the Sudano-Guinean
forest that is located in the mountainous areas of the country, gallery forest along main
rivers, dry forest or dense tree savannah in the northern half, and tree savannah in the
south and center. The landscape variability of these ecosystems led [33] to subdivision of
the country into five ecological zones (Figure 1B).

Ecological zones correspond to distinct ecosystems that are characterized by various
plant formations and topographies. Following an update of their descriptions, these
ecological zones have been summarized in [34] as follows:

• Zone I (or Northern Plains Zone): This zone extends from the Dapaong peneplain to
the southern limit of the Volta Basin, approximately following the Bendjeli-Kpessidè
axis. This area is essentially dominated by agro-ecosystems; however, there are relic
mosaics of savannahs, dry forests, degraded riparian forests, and swamp vegeta-
tion adjacent to the hydrographic network. The main spontaneous ligneous species
found in this zone are Vitellaria paradoxa, Anogeisus leiocarpus, Borassus aethiopum,
Parkia biglobosa, Balanites aegyptiaca, Lannea microcarpa, and Detarium microcarpa. The
natural ecosystems of this area are highly degraded (80%), given the strong propensity
of the inhabitants to practice unsustainable cultivation (68%) and fuel wood exploita-
tion (28%). The zone is heavily disturbed by vegetation fires (40%), which have then
been followed by extensive grazing (28%) [34].

• Zone II (or Northern Mountains Zone): This zone encompasses the Northern Mountain
Range and extends between 8◦ and 10◦ N northeast under the influence of a Sudanian
mountain climate. This zone is dominated by agrosystems, yet dry forests, open
forests, and savannah mosaics can be found. Its main spontaneous ligneous species
are Parkia biglobosa, Vitellaria paradoxa, Nauclea latifolia, Daniellia oliveri, Elaeis guineensis,
Piliostigma thonningii, Terminalia laxiflora, and Isoberlinia doka. In this zone, natural
ecosystems are also degraded (58%) and heavily disturbed by extensive grazing (31%),
followed by vegetation fires (25%), floods (19%), and transhumance (seasonal livestock
relocation, 17%). Activities such as working crop fields (41%), logging (22%), and
grazing (20%) strongly contribute to ecosystem degradation [34].

• Zone III (or Central Plains Zone): This zone occupies the Benin-Togolese plain east
of the Atakora Mountain Chain; it is characterized by a Guinean Lowland climate
and is dominated by a diversity of agrosystems. This matrix of agroforestry parks
combines patches of mosaic savannah, semi-deciduous forest, and degraded ripar-
ian formations. This zone is characterized by the following main spontaneous lig-
neous species: Daniellia oliveri, Parkia biglobosa, Vitellaria paradoxa, Pterocarpus erinaceus,
Anogeissus leiocarpus, and Adansonia digitata. The natural ecosystems of this agro-ecological
zone are 96% degraded. This degradation of ecosystems is the consequence of the ex-
ploitation of wood energy (46%) and cultivation practices (41%) and is not very sus-
tainable. Ecosystems in this zone are strongly disturbed by vegetation fires (31%),
transhumance (31%), and erosion (24%) [34].

• Zone IV (or Southern Zone of the Togo Mountains): This zone corresponds to the southern
portion of the Togo Mountains. It has a sub-equatorial climate with a rainy season. Its
main spontaneous ligneous species are Cola gigantea, Millettia thoningii, Morinda lucida,
Sterculia tragacantha, Antiaris fricana, Holarrhena floribunda, and Margaritaria dioscoidea.
Today, it is the domain par excellence of agroforestry that is interspersed with semi-
deciduous forests and mosaics of Guinean savannah. The natural ecosystems of the
southern zone of the Togo Mountains are highly degraded (70%), given that they are
heavily disturbed by vegetation fires (55%), often followed by extensive grazing (15%),
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and logging (10%). Activities such as working the crop fields (59%) and logging (18%)
contribute to the substantial degradation of ecosystems [34].

• Zone V (or Southern Coastal Zone): This zone corresponds to the country’s coastline
with a sub-equatorial climate with two rainy seasons. The very degraded natural
environment is strongly dominated by agrosystems, with relic mosaics of savannahs,
halophytic or swampy grasslands, and mangroves. The main spontaneous ligneous
species found there are Lonchocarpus sericeus, Parkia biglobosa, Piliostigma thonningii,
Dialium guineense, Holarrhena floribunda, Bridelia ferruginea Millettia thonningii, and
Vitellaria paradoxa. These natural ecosystems are highly degraded (85%) due to cul-
tivation practices (59%) and the unsustainable exploitation of wood energy (18%)
and urbanization (10%). Lands in the Coastal Zone have been heavily disturbed
by vegetation fires (55%), which are often followed by extensive grazing (15%), and
transhumance, woodcutting, and flooding (5%) [34].

The aforementioned descriptions indicate the continuation of high-intensity land degra-
dation that has been observed across most of these zones since the 1990s [35]. Even in Zone IV,
which is known as being the most extensively forested of the ecological zones, deforestation
and forest degradation have been occurring in recent years due to the combined effect of the
advancing agricultural front with slash-and-burn agriculture, wildfires, and logging [36].

2.2. Data Used

Data used in this study included Landsat TM, ETM+ (Enhanced Thematic Mapper
Plus), OLI (Operational Land Imager) satellite imagery, land-cover reference data, and vec-
tor data. The satellite images are from Landsat 5, 7, and 8 sensors with a spatial resolution
of 30 m, which have been archived in the GEE (Table 1). Image selections were made for the
level-1 scenes, which are the best quality images in terms of radiometric consistency and
atmospheric correction [37]. These are surface reflectance data that were accompanied by
meta-data and per-pixel quality information, which was intercalibrated between different
Landsat sensors, and are considered suitable for time-series processing analysis [38].

Table 1. Information on Landsat images that were entered into composites from 1985 to 2020.

Sensors Composite Target
Years

Composite Image
Acquisition Period

Admissible Cloud
Threshold

Number of Images
that Were Concerned

Landsat 5 1985 1983-01-01 to 1986-12-31 10% 57

Landsat 5 1990

1987-10-01 to 1988-03-31
1988-10-01 to 1989-03-31
1989-10-01 to 1990-03-31
1990-10-01 to 1991-03-31
1991-10-01 to 1992-03-31
1992-10-01 to 1992-12-31

10% 49

Landsat 7 2000 1999-04-16 to 2002-12-31 10% 95

Landsat 7 2005 2003-01-01 to 2007-12-31 20% 322

Landsat 8 2015 2013-01-01 to 2017-12-31 10% 265

Landsat 8 2020 2018-01-01 to 2020-12-31 10% 171

Land cover reference data consisted of data that were collected in the field, points that
were sampled on image composites, and high-resolution Google Earth images. During
the field campaign that was conducted from October 2020 to February 2021, we sampled
101 land occupancy points on the ICESat (Ice, Cloud, and land Elevation Satellite) data
footprints, 303 points on the ICESat-2 data footprints, and 114 points elsewhere. These
ICESat and ICESat-2 footprint data are dendrometric data that are intended for further
studies on estimating aboveground biomass. Given that the land occupancies of these sites
were known, they were used with other data as references for training and validation of
classifications that were made during this study. Vector data mainly concerned forest areas,



Land 2022, 11, 1889 6 of 31

administrative regions, ecological zones, and jurisdictional boundaries in Togo. Large-scale
international boundary data for Togo (i.e., the study area) that were also available in the
GEE were used for delineation during the selection of these images and the final mapping.

3. Methodology

The methodological approach of this study involved the acquisition and pre-processing
of satellite data, selection of training and validation data, supervised classification of the
images with the Random Forest (RF) algorithm, evaluation of classification accuracies, and
mapping and analysis of the results. The following flowchart (Figure 2) illustrates the
methodological approach which is summarized in three main points in the description.
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3.1. Selection and Pre-Processing of Satellite Images

Since cloud-free images providing complete coverage of the study area for the target
year were difficult to find, image composition was performed. This consisted of filtering
all images with admissible cloud cover set to a certain threshold (Table 1) to create a
mosaic of images around each target year. Referring to methods that are frequently used in
the literature, several authors had performed image composition based on the temporal
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aggregation of data, applying the calculation of statistical parameters (mean, median, and
maximum or minimum values) on the pixels of a pre-defined image time series [39,40].
Others simply used all available Landsat images in their study area to compose image time
series [41,42]. According to [24], the most popular strategy for selecting input images for
an annual cloud-free composite is using images that have been acquired over three years.
In this study, the annual data composite was targeted from the year 1985, with a five-year
step to better perceive disturbance lapse times. Unfortunately, there were problems of
poor quality and insufficiently filtered images below the set cloud thresholds, together
with gaps in the data covering the study area. Faced with these difficulties, only six image
composites were created, from all available data in the target years, or occasionally, one
or two years on either side of the target years (i.e., 1985, 1990, 2000, 2005, 2015, and 2020).
Image composites were formed by applying a cloud mask QA_PIXEL Bitmask (provided
with the data) to the image collections. Cloudy pixels were maintained (by removing the
mask) when no other non-cloudy pixels were available to replace them from the entire time
period around the target years. These were placed into the cloud class so that the entire
extent of the study area could be considered when facilitating later surface analyses. We
initially composited these images only from the best-available pixels derived from Landsat
data [43]. Nevertheless, given that some parts of the area remained without data under
the constraints of the filters, we calculated the median of all pixels that met these imposed
filters.

