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Abstract: Flood susceptibility modeling helps understand the relationship between influencing
factors and occurrence of urban flooding and further provides spatial distribution of flood risk,
which is critical for flood-risk reduction. Machine learning methods have been widely applied in
flood susceptibility modeling, but traditional supervised learning requires both positive (flood) and
negative (non-flood) samples in model training. Historical flood inventory data usually contain
positive-only data, whereas negative data selected from areas without flood records are prone to
be contaminated by positive data, which is referred to as case-control sampling with contaminated
controls. In order to address this problem, we propose to apply a novel positive-unlabeled learning
algorithm, namely positive and background learning with constraints (PBLC), in flood susceptibility
modeling. PBLC trains a binary classifier from case-control positive and unlabeled samples without
requiring truly labeled negative data. With historical records of flood locations and environmental
covariates, including elevation, slope, aspect, plan curvature, profile curvature, slope length factor,
stream power index, topographic position index, topographic wetness index, distance to rivers,
distance to roads, land use, normalized difference vegetation index, and precipitation, we compared
the performances of the traditional artificial neural network (ANN) and the novel PBLC in flood
susceptibility modeling in the city of Guangzhou, China. Experimental results show that PBLC
can produce more calibrated probabilistic prediction, more accurate binary prediction, and more
reliable susceptibility mapping of urban flooding than traditional ANN, indicating that PBLC is
effective in addressing the problem of case-control sampling with contaminated controls and it can
be successfully applied in urban flood susceptibility mapping.

Keywords: urban flooding; susceptibility; machine learning; positive data; unlabeled data

1. Introduction

Flooding has become a frequent phenomenon in many urban areas due to factors,
such as extreme rainfall in the context of climate change, increasing imperviousness during
urbanization process, and insufficient drainage capacity, etc. [1–3]. Urban flooding can
cause severe negative impacts on natural ecosystems, human activities, and economy [4–6].
Flood susceptibility modeling is, thus, essential in understanding the relationship between
influencing factors and occurrence of urban flooding and providing useful information to
make strategies of risk mitigation [3,7].

The statistical modeling approach has been widely used in flood susceptibility map-
ping in the literature, assuming that the occurrences of flood events are affected by a set
of environmental covariates. Rahmati et al. (2016) used frequency ratio and weights-of-
evidence models to map flood susceptibility in the Golastan Province, Iran, with envi-
ronmental factors, including geology, land use, distance from rivers, soil texture, slope
angle, aspect, plan curvature, topographic wetness index (TWI), drainage density, and
altitude [4]. Al-Juaidi et al. (2018) evaluated flood susceptibility mapping in southern Gaza
Strip areas using logistic regression and conditioning factors, including digital elevation
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model (DEM), topographic slope, flow accumulation, rainfall, land use/land cover, and
soil type [8]. Nkeki et al. (2022) applied the analytic hierarchy process to fuse the indicators
for flood risk mapping in the Ona River Basin, Nigeria [1]. Machine learning and deep
learning algorithms have also been increasingly used in flood susceptibility mapping in
recent years, such as artificial neural network (ANN) [9], random forest [10], support vector
machine [6], convolutional neural network [11], and ensemble modeling [12,13].

Statistically modeling flood susceptibility is a binary classification problem. Both
positive (flood) and negative (non-flood) samples are required to train a model. How-
ever, historical records of flood events usually contain positive-only samples, without
information on negative samples. In order to train a binary classifier, researchers usually
collect a number of negative samples from areas without flood records [13–16]. However,
this sampling approach will raise two problems that could affect the predictive accuracy
of flood probability. The first problem is how many negative samples are required. In
order to predict calibrated posterior probabilities, the ratio of positive to total number of
samples should be equal to the prior (or prevalence) of positive class, i.e., the proportion of
flooding zones in the study area [17–19]. However, the prior information on positive class
is usually unknown and researchers usually select the same number of negative samples
as positive samples in order to produce a balanced training set [11,14,20]. Although a
balanced training set may be beneficial to model training, it could make the estimated
posterior probabilities biased. If the study area is dominated by flooded area, the positive
class is actually under-sampled, leading to an underestimation of flood probability; by
contrast, if the study area is dominated by non-flooded area, the positive class is actually
over-sampled, leading to an overestimation of flood probability. The second problem is that
the selected negative samples are prone to be contaminated by positive samples, because
areas without flood records may actually be flooded without being observed or they will
be flooded in the future. This sampling scheme is also referred to as case-control sampling
with contaminated controls [21] and models trained from such samples are not able to
correctly predict the posterior probability of flooding.

Unlike traditional supervised learning that requires completely labeled samples, semi-
supervised learning incorporates both labeled and unlabeled samples during model train-
ing [22]. Zhao et al. (2019) demonstrated that a semi-supervised machine learning model
utilizing both labeled and unlabeled data outperforms the traditional machine learning
models that only utilize labeled data in urban flood susceptibility assessment [23]. A
special case of semi-supervised learning is positive-unlabeled (PU) learning, in which only
positive and unlabeled data are required for model training [24]. There are two different
settings in PU learning, i.e., the single-training-set and case-control scenarios [17,25]. In the
single-training-set scenario, the training set is randomly sampled from the population, in
which only a