Several vegetation indices were also calculated and added as bands to the image
composites to see what improvements they could bring to the classification process. These
were NDVI, NDBI, NDWI, and BSI (Table 2).

Table 2. Formulas of the used vegetation indices.

Acronym Designation Equation References

NDVI Normalized Difference Vegetation
Index

ρNIR−ρR
ρNIR+ρR

[44,45]

NDBI Normalized Difference Built-up Index ρSWIR1−ρNIR
ρSWIR1+ρNIR

[46,47]

NDWI Normalized Difference Water Index ρG−ρNIR
ρG+ρNIR

[48,49]

BSI Bare Soil Index
[
(ρSWIR1+ρR)−(ρNIR+ρB)
(ρSWIR1+ρR)+(ρNIR+ρB)

]
[50,51]

Note: ρR, ρG , ρB, ρNIR, and ρSWIR1 represent the reflectance of red, green, blue, near-infrared, and short-wave
infrared bands, respectively.

Since the study area was characterized by major land-cover classes, including veg-
etation (dense dry forest, open forest, and savannah), crops and fallow land, buildings
and bare soil, and water bodies, we selected these vegetation indices to better characterize
them. NDVI has been widely used over many decades to monitor vegetation dynamics
in terrestrial ecosystems and remains the most popular index that is used for vegetation
assessment [52,53]. Using NIR and SWIR bands, NDWI is commonly and successfully used
in the detection and mapping of surface water bodies [54] and the improvement of terrain
illumination differences and atmospheric effects. Furthermore, the BSI has been proposed
as a more reliable estimator of vegetation status where vegetation covers less than half of
an area [51,55]. Ref. [56] has shown that combining NDVI, NDWI, and NDBI data could
refine several aspects of urban features and appearance while removing cloud-related
noise in image classifications. Based upon these findings, these indices were combined
with the classic bands of Landsat data, given that the former are expected to contribute
to the development of a more nuanced classification scheme [57]. Using the vector data,
the resulting image composites were then clipped with the study area to limit processing
within this area.
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3.2. Selection of Training and Validation Data

For each target year, sample points were selected based on the land cover that was
detected through visual interpretation or by relying upon archival high-resolution Google
Earth data from periods as close as possible to the target years. Reference data was collected
from various sources for the different target years. For the year 2020, we used data collected
in the field as explained in Section 2.2. Reference data based on high-resolution archive
images mainly concerned the years 2000, 2005, and 2015. For the years 1985 and 1990, when
high-resolution images were not available on Google Earth, we relied on samples of land
cover directly collected by visual interpretation on filtered Landsat images of these years.
In addition to these data, the pixel values of the added vegetation indices bands were used
to guide the selection of samples. Therefore, both visual interpretation and consultation of
the pixels that were provided by these additional vegetation indices bands were used to
make these selections.

In applying these sample selection methods to image composites of the target years
1985, 1990, 2000, 2005, 2015, and 2020, a total of 1007, 1102, 1219, 1278, 1372, and 1521 points
were sampled per composite, respectively, to serve as training points. Each group of points
represented the different land cover types. For the six target years, 7499 sample points
were thus collected, some to serve as training samples (70%) during the classification of the
composite images, and the remainder to validate the classification results (30%).

3.3. Image Classification and Evaluation of Accuracy

Following the identification and pre-processing of images, we proceeded to classify
the image composites with the classic Landsat bands, followed by a second classification
with these same bands to which were added the vegetation indices to determine their
effect on the quality of these classifications. As for the pre-processing, image classifications
were performed using JavaScript codes in the GEE. For the selection of the appropriate
classification method, several classification algorithms related to supervised machine
learning have been used in the literature. These include Support Vector Machines (SVM),
Classification and Regression Trees (CART), Stepwise Multiple Linear Regression (SML),
and Random Forests (RF). We determined that supervised machine learning classifiers,
such as Classification and Regression Trees (CART) and Random Forests (RF), were the
most frequently used for this purpose. Furthermore, the use of RF classifiers leads to
greater classification accuracy, even when applied to the analysis of data with higher noise
levels [58–60]. This is confirmed in studies by [61], who evaluated 179 relevant classifiers
from 17 families using 121 datasets. The authors concluded that RF provided the best
classifiers. Therefore, we selected the RF algorithm because it yields results with excellent
accuracies and can work efficiently on large datasets [62].

The different image composites that resulted from filtering according to the previously
mentioned parameters were then classified in the GEE using the RF algorithm. The number
of decision trees that were selected for this algorithm was made with reference to the
literature, which generally indicates that the greater the number of trees, the better the
results. According to [63], it is unclear whether the number of trees should simply be set to
the largest computationally manageable value or whether a smaller number of trees might
be sufficient or provide better results. [64] compared the performance of the RF model with
different numbers of trees on 29 datasets and noted that a forest with 512 trees performs
better than one with 1024 trees. They concluded that forest performance does not always
improve substantially as the number of trees increases beyond a certain level. While it
is commonly thought that tuning hyper-parameters can improve RF performance, [65]
acknowledged that improvements achieved by adding trees decreases as more and more
trees are added. Generally, RF works quite well with default values of hyper-parameters,
and, according to these authors, typical default values for the number of trees for RF are
500 and 1000. Therefore, we chose to use 500 trees in the RF classification algorithm that
was applied to the image composite classifications in this study as this number of trees has
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been widely used in the literature in various fields and mainly in land cover classification
with very good results [60,66–70].

The image classifications for this study were based on seven main land cover classes
(Table 3). The definition of these classes was based on the Yangambi land classification
system [34] appropriate to the West African context which was used during the 2016
National Forest Inventory (IFN) [71]. However, to take into account the limited capacity
of available images to discriminate between different land cover, some classes have been
aggregated into other larger classes.

Table 3. Description of LULC categories used in the classification.

LULC Categories Description

Dense dry forest Dense semi-deciduous forests, plantations, gallery forests, and
agroforests

Open forest Forests with open canopies and wooded savannahs

Savannahs Tree savannahs, shrubby savannahs, and grassy savannahs

Crop and fallow Areas with crops and abandoned agricultural land

Buildings and bare land Infrastructure related to human settlements and commercial
centers, roads, burnt or turned soil, and mining quarry

Water bodies Continental water surfaces (lake, lagoon, water, dam, and river)

Clouds Surface covered by clouds and their shadows

The original spectral bands B1, B2, B3, B4, B5, and B7 from Landsat 5 and 7, together
with B2, B3, B4, B5, B6, and B8 from Landsat 8, were used as inputs to the RF model for
the first classification. For the second classification, an ensemble combining these same
bands with the four aforementioned vegetation indices was used as input, but with the
same training and validation samples.

Based upon random selection in the model, 70% of the collected data were used
as training samples when classifying the composite images, while 30% were used as
validation data for the classification results. The accuracy of the classifications that were
performed on each image composite was then evaluated. For each image composite, we
calculated traditional metrics for evaluating the accuracy of image classification, which
are the producer accuracy (PA), the user accuracy (UA), the overall accuracy (OA), and
Cohen’s kappa coefficient (K) [72].

The different metrics are defined by the following equations [73]:

OA = (1/N)∑r
i=1 nii (1)

PA = nii/nicol (2)

UA = nii/nirow (3)

K = N ∑r
i=1 nii − ∑r

i=1(nicol nirow/N2)− ∑r
i=1 nicol nirow (4)

where nii is the number of correctly classified pixels in a category; N is the total number of
pixels in the confusion matrix; r is the number of classes; nicol is the column total (reference
data); and nirow is the row total (predicted classes).

Ref. [74] defines the main parameters of classification accuracies, such as OA, as the
ratio of the number of correctly classified pixels to the total number of pixels in the class,
and Kappa, which refers to the proportion of error reduction between the considered
classification and a completely random classification. According to [73], OA represents the
ground truth classes that are correctly classified by the analyst (error of omission), while UA
is the percentage of pixels that do not really belong to the reference class but are engaged
in other ground truth classes (error of commission).
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Following these evaluations of the classification accuracies of the image composites,
the results were exported from the GEE for formatting in mapping software. The land-cover
maps were finalized in ArcMap 10.6.1, while land-cover conversion maps were produced
using the semi-automatic classification extension that was recently developed with python
code by [75], and which is usable in QGIS 3.6. The annual rate of forest cover change (r)
and annual deforestation (R), which have been defined by [76], were also calculated for
the periods between the selected target years of this study and between 1985 and 2020 by
applying Equations (5) and (6), as follows:

r =
(

1
(t2 − t1)

)
∗ ln

(
A2

A1

)
∗ 100 (5)

R =
A2 − A1

t2 − t1
(6)

where t1 is year 1, t2 is year 2, A1 is forest area in year 1, and A2 is forest area in year 2.

4. Results
4.1. Assessing the Accuracy of Image Classifications

Seven land cover classes were generated in a supervised manner. Using the RF
algorithm in the GEE, the accuracy of the results was evaluated when vegetation indices
were not used (Table 4) and when indices were used (Table 5). Overall accuracies for image
composites with and without vegetation indices range from 0.91 to 0.98, while Kappa
ranges from 0.86 to 0.96.

Table 4. Accuracies obtained when classifications were made without vegetation indices (PA = Producer
accuracy, UA = user accuracy, OA = overall accuracy, and K = Kappa coefficient).

Image
Compos-

ite
Accuracy Clouds Water

Dense
Dry

Forest

Open
Forest

Crops +
Fallow Savannah Bldg. +

Soil OA K

1985
UA 0.94 1.00 0.95 0.85 0.94 0.98 0.93

0.95 0.93
PA 0.99 1.00 0.95 0.75 0.97 0.97 0.89

1990
UA 1.00 0.99 0.94 0.95 0.92 0.93 0.99

0.96 0.95
PA 1.00 0.99 0.95 0.95 0.95 0.97 0.92

2000
UA 0.94 0.96 0.95 0.97 0.95 0.94 0.97

0.96 0.95
PA 0.97 1.00 0.95 0.94 0.96 0.96 0.92

2005
UA 0.78 0.99 0.50 0.81 0.83 0.97 0.84

0.91 0.86
PA 0.77 1.00 0.95 0.83 0.87 0.92 0.73

2015
UA 1.00 0.95 0.65 0.90 0.95 0.97

0.98 0.96
PA 1.00 0.98 0.83 0.93 0.90 0.95

2020
UA 1.00 0.96 0.29 0.89 0.90 0.98

0.93 0.91
PA 1.00 0.99 0.58 0.87 0.89 0.91
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Table 5. Accuracies obtained when classifications were made with vegetation indices (PA = Producer
accuracy, UA = user accuracy, OA = overall accuracy, and K = Kappa coefficient).

Image
Compos-

ite
Accuracy Clouds Water

Dense
Dry

Forest

Open
Forest

Crops +
Fallow Savannah Bldg. +

Soil OA K

1985
UA 0.92 1.00 1.00 0.84 0.95 0.97 0.91

0.94 0.93
PA 0.99 1.00 0.97 0.76 0.96 0.96 0.89

1990
UA 0.99 0.99 0.95 0.95 0.92 0.93 0.98

0.96 0.95
PA 1.00 0.99 0.95 0.85 0.95 0.96 0.93

2000
UA 0.94 0.97 0.95 0.97 0.95 0.94 0.96

0.96 0.95
PA 0.96 1.00 0.97 0.95 0.95 0.96 0.92

2005
UA 0.78 0.99 0.52 0.82 0.83 0.97 0.84

0.91 0.86
PA 0.75 1.00 0.98 0.82 0.87 0.93 0,73

2015
UA 1.00 0.97 0.62 0.90 0.97 0.96

0.98 0.96
PA 1.00 0.98 0.79 0.92 0.90 0.96

2020
UA 1.00 0.95 0.25 0.90 0.91 0.98

0.93 0.91
PA 1.00 1.00 0.50 0.88 0,89 0.93

After extracting these precision parameters from the confusion matrices of the composite
classification of each target year, one of the target years (1985) without vegetation indices was
presented as an example (Table A1) in Appendix A. Overall accuracies and Kappa coefficients
for the classification of composite images with the original bands was very similar to those of
composites made with the original bands and vegetation indices. Nevertheless, under the null
hypothesis that their slopes do not differ from a 1:1 relationship, linear regressions between
the values of these two types of data yield p-values much less than 0.001 for the OAs and Ks.
This indicates that these values for the original band classifications of the image composites
are significantly different from those including the vegetation indices. In Appendix B, this
same finding of a significant difference was verified between the UA and PA accuracies for all
land cover classes in all image composites (Table A2).

4.2. Distribution of Land Cover

Classifications made on the basis of the different land-cover classes that were identified
made it possible to produce a land-cover map of the entire study area for each of the
composite images, i.e., 1985, 1990, 2000, 2005, 2015, and 2020. The results of classifications
without vegetation indices for the six targeted years were mapped (Figure 3). Regarding
the results of the classifications with vegetation indices, predictions of the water body class
and those of the built-up and bare land (building + soil) class were overestimated. With
regard to the visual interpretation of the image composites before classification and the
land cover contained in the field data, it was noted that these results of classifications with
vegetation indices were not improved compared to the others and reflected the field realities
less. Therefore, we decided to continue the other analyses with only those classifications
without vegetation indices, considering that further, more specific studies involving the
combination of other data could better elucidate the real impacts of these indices on the
image classifications.
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Since the study area is located in tropical regions where the availability of optical
data is very often limited by cloud cover [77], we included this latter as a land-cover class
(but which is not presented in the following analyses). Apart from clouds, results of the
classifications indicate that in 1985, there were four main land-cover classes, viz., dense dry
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forest (10,722.53 km2), open forest (17,547.75 km2), crops and fallow land (11,940.55 km2),
and savannah (14,533.13 km2), which represented 18.92%, 30.97%, 21.07%, and 25.65%,
respectively, of the nation’s land surface. The lowest land-cover percentages were water
bodies (0.09%) and built-up and bare soil (0.50%) classes. A quantitative evaluation of these
land-cover changes and conversions between target years, as well as those between starting
and ending years, was provided (Table 6).

Table 6. Land-cover change and conversions between the target years 1985-2020.

Year LULC Clouds Water
Dense

Dry
Forest

Open
Forest

Crops +
Fallows Savannah Bldg. +

Soil Total

1985
Sup. (km2) 1592.42 50.73 10,722.53 17,547.75 11,940.55 14,533.13 281.79 56,668.90

Sup. (%) 2.81 0.09 18.92 30.97 21.07 25.65 0.50 100.00

1990

Sup. (km2) 1029.65 163.44 9095.25 14,378.62 11,641.92 20,012.41 347.62 56,668.90

Sup. (%) 1.82 0.29 16.05 25.37 20.54 35.31 0,61 100.00

Conv. (km2) −562.77 112.70 −1627.27 −3169.13 −298.63 5479.28 65.83

Conv. (%) −35.30 222.10 -15.20 −18.10 −2.50 37.70 23.40

2000

Sup. (km2) 211.48 256.37 7704.97 10,515.96 14,179.42 23,379.66 421.06 56,668.90

Sup. (%) 0.37 0.45 13.60 18.56 25.02 41.26 0.74 100.00

Conv. (km2) −818.17 92.94 −1390.29 −3862.67 2537.50 3367.25 73.44

Conv. (%) −79.50 56.90 −15.30 −26.90 21.80 16.80 21.10

2005

Sup. (km2) 176.23 332.72 8505.64 10,439.68 19,577.14 16,956.20 681.29 56,668.90

Sup. (%) 0.31 0.59 15.01 18.42 34.55 29.92 1.20 100.00

Conv. (km2) −35.25 76.35 800.67 −76.27 5397.73 −6423.46 260.23

Conv. (%) −16.70 29.8 10.40 −0.70 38.10 −27.50 61.80

2015

Sup. (km2) 0.00 196.67 4186.70 8549.65 20,522.50 22,045.29 1168.10 56,668.90

Sup. (%) 0.00 0.35 7.39 15.09 36.21 38.90 2.06 100.00

Conv. (km2) −176.23 −136.05 −4318.94 −1890.04 945.36 5089.09 486.81

Conv. (%) −100.00 −40.90 −50.80 −18.10 4.80 30.00 71.50

2020

Sup. (km2) 0.00 192.02 3785.27 9709.70 21,677.56 20,146.17 1158.19 56,668.90

Sup. (%) 0.00 0.34 6.68 17.13 38.25 35.55 2.04 100.00

Conv. (km2) 0.00 −4.66 −401.43 1160.05 1155.06 −1899.12 −9.91

Conv. (%) 0.00 −2.37 −9.59 13.57 5.63 −8.61 −0.85

1985–2020

Sup. (km2) 0.00 192.02 3785.27 9709.70 21,677.56 20,146.17 1158.19 56,668.90

Sup. (%) 0.00 0.34 6.68 17.13 38.25 35.55 2.04 100.00

Conv. (km2) −1592.42 141.28 −6937.26 −7838.06 9737.01 5613.04 876.40

Conv. (%) −100.00 278.47 −64.70 −44.67 81.55 38.62 311.01

Note: LULC = Land Use and Land Cover; Conv. = Conversions; Sup. = Area (Superficie); Bldg. + soil = buildings
and bare land.

The area of each land cover has changed slightly for some and greatly for others in
different directions in all the target years during the period considered by this study (Figure 4).
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Figure 4. LULC changes as percentages of the study area.

4.3. Land-Cover Conversions

From the outset, areas of dense dry forest and open forest have decreased from
10,722.53 km2 and 17,547.75 km2 to 7704.97 km2 and 10,515.96 km2, respectively, between
1985 and 2000. During the same period, areas of crops/fallow and savannah have increased
from 11,940.55 km2 and 14,533.13 km2 to 14,179.42 km2 and 23,379.66 km2, respectively.
Thus, we note a 3017.56 km2 contraction for dry dense forests and 7031.80 km2 of open
forests, while crops/fallow lands expanded by 2238.86 km2 and savannahs by 8846.53 km2.
In 2020, these main classes occupied only 3785.27 km2 for dense dry forests and 9709.70 km2

for open forests, but 21,677.56 km2 for crops/fallows and 20,146.17 km2 for savannahs.
These classes represent 6.68%, 17.13%, 38.25%, and 35.55%, respectively, of Togo’s land
surface area.

These changes correspond to a reduction of 64.70% of dense dry forests and 44.67%
of open forests, versus an 81.55% increase in crops/fallows and 38.62% in savannahs
compared to their respective starting areas. The water body area increased considerably
between 1985 and 1990, through the construction of a large hydroelectric dam at Nangbeto
in the southeastern part of the country (1987), together with the creation of other small water
reservoirs. Built-up (buildings) and bare land (bare soil) class areas increased by +300%,
from 281.79 km2 in 1985 to 876.40 km2 in 2020. In short, all land cover has changed during
the period covered by the study, with a decrease in areas of dense dry forest and open
forest, accompanied by a sharp increase in the areas of crops/fallow lands and savannahs.
For illustrative purposes, the conversions from one land cover to another, as well as areas
that were retained and not changed during the 2015 to 2020 period, are shown in Figure 5.
The same types of charts for other time periods (1985 to 1990, 1990 to 2000, and 2000 to
2005) are provided (Figures A1–A3) in Appendix C.
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Figure 5. Land-cover conversions that occurred between 2015 and 2020.

Maps of the changes were then produced (Figure 6) by combining all classes that had
undergone conversions on one hand, and all those that had not undergone conversion
during the periods that were considered on the other. The change map between the 2005
and 2015 classifications was not produced because images of the first four target years have
one more land-cover class (i.e., clouds) than the last two. Therefore, the application of the
change detection algorithm between these two years (with a different number of land-cover
classes) generates several hybrid classes that do not reflect the situation on the ground.
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4.4. Evolution of Forest Cover

When considering only dense dry forest and open forest classes, their respective
starting areas were 10,722.53 km2 and 17,547.75 km2 in 1985, i.e., 18.92% and 30.97% of
the nation’s total territory. Under the effects of land-cover change, they have decreased to
16.05% and 25.37% in 1990, 13.60% and 18.56% in 2000, 15.01% and 18.42% in 2005, 7.39%
and 15.09% in 2015, and to 6.68% and 17.13% in 2020. With an area of 3785.27 km2 for dense
dry forests and 9709.70 km2 for open forests in 2020, forest areas have thus declined by
12.24% for the first category and 13.83% for the second, i.e., a total of 26.07% at the national
level during the 35 years covered by this study. Details on the quantification of these two
land covers in the different ecological zones and their changes over time are indicated in
Appendix D (Table A3).

To facilitate the subsequent quantitative analysis of forest cover change, we have
cumulated the two aforementioned occupancy classes to form the forest class. The trend
line (Figure 7) that summarizes the percentage change in forest area relative to that of the
country illustrates the degree of deforestation and forest degradation over the period that
was considered. Forest area distributions as a land-cover percentage by ecological zone
and by target year were estimated (Figure 8).

When we explored the data at the level of ecological zones to determine how these
forest areas have changed through time, we noted that the deforestation or degradation
of these forests has not proceeded at the same rate in these ecosystems. The evolutions of
forest areas in the different ecological zones were illustrated by the distribution maps of
forest cover of the target years from the period from 1985 to 2020 (Figure 9).

In ecological zones I, II, and III, these forested areas declined almost continuously
from 1985 with a cumulative loss until 2020 of 16.73%, 48.62%, and 28.66%, respectively,
compared to their starting size in these areas. We can, nevertheless, note a forest area
recovery in the 2015 to 2020 period in zone I and between 2000 and 2005 in zone II. Zone IV
(the smallest ecological zone) experienced a sharp decline in forest area (18.35%) between
1985 and 1990, followed by a smaller loss (7.41%) between 1990 and 2000, prior to its
recovery and then contraction (to 1.58%) from 2015 to 2020. Zone V is characterized by a
30.49% loss of forest area between 1985 and 1990, then a rapid increase in area (21.73%)
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for a decade (1990–2000). These areas continued to increase until 2005 and then declined
slightly from 2005 to 2015 before increasing again to 29.2% of the total area in 2020.

The finer-scale examination (zooming) of the maps produced from the results (Figure A4)
in Appendix E shows the development of two towns (Sokodé and Tchamba), as well as the
Abdoulaye Forest Reserve between 1985 and 2020. We noted the expansion over time of both
these towns and agriculture, as well as the appearance of small new settlements at the expense
of wooded areas. As a result of these two main factors, the average annual rate of change
of forest cover to other land cover is about −2.11% between 1985 and 2020, leading to the
disappearance of more than half of the forest areas during this period.

The results of calculating the annual rate of change in forest cover and annual defor-
estation between individual target years, and from the beginning to the end of the study
period are shown (Table 7).

4.5. Land-Cover Changes at the Administrative Regions Scale

Following the analysis of land-cover conversions at the national level and the evolution
of forest cover in the ecological zones, the quantification of all changes that have occurred
at the level of the administrative regions was mapped (Figure 10).
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Figure 8. Forest change by ecological zone.
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Table 7. Evolution of forested areas between 1985 and 2020.

Year Area
(km2)

Forest Area
(% of Togo)

r
(% y−1)

R
(km2 y−1)

1985 28,270.28 49.89

1990 23,473.88 41.42 −3.72 959.28

2000 18,220.92 32.15 −2.53 525.30

2005 18,945.32 33.43 0.78 −144.88

2015 12,736.35 22.48 −3.97 620.90

2020 13,494.97 23.81 1.16 −151.72

1985–2020 −2.11 422.15
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Figure 10. (A) Land-cover change gradient by region from 1985 to 2020; (B) area unchanged; (C) area
with one to two changes; and (D) area with three to four changes.

In all of these administrative regions, original land covers were retained in part during
the period covered by the study (Figure 10A). For those remaining parts where the land
cover was altered, they had undergone at least one, two, three, or four changes between
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1985 and 2020. Visual inspection reveals that parts where little or no change had been
experienced were mostly forested areas (e.g., from the northeast to southwest), urban areas
such as the national capital Lomé, and large bodies of water such as Lake Togo in the
extreme south of the country. The Plateaux administrative region retained the most area
(16.69%) of this land cover that had never changed (Figure 10B). This region is followed
by the Centrale (11.48%), Kara (9.09%), and Maritime (6.12%) regions, while the Savanes
region has the smallest proportion (2.84%) of its area not being affected by change over the
35-year period.

It can be observed that 65.75% of the Savanes region has undergone at least one to two
changes in land cover (Figure 10C). In the Kara, Centrale, and Plateaux regions, slightly
more than half of their respective areas have been similarly affected. In contrast to the
areas by region that have never undergone change, the Maritime region has the largest
percentage of the regional area (53.50%) that has undergone at least three to four land-cover
changes (Figure 10D). For the same locations, land-cover changes have occurred more
rapidly in the Maritime, followed by the Centrale (36.59%), Kara (34.98%), (31.44%), and
Savanes (31.41%) regions.

5. Discussion
5.1. Quality of Results from Composite Image Classifications

During this study, data from Landsat 5, 7, and 8 archives were used to form different
image composites, the supervised classifications of which (under the GEE platform) led
to the production of land cover maps of Togo. Despite difficulties that were encountered
in finding the best quality images, the results that were obtained indicate relatively high
overall accuracies of 91% to 98% for composites with the original bands and 86% to 96%
for those including the vegetation indices. However, the classification results including
vegetation indices tended to overestimate the built-up and bare land (buildings + soil) class
and the water body class. We believe that this is likely due to the simultaneous presence of
NDBI, which captures residential areas and bare soil, the BSI, which is a bare soil-specific
index, and NDWI, which would have difficulty distinguishing water bodies from shadows.
These results are consistent with those of [78] and [24], who found that the NDBI and
modified NDWI yielded image classification results with very low accuracies, despite being
two popular indices in the literature.

The results have shown that OA and Ks for the original composite band classifications
are significantly different from those with vegetation indices, but the latter did not improve
the image classification results as one would have expected. Nevertheless, the spontaneous
decrease in overall accuracy and Ks for the 2005 composite classification (Tables 4 and 5)
could be primarily related to deficiencies in the Landsat 7 data that are observed as fine
stripes on the 2005 map (Figure 9). It should be noted that this sensor suffered hardware
failure in its Scan Line Corrector (SLC) in 2003, resulting in the loss of about 22–25% of the
data in each scene [79]. Additional research could be done on the impact of these indices on
the quality of image classification results and also test new indices such as the Emissivity
Contrast Index (ECI), which have overcome the NDVI limitation concerning its capability
to distinguish bare soil from senescent vegetation [80]. Another thing that could be tested
in future research using RF in order to improve image classification accuracy is to tune
the hyper-parameters of this model to improve its performance [65], instead of using the
default number of trees.

5.2. Land-Cover Changes

The classifications indicate fairly rapid changes in land cover over the 35 years that
are covered by this study and the rapid deforestation or degradation of forest cover, the
area of which fell countrywide from 49.89% in 1985 to 23.81% in 2020. These changes have
favored crops and fallow lands, savannahs, urban areas, and bare soil. In considering the
evolution of forest areas in the different ecological zones, we found that zones II and IV,
which cover 32.55% of the national area, contained 55.10% of the national forest cover in
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2020. This could be explained by the fact that these two zones are mountainous with very
steep relief (Figure 1B), making it very difficult to access forest resources and land in these
zones. Zone IV, in particular, has retained most of its original forest area (72.77%), even
though it is the smallest of the five ecological zones. Furthermore, ecological zones I and III
are areas par excellence in terms of agriculture and housing, as can be seen in our mapped
results. Zone V is home to more than one-third of the country’s population; the relatively
broad extent of forest that was found in this zone would have more to do with poor image
quality than with the actual area.

In Table 7, we note that r is negative and R is positive when there is a contraction of
forested areas, while the opposite occurs when there is an expansion of forested areas. From
these two indicators of forest cover change, we further note that the study area experienced
a substantial loss of forest area between 1985 and 2000 and, again, between 2005 and 2015.
In contrast, only small increases in the area occurred until 2005 and, again, between 2015
and 2020. Current forest area declines are most likely related to agricultural expansion
and rapid human population growth in Togo (2.84% y−1), which exert strong pressures
on natural resources and land. The national REDD+ Togo study of 2018 on the causes and
consequences of deforestation and forest degradation across the nation has confirmed that
agricultural development, including associated management practices (notably, the use
of fire), is the main cause of forest disturbance, ahead of timber exploitation (timber and
energy) and urban expansion. Furthermore, the dynamics of urbanization, which underlies
the country’s population growth, are driving rapid changes in LULC and are contributing
to forest loss, both directly and indirectly [32,33].

Nevertheless, the increase in forest area in 2005 could be attributed simply to the
aforementioned poor quality of Landsat 7 data, which would influence the classifiers
during processing. The 2020 increase could be due to an overestimation by classifiers
of the open forest class at the expense of savannah, but this could also be due to the
results of conservation policies and programs that have been recently implemented by
the government (forest inventory and REDD + strategy). In order to achieve the state’s
objective of increasing forest cover to 30% of the territory by 2030, these factors of forest
degradation would have to be reconsidered in terms of governmental actions at the social,
environmental, and political levels. In addition, the rate of land-cover conservation and
the speed of change that has been quantified at the level of administrative regions indicate
that the Plateaux and Centrale regions are better conserved, while the Maritime region
records the highest frequency of change. The Savanes region is intermediate between
these two extremes; most land cover has only changed once or twice. Yet, it should be
noted that most of the plant formations of the Savanes region were very early transformed
into crops and remained in this class. This explains why this region has a relatively low
rate of land cover change for a given location despite its higher rate of degraded area.
The Maritime region has experienced the most land-cover changes over the period, i.e.,
three to four times. These conditions would thus need to be monitored when making
land-cover planning or development decisions. Given that forest management across
the study area is based more on administrative subdivisions, our results should enable
centralized administrative and forestry authorities to prioritize actions for a much more
balanced environmental governance.

5.3. Advantages and Limitations of the Method Used

For the selection, pre-processing, and classifications of satellite images during this
study, we used the RF algorithm, which can take into account even disparate data to make
a fairly accurate classification of heterogeneous land cover such as in forest-savannah
mosaics [60]. This algorithm has been used on the GEE platform containing a vast catalog
of Earth observational data. It is based upon millions of servers around the world that
allow for the rapid processing and analysis of satellite data over large areas, without the
need to download them [81]. The GEE has a user-friendly programming environment with



Land 2022, 11, 1889 22 of 31

high computational efficiency, which allows less time to be spent on usual satellite data
processing steps that are frequently quite time-consuming when using dedicated software.

A further advantage of this method is the possibility of making enormous savings
in both time and money when conducting regional or national forest inventories. For
example, when considering the results that were obtained for several land-cover classes
through methods requiring very few means that were applied in this study, we note that
they are more or less comparable to those that were obtained from the national forest
inventory (NFI), which had mobilized many more human and financial resources. For the
2015 results (the year closest to the NFI), we obtained 22.48% for the forest class, 38.90% for
the savannah class, and 38.27% for the grouping of agriculture and infrastructure classes
versus 24.24%, 34.86%, and 40.90, respectively, for the 2016 NFI [71]. With this method of
processing satellite data in the GEE, once the processing code is completed, it can be easily
optimized and applied for the long-term monitoring of LULC changes when incorporating
newly acquired images [62].

However, it must be noted that this processing power is not available on demand
for all types of operations, given that a quota is allocated to each user and, thus, the
GEE system sometimes limits or aborts certain code executions that are computationally
demanding [26]. Furthermore, despite having millions of images, some areas have long
periods when cloud-free data are absent, especially in tropical environments. This is a
particularly lamentable state of affairs, given that research in this region has calculated
the probability of acquiring Landsat MSS or Landsat TM images with <70% cloud cover
in a year to be only 26% [79]. In these cases, the GEE permits the selection of pixels from
multiple images exhibiting large temporal differences in acquisition dates to form the
composite, as was the case in our study. Unfortunately, such selections do not allow for
estimates of seasonal differences or phenologies, thereby introducing potential classification
errors. A further limitation is that during satellite data processing, code execution errors
that are encountered can be difficult to debug, given that scripts in the GEE run in the
Google Cloud. As confirmed by [62], errors also can occur in the JavaScript code, either on
the client side, which is manageable with some effort, or during server-side execution, a
situation that can be very difficult to manage.

6. Conclusions

The LULC changes that are attributable to anthropogenic disturbance are leading
to reductions in forest cover, contributing significantly to global carbon emissions. In
this study, we employed the median satellite image composition method with historical
Landsat sensor data in the GEE to quantify changes across the nation of Togo between
1985 and 2020 using the Random Forest algorithm. Our results indicate that all land-cover
classes identified from the 1985 composite image were affected to varying degrees by these
land-cover changes. Furthermore, forests lost about 52.28% of their original area from
1985 to 2020 through the expansion of crop and fallow lands, savannah, and urbanization.
Ecological zones I, III, and V cover more than two-thirds of the total area of the country
and contain less than half of the forest cover. The changes are mainly reflected by a strong
increase in agricultural activity, deforestation through timber exploitation, and the urban
expansion of a burgeoning human population. Easier accessibility of the areas and a
greater human presence favor all of these activities. In contrast, ecological zones II and
IV, which cover less than one-third of the total area of the country, contain more than 55%
of the national forest cover in 2020. These are very mountainous areas, the steep slopes
of which limit the adverse effects of human activities and, consequently, their effects on
natural resources.

The methods that were applied in this study and the results that were obtained
could help forestry and territorial administrators to better understand the factors that are
involved in land-cover change and forest area reduction. They could also help the national
coordination of REDD+ in Togo to better operate or to boost the measurement, reporting,
and verification system, as part of the nation’s forest monitoring system. For similar future
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studies in Togo, more reliable satellite data (Landsat 8 and 9) with lower cloud cover or
higher spatial resolution (Sentinel 2 and greater) could be used when sufficient time-series
images become available on the GEE platform over the study area, as well as other countries
in Sub-Saharan Africa.
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Appendix A

Table A1. Confusion matrix for the target year 1985 without vegetation indices. Perfectly predicted
values for each category are highlighted in bold along the diagonal.

Clouds Water Dense Dry
Forest Open Forest Crops +

Fallows Savannah Bldg. + Soil Producer
Accuracy

Clouds 25,986 0 0 0 0 147 0 0.99

Water 0 8805 1 0 0 14 2 1.00

Dense dry forest 0 0 129,893 3690 249 138 0 0.97

Open forest 0 0 7144 26,071 1390 138 0 0.75

Crops + fallows 171 0 167 570 123,841 893 2649 0.97

Savannah 1053 0 30 174 1715 117,812 818 0.97

Bldg. + Soil 297 0 72 111 3974 1523 46,131 0.89

User Accuracy 0.94 1.00 0.95 0.85 0.94 0.98 0.93

Overall Accuracy 0.95

Kappa 0.93

Appendix B

Table A2. Comparison of accuracies by land-cover class; with vs. without vegetation indices.

Classes Accuracy p-Value

Water
UA 0.000

PA 0.001

Dense dry forest
UA 0.000

PA 0.001
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Table A2. Cont.

Classes Accuracy p-Value

Open forest
UA 0.000

PA 0.001

Crops + fallows
UA 0.000

PA 0.000

Savannah
UA 0.001

PA 0.000

Bldg. + soil
UA 0.000

PA 0.000

Appendix C

Conversion of Land-Cover Classes
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Figure A1. Land-cover conversions between 1985 and 1990.
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Figure A2. Land-cover conversions between 1990 and 2000.
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Appendix D

Table A3. Changes in forest-covered areas.

Years Classes Zone I Zone II Zone III Zone IV Zone V Total

1985

Dense dry forest 878.81 3977.56 1491.35 4192.75 182,06 10,722.53

Open forest 3039.83 5253.77 5634.57 1392.29 2227,29 17,547.75

Forest areas 3918.64 9231.32 7125.92 5585.04 2409.35 28,270.28

%/Country 6.91 16.29 12.57 9.86 4.25 49.89

%/Zone 26.47 76.60 44.17 87.37 33.07

1990

Dense dry forest 542.65 3054.40 1562.54 3752.49 183.18 9095.25

Open forest 3599.47 6522.88 3592.65 659.38 4.25 14,378.62

Forest areas 4142.12 9577.28 5155.19 4411.86 187.43 23,473.88

%/Country 7.31 16.90 9.10 7.79 0.33 41.42

%/Zone 27.98 79.47 31.95 69.02 2.57

2000

Dense dry forest 370.09 2463.65 1407.70 3316.65 146.87 7704.97

Open forest 1989.39 3313.71 2967.11 621.64 1624.10 10515.96

Forest areas 2359.48 5777.36 4374.81 3938.29 1770.98 18,220.92

%/Country 4.16 10.19 7.72 6.95 3.13 32.15

%/Zone 15.94 47.94 27.12 61.61 24.30

2005

Dense dry forest 392.21 3148.15 1577.43 3228.93 158.92 8505.64

Open forest 1714.80 3996.35 2206.50 770.48 1751.55 10,439.68

Forest areas 2107.01 7144.50 3783.93 3999.41 1910.47 18,945.32

%/Country 3.72 12.61 6.68 7.06 3.37 33.43

%/Zone 14.23 59.28 23.45 62.57 26.22

2015

Dense dry forest 145.76 1025.65 752.59 2136.58 126.13 4186.70

Open forest 463.68 2578.21 1957.75 2028.74 1521.27 8549.65

Forest areas 609.44 3603.86 2710.34 4165.31 1647.40 12,736.35

%/Country 1.08 6.36 4.78 7.35 2.91 22.48

%/Zone 4.12 29.90 16.80 65.16 22.61

2020

Dense dry forest 128.64 975.70 365.86 2076.96 238.12 3785.27

Open forest 1313.22 2395.81 2136.68 1987.47 1876.52 9709.70

Forest areas 1441.85 3371.51 2502.53 4064.43 2114.63 13,494.97

%/Country 2.54 5.95 4.42 7.17 3.73 23.81

%/Zone 9.74 27.98 15.51 63.59 29.02

Ecological Zone areas 14,805.30 12,051.40 16,133.60 6392.10 7286.50 56,668.90



Land 2022, 11, 1889 28 of 31

Appendix E
Land 2022, 11, x FOR PEER REVIEW 31 of 35 
 

 

Figure A4. Enlarged (“zoomed”) insets in East-Central Togo for all target years. 

References 

1. Nunes, L.J.R.; Meireles, C.I.R.; Pinto Gomes, C.J.; Almeida Ribeiro, N.M.C. Forest Contribution to Climate Change Mitigation: 

Management Oriented to Carbon Capture and Storage. Climate 2020, 8, 21. https://doi.org/10.3390/cli8020021. 

2. Cardil, A.; de-Miguel, S.; Silva, C.A.; Reich, P.B.; Calkin, D.; Brancalion, P.H.S.; Vibrans, A.C.; Gamarra, J.G.P.; Zhou, M.; Pi-

janowski, B.C.; et al. Recent Deforestation Drove the Spike in Amazonian Fires. Environ. Res. Lett. 2020, 15, 121003. 

https://doi.org/10.1088/1748-9326/abcac7. 

3. Laumonier, Y.; Edin, A.; Kanninen, M.; Munandar, A.W. Landscape-Scale Variation in the Structure and Biomass of the Hill 

Dipterocarp Forest of Sumatra: Implications for Carbon Stock Assessments. For. Ecol. Manag. 2010, 259, 505–513. 

4. Gogoi, A.; Ahirwal, J.; Sahoo, U.K. Plant Biodiversity and Carbon Sequestration Potential of the Planted Forest in Brahmaputra 

Flood Plains. J. Environ. Manag. 2021, 280, 111671. https://doi.org/10.1016/j.jenvman.2020.111671. 

                           

                           

                           

                            

 

Figure A4. Enlarged (“zoomed”) insets in East-Central Togo for all target years.

References
1. Nunes, L.J.R.; Meireles, C.I.R.; Pinto Gomes, C.J.; Almeida Ribeiro, N.M.C. Forest Contribution to Climate Change Mitigation:

Management Oriented to Carbon Capture and Storage. Climate 2020, 8, 21. [CrossRef]
2. Cardil, A.; de-Miguel, S.; Silva, C.A.; Reich, P.B.; Calkin, D.; Brancalion, P.H.S.; Vibrans, A.C.; Gamarra, J.G.P.; Zhou, M.;

Pijanowski, B.C.; et al. Recent Deforestation Drove the Spike in Amazonian Fires. Environ. Res. Lett. 2020, 15, 121003. [CrossRef]
3. Laumonier, Y.; Edin, A.; Kanninen, M.; Munandar, A.W. Landscape-Scale Variation in the Structure and Biomass of the Hill

Dipterocarp Forest of Sumatra: Implications for Carbon Stock Assessments. For. Ecol. Manag. 2010, 259, 505–513. [CrossRef]

http://doi.org/10.3390/cli8020021
http://doi.org/10.1088/1748-9326/abcac7
http://doi.org/10.1016/j.foreco.2009.11.007


Land 2022, 11, 1889 29 of 31

4. Gogoi, A.; Ahirwal, J.; Sahoo, U.K. Plant Biodiversity and Carbon Sequestration Potential of the Planted Forest in Brahmaputra
Flood Plains. J. Environ. Manag. 2021, 280, 111671. [CrossRef]

5. Kundu, K.; Halder, P.; Mandal, J.K. Forest Cover Change Analysis in Sundarban Delta Using Remote Sensing Data and GIS.
In Intelligent Computing Paradigm: Recent Trends; Mandal, J.K., Sinha, D., Eds.; Studies in Computational Intelligence; Springer
Singapore: Singapore, 2020; pp. 85–101, ISBN 9789811373343.

6. FAO and UNEP. The State of the World’s Forests 2020: Forests, Biodiversity and People; The State of the World’s Forests (SOFO); FAO
and UNEP: Rome, Italy, 2020; ISBN 978-92-5-132419-6.

7. Chen, Y.-Y.; Huang, W.; Wang, W.-H.; Juang, J.-Y.; Hong, J.-S.; Kato, T.; Luyssaert, S. Reconstructing Taiwan’s Land Cover Changes
between 1904 and 2015 from Historical Maps and Satellite Images. Sci. Rep. 2019, 9, 12. [CrossRef]

8. Deo, R.K.; Russell, M.B.; Domke, G.M.; Andersen, H.-E.; Cohen, W.B.; Woodall, C.W. Evaluating Site-Specific and Generic Spatial
Models of Aboveground Forest Biomass Based on Landsat Time-Series and LiDAR Strip Samples in the Eastern USA. Remote
Sens. 2017, 9, 598. [CrossRef]

9. Olorunfemi, I.E.; Olufayo, A.A.; Fasinmirin, J.T.; Komolafe, A.A. Dynamics of Land Use Land Cover and Its Impact on Carbon
Stocks in Sub-Saharan Africa: An Overview. Environ. Dev. Sustain. 2021, 24, 40–76. [CrossRef]

10. Angelsen, A.; Brockhaus, M.; Sunderlin, W.D.; Verchot, L.V. Analyse de la REDD+ Les Enjeux et les Choix; CIFOR: India Nishiya,
Momono, 2013; ISBN 978-602-1504-00-0.

11. Minh, D.H.T.; Ndikumana, E.; Vieilledent, G.; McKey, D.; Baghdadi, N. Potential Value of Combining ALOS PALSAR and
Landsat-Derived Tree Cover Data for Forest Biomass Retrieval in Madagascar. Remote Sens. Environ. 2018, 213, 206–214. [CrossRef]

12. Mitchell, A.L.; Rosenqvist, A.; Mora, B. Current Remote Sensing Approaches to Monitoring Forest Degradation in Support of
Countries Measurement, Reporting and Verification (MRV) Systems for REDD+. Carbon Balance Manag. 2017, 12, 9. [CrossRef]

13. Folega, F.; Zhang, C.; Zhao, X.; Wala, K.; Batawila, K.; Huang, H.; Dourma, M.; Akpagana, K. Satellite Monitoring of Land-Use
and Land-Cover Changes in Northern Togo Protected Areas. J. For. Res. 2014, 25, 385–392. [CrossRef]

14. Akakpo, K.M.; Quensière, J.; Gadal, S.; Kossi, A.; Kokou, K. Caractérisation et Dynamique Spatiale de La Couverture Végétale
Dans Les Aires Protégées Du Togo: Étude Par Télédétection Satellitaire de La Forêt Classée de Missahoé Dans La Région Des
Plateaux. Rev. Int. De Géomatique Aménagement Et Gest. Des Ressour. 2017, 1, 181–194.

15. Atsri, H.K.; Konko, Y.; Cuni-Sanchez, A.; Abotsi, K.E.; Kokou, K. Changes in the West African Forest-Savanna Mosaic, Insights
from Central Togo. PLoS ONE 2018, 13, e020399. [CrossRef]

16. Polo-Akpisso, A.; Wala, K.; Soulemane, O.; Folega, F.; Akpagana, K.; Tano, Y. Assessment of Habitat Change Processes within the
Oti-Keran-Mandouri Network of Protected Areas in Togo (West Africa) from 1987 to 2013 Using Decision Tree Analysis. Science
2020, 2, 1. [CrossRef]

17. Badjana, H.M.; Helmschrot, J.; Selsam, P.; Wala, K.; Flügel, W.-A.; Afouda, A.; Akpagana, K. Land Cover Changes Assessment
Using Object-Based Image Analysis in the Binah River Watershed (Togo and Benin). Earth Space Sci. 2015, 2, 403–416. [CrossRef]

18. Diwediga, B.; Agodzo, S.; Wala, K.; Le, Q.B. Assessment of Multifunctional Landscapes Dynamics in the Mountainous Basin of
the Mo River (Togo, West Africa). J. Geogr. Sci. 2017, 27, 579–605. [CrossRef]

19. Koumoi, Z.; Boukpessi, T.; Kpedenou, K.D. Principaux Facteurs Explicatifs de La Dynamique de l’occupation Du Sol Dans Le
Centre-Togo: Apport Des SIG et Des Statistiques Spatiales. Rev. Ivoir. Géographie Savanes 2017, 3, 252–273.

20. Koglo, Y.S.; Gaiser, T.; Agyare, W.A.; Sogbedji, J.M.; Kouami, K. Implications of Some Major Human-Induced Activities on Forest
Cover Using Extended Change Matrix Quantity and Intensity Analysis Based on Historical Landsat Data from the Kloto District,
Togo. Ecol. Indic. 2019, 96, 628–634. [CrossRef]

21. Folega, F.; Woegan, Y.A.; Marra, D.; Wala, K.; Batawila, K.; Seburanga, J.L.; Zhang, C.; Peng, D.; Zhao, X.; Akpagana, K. Long Term
Evaluation of Green Vegetation Cover Dynamic in the Atacora Mountain Chain (Togo) and Its Relation to Carbon Sequestration
in West Africa. J. Mt. Sci. 2015, 12, 921–934. [CrossRef]

22. Mastro, P.; Masiello, G.; Serio, C.; Pepe, A. Change Detection Techniques with Synthetic Aperture Radar Images: Experiments
with Random Forests and Sentinel-1 Observations. Remote Sens. 2022, 14, 3323. [CrossRef]

23. Mahdianpari, M.; Jafarzadeh, H.; Granger, J.E.; Mohammadimanesh, F.; Brisco, B.; Salehi, B.; Homayouni, S.; Weng, Q. A
Large-Scale Change Monitoring of Wetlands Using Time Series Landsat Imagery on Google Earth Engine: A Case Study in
Newfoundland. GIScience Remote Sens. 2020, 57, 1102–1124. [CrossRef]

24. Phan, T.N.; Kuch, V.; Lehnert, L.W. Land Cover Classification Using Google Earth Engine and Random Forest Classifier—The
Role of Image Composition. Remote Sens. 2020, 12, 2411. [CrossRef]

25. Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.;
Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat
Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [CrossRef]

26. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial
Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

27. Arévalo, P.; Olofsson, P.; Woodcock, C.E. Continuous Monitoring of Land Change Activities and Post-Disturbance Dynamics
from Landsat Time Series: A Test Methodology for REDD+ Reporting. Remote Sens. Environ. 2020, 238, 111051. [CrossRef]

28. REDD+ Togo. Plan D’actions de Mise En Oeuvre de La Stratégie Nationale de Réduction Des Émissions Dues à La Déforestation et à La
Dégradation Des Forêts (REDD+) 2020–2029; Coordination Nationale REDD+ du Togo: Lomé, Togo, 2020.

http://doi.org/10.1016/j.jenvman.2020.111671
http://doi.org/10.1038/s41598-019-40063-1
http://doi.org/10.3390/rs9060598
http://doi.org/10.1007/s10668-021-01484-z
http://doi.org/10.1016/j.rse.2018.04.056
http://doi.org/10.1186/s13021-017-0078-9
http://doi.org/10.1007/s11676-014-0466-x
http://doi.org/10.1371/journal.pone.0203999
http://doi.org/10.3390/sci2010001
http://doi.org/10.1002/2014EA000083
http://doi.org/10.1007/s11442-017-1394-4
http://doi.org/10.1016/j.ecolind.2018.09.042
http://doi.org/10.1007/s11629-013-2973-1
http://doi.org/10.3390/rs14143323
http://doi.org/10.1080/15481603.2020.1846948
http://doi.org/10.3390/rs12152411
http://doi.org/10.3390/rs12172735
http://doi.org/10.1016/j.rse.2017.06.031
http://doi.org/10.1016/j.rse.2019.01.013


Land 2022, 11, 1889 30 of 31

29. INSEED et AFRISTAT. Enquête Régionale Intégrée Sur l’Emploi et Le Secteur Informel; 2017; Institut National de la Statistique et des
Etudes Economiques et Démographiques et AFRISTAT: Lomé, Togo; Bamako, Mali, 2019; p. 73.

30. PANA. Plan d’Action National d’Adaptation Au Changement Climatique; Ministère de l’Environnement et des Ressources Forestières
(MERF): Lomé, Togo, 2009; p. 113.

31. REDD+ Togo. Définition et Calcul Du Taux National de Défloration Annuel Du Togo Entre 1990 et 2015; Coordination Nationale
REDD+ du Togo: Lomé, Togo, 2018.

32. REDD+ Togo. Étude Sur Les Causes et Conséquences de La Déforestation et La Dégradation Des Forets Au Togo et Identification Des Axes
d’intervention Appropries; Coordination Nationale REDD+ du Togo: Lomé, Togo, 2018.

33. Ern, H. Die Vegetation Togos. Gliederung, Gefährdung, Erhaltung. Willdenowia 1979, 9, 295–312.
34. MEDDPN. Analyse Cartographique de l’occupation Des Zones Agroécologiques et Bassins de Concentration Des Populations Au Togo,

Folega F., Consultant Sous Ordre de La Coordination Nationale Sur Les Changements Climatiques; MEDDPN: Lomé, Togo, 2019; p. 66.
35. Brabant, P.; Darracq, S.; Egué, K.; Simonneaux, V.; Aing, A.; Auberton-Habert, E. Togo: État de Dégradation Des Terres Résultant

Des Activités Humaines (Note Explicative de La Carte Au 1: 500 000 Des Indices de Dégradation). In Notice Explicative; Éditions
de I’ORSTOM: Paris, France, 1996; p. 66. ISBN 2-7099-1 348-8.

36. Atakpama, W.; Amegnaglo, K.; Afelu, B.; Folega, F.; Batawila, K.; Akpagana, K. Biodiversité et biomasse pyrophyte au Togo.
Vertigo 2019, 19, 22. [CrossRef]

37. Alboabidallah, A.; Martin, J.; Lavender, S.; Abbott, V. Using Landsat-8 and Sentinel-1 Data for Above Ground Biomass Assessment
in the Tamar Valley and Dartmoor. In Proceedings of the 2017 9th International Workshop on the Analysis of Multitemporal
Remote Sensing Images (MultiTemp), Bruges, Belgium, 27–29 June 2017; IEEE: Piscataway Township, NJ, USA, 2017; pp. 1–7.

38. Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward,
A.S.; Cohen, W.B.; et al. Current Status of Landsat Program, Science, and Applications. Remote Sens. Environ. 2019, 225, 127–147.
[CrossRef]

39. Hu, Y.; Hu, Y. Land Cover Changes and Their Driving Mechanisms in Central Asia from 2001 to 2017 Supported by Google Earth
Engine. Remote Sens. 2019, 11, 554. [CrossRef]

40. Xie, S.; Liu, L.; Zhang, X.; Yang, J.; Chen, X.; Gao, Y. Automatic Land-Cover Mapping Using Landsat Time-Series Data Based on
Google Earth Engine. Remote Sens. 2019, 11, 3023. [CrossRef]

41. Griffiths, P.; van der Linden, S.; Kuemmerle, T.; Hostert, P. A Pixel-Based Landsat Compositing Algorithm for Large Area Land
Cover Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2088–2101. [CrossRef]

42. Zhu, Z.; Woodcock, C.E. Continuous Change Detection and Classification of Land Cover Using All Available Landsat Data.
Remote Sens. Environ. 2014, 144, 152–171. [CrossRef]

43. Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. Disturbance-Informed Annual Land Cover Classification
Maps of Canada’s Forested Ecosystems for a 29-Year Landsat Time Series. Can. J. Remote Sens. 2018, 44, 67–87. [CrossRef]

44. Giovos, R.; Tassopoulos, D.; Kalivas, D.; Lougkos, N.; Priovolou, A. Remote Sensing Vegetation Indices in Viticulture: A Critical
Review. Agriculture 2021, 11, 457. [CrossRef]

45. Sozzi, M.; Kayad, A.; Marinello, F.; Taylor, J.; Tisseyre, B. Comparing Vineyard Imagery Acquired from Sentinel-2 and Unmanned
Aerial Vehicle (UAV) Platform. Oeno One 2020, 54, 189–197. [CrossRef]

46. Li, Y.; Zhao, Z.; Xin, Y.; Xu, A.; Xie, S.; Yan, Y.; Wang, L. How Are Land-Use/Land-Cover Indices and Daytime and Nighttime
Land Surface Temperatures Related in Eleven Urban Centres in Different Global Climatic Zones? Land 2022, 11, 1312. [CrossRef]

47. Khan, M.S.; Ullah, S.; Chen, L. Comparison on Land-Use/Land-Cover Indices in Explaining Land Surface Temperature Variations
in the City of Beijing, China. Land 2021, 10, 1018. [CrossRef]

48. Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017,
2017, 1353691. [CrossRef]

49. McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J.
Remote Sens. 1996, 17, 1425–1432. [CrossRef]

50. Vaudour, E.; Gomez, C.; Lagacherie, P.; Loiseau, T.; Baghdadi, N.; Urbina-Salazar, D.; Loubet, B.; Arrouays, D. Temporal
Mosaicking Approaches of Sentinel-2 Images for Extending Topsoil Organic Carbon Content Mapping in Croplands. Int. J. Appl.
Earth Obs. Geoinf. 2021, 96, 102277. [CrossRef]

51. Xu, N.; Tian, J.; Tian, Q.; Xu, K.; Tang, S. Analysis of Vegetation Red Edge with Different Illuminated/Shaded Canopy Proportions
and to Construct Normalized Difference Canopy Shadow Index. Remote Sens. 2019, 11, 1192. [CrossRef]

52. Chen, Y.; Cao, R.; Chen, J.; Liu, L.; Matsushita, B. A Practical Approach to Reconstruct High-Quality Landsat NDVI Time-Series
Data by Gap Filling and the Savitzky–Golay Filter. ISPRS J. Photogramm. Remote Sens. 2021, 180, 174–190. [CrossRef]

53. Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A Commentary Review on the Use of Normalized Difference Vegetation Index
(NDVI) in the Era of Popular Remote Sensing. J. For. Res. 2021, 32, 1–6. [CrossRef]

54. Özelkan, E. Water Body Detection Analysis Using NDWI Indices Derived from Landsat-8 OLI. Pol. J. Environ. Stud. 2020, 29,
1759–1769. [CrossRef]

55. Rikimaru, A.; Roy, P.S.; Miyatake, S. Tropical Forest Cover Density Mapping. Trop. Ecol. 2002, 43, 39–47.
56. Zheng, Y.; Tang, L.; Wang, H. An Improved Approach for Monitoring Urban Built-up Areas by Combining NPP-VIIRS Nighttime

Light, NDVI, NDWI, and NDBI. J. Clean. Prod. 2021, 328, 129488. [CrossRef]

http://doi.org/10.4000/vertigo.27000
http://doi.org/10.1016/j.rse.2019.02.015
http://doi.org/10.3390/rs11050554
http://doi.org/10.3390/rs11243023
http://doi.org/10.1109/JSTARS.2012.2228167
http://doi.org/10.1016/j.rse.2014.01.011
http://doi.org/10.1080/07038992.2018.1437719
http://doi.org/10.3390/agriculture11050457
http://doi.org/10.20870/oeno-one.2020.54.1.2557
http://doi.org/10.3390/land11081312
http://doi.org/10.3390/land10101018
http://doi.org/10.1155/2017/1353691
http://doi.org/10.1080/01431169608948714
http://doi.org/10.1016/j.jag.2020.102277
http://doi.org/10.3390/rs11101192
http://doi.org/10.1016/j.isprsjprs.2021.08.015
http://doi.org/10.1007/s11676-020-01155-1
http://doi.org/10.15244/pjoes/110447
http://doi.org/10.1016/j.jclepro.2021.129488


Land 2022, 11, 1889 31 of 31

57. Nyland, K.E.; Gunn, G.I.; Shiklomanov, N.N.; Engstrom, R.A.; Streletskiy, D. Land Cover Change in the Lower Yenisei River
Using Dense Stacking of Landsat Imagery in Google Earth Engine. Remote Sens. 2018, 10, 1226. [CrossRef]

58. Tian, S.; Zhang, X.; Tian, J.; Sun, Q. Random Forest Classification of Wetland Landcovers from Multi-Sensor Data in the Arid
Region of Xinjiang, China. Remote Sens. 2016, 8, 954. [CrossRef]

59. Wingate, V.R.; Phinn, S.R.; Kuhn, N.; Bloemertz, L.; Dhanjal-Adams, K.L. Mapping Decadal Land Cover Changes in the
Woodlands of North Eastern Namibia from 1975 to 2014 Using the Landsat Satellite Archived Data. Remote Sens. 2016, 8, 681.
[CrossRef]

60. Zurqani, H.A.; Post, C.J.; Mikhailova, E.A.; Schlautman, M.A.; Sharp, J.L. Geospatial Analysis of Land Use Change in the
Savannah River Basin Using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 175–185. [CrossRef]

61. Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do We Need Hundreds of Classifiers to Solve Real World Classifica-
tion Problems? J. Mach. Learn. Res. 2014, 15, 3133–3181.

62. Zhang, D.-D.; Zhang, L. Land Cover Change in the Central Region of the Lower Yangtze River Based on Landsat Imagery and the
Google Earth Engine: A Case Study in Nanjing, China. Sensors 2020, 20, 2091. [CrossRef] [PubMed]

63. Probst, P.; Boulesteix, A.-L. To Tune or Not to Tune the Number of Trees in Random Forest. J. Mach. Learn. Res. 2017, 18, 6673–6690.
64. Oshiro, T.M.; Perez, P.S.; Baranauskas, J.A. How Many Trees in a Random Forest? In Proceedings of the Machine Learning and Data

Mining in Pattern Recognition, New York, NY, USA, 30 August–3 September 2011; Perner, P., Ed.; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 154–168.

65. Probst, P.; Wright, M.N.; Boulesteix, A.-L. Hyperparameters and Tuning Strategies for Random Forest. WIREs Data Min. Knowl.
Discov. 2019, 9, e1301. [CrossRef]

66. Guo, L.; Ma, Y.; Cukic, B.; Singh, H. Robust Prediction of Fault-Proneness by Random Forests. In Proceedings of the 15th
International Symposium on Software Reliability Engineering, Saint-Malo, France, 2–5 November 2004; pp. 417–428.

67. Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for Land Cover Classification. Pattern Recognit. Lett. 2006,
27, 294–300. [CrossRef]

68. Bernard, S.; Adam, S.; Heutte, L. Dynamic Random Forests. Pattern Recognit. Lett. 2012, 33, 1580–1586. [CrossRef]
69. Kulkarni, A.; Lowe, B. Random Forest Algorithm for Land Cover Classification. Comput. Sci. Fac. Publ. Present. 2016, 4, 58–63.
70. Lind, A.P.; Anderson, P.C. Predicting Drug Activity against Cancer Cells by Random Forest Models Based on Minimal Genomic

Information and Chemical Properties. PLoS ONE 2019, 14, e0219774. [CrossRef]
71. MERF. Rapport Inventaire Forestier National Du Togo 2015–2016; Ministère de l’Environnement et des Ressources Forestières (MERF):

Lomé, Togo, 2016; p. 79.
72. Verma, P.; Raghubanshi, A.; Srivastava, P.K.; Raghubanshi, A.S. Appraisal of Kappa-Based Metrics and Disagreement Indices of

Accuracy Assessment for Parametric and Nonparametric Techniques Used in LULC Classification and Change Detection. Model.
Earth Syst. Environ. 2020, 6, 1045–1059. [CrossRef]

73. Petropoulos, G.P.; Kalivas, D.P.; Georgopoulou, I.A.; Srivastava, P.K. Urban Vegetation Cover Extraction from Hyperspectral Imagery
and Geographic Information System Spatial Analysis Techniques: Case of Athens, Greece. J. Appl. Remote Sens. 2015, 9, 096088.
[CrossRef]

74. Tang, H.; Hu, Z. Research on Medical Image Classification Based on Machine Learning. IEEE Access 2020, 8, 93145–93154.
[CrossRef]

75. Congedo, L. Semi-Automatic Classification Plugin: A Python Tool for the Download and Processing of Remote Sensing Images in
QGIS. J. Open Source Softw. 2021, 6, 3172. [CrossRef]

76. Puyravaud, J.-P. Standardizing the Calculation of the Annual Rate of Deforestation. For. Ecol. Manag. 2003, 177, 593–596.
[CrossRef]

77. Lopes, M.; Frison, P.-L.; Crowson, M.; Warren-Thomas, E.; Hariyadi, B.; Kartika, W.D.; Agus, F.; Hamer, K.C.; Stringer, L.; Hill,
J.K.; et al. Improving the Accuracy of Land Cover Classification in Cloud Persistent Areas Using Optical and Radar Satellite
Image Time Series. Methods Ecol. Evol. 2020, 11, 532–541. [CrossRef]

78. Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A New Technique for Surface Water
Mapping Using Landsat Imagery. Remote Sens. Environ. 2014, 140, 23–35. [CrossRef]

79. Wijedasa, L.S.; Sloan, S.; Michelakis, D.G.; Clements, G.R. Overcoming Limitations with Landsat Imagery for Mapping of Peat
Swamp Forests in Sundaland. Remote Sens. 2012, 4, 2595–2618. [CrossRef]

80. Masiello, G.; Cersosimo, A.; Mastro, P.; Serio, C.; Venafra, S.; Pasquariello, P. Emissivity-Based Vegetation Indices to Monitor
Deforestation and Forest Degradation in the Congo Basin Rainforest. In Proceedings of the Remote Sensing for Agriculture,
Ecosystems, and Hydrology XXII, Online, 20 September 2020; SPIE: Bellingham, WA, USA, 2020; Volume 11528, pp. 125–138.

81. Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B. Mapping Paddy Rice Planting Area in
Northeastern Asia with Landsat 8 Images, Phenology-Based Algorithm and Google Earth Engine. Remote Sens. Environ. 2016,
185, 142–154. [CrossRef] [PubMed]

http://doi.org/10.3390/rs10081226
http://doi.org/10.3390/rs8110954
http://doi.org/10.3390/rs8080681
http://doi.org/10.1016/j.jag.2017.12.006
http://doi.org/10.3390/s20072091
http://www.ncbi.nlm.nih.gov/pubmed/32276373
http://doi.org/10.1002/widm.1301
http://doi.org/10.1016/j.patrec.2005.08.011
http://doi.org/10.1016/j.patrec.2012.04.003
http://doi.org/10.1371/journal.pone.0219774
http://doi.org/10.1007/s40808-020-00740-x
http://doi.org/10.1117/1.JRS.9.096088
http://doi.org/10.1109/ACCESS.2020.2993887
http://doi.org/10.21105/joss.03172
http://doi.org/10.1016/S0378-1127(02)00335-3
http://doi.org/10.1111/2041-210X.13359
http://doi.org/10.1016/j.rse.2013.08.029
http://doi.org/10.3390/rs4092595
http://doi.org/10.1016/j.rse.2016.02.016
http://www.ncbi.nlm.nih.gov/pubmed/28025586

	Introduction 
	Study Area and Data Used 
	Study Area 
	Data Used 

	Methodology 
	Selection and Pre-Processing of Satellite Images 
	Selection of Training and Validation Data 
	Image Classification and Evaluation of Accuracy 

	Results 
	Assessing the Accuracy of Image Classifications 
	Distribution of Land Cover 
	Land-Cover Conversions 
	Evolution of Forest Cover 
	Land-Cover Changes at the Administrative Regions Scale 

	Discussion 
	Quality of Results from Composite Image Classifications 
	Land-Cover Changes 
	Advantages and Limitations of the Method Used 

	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	References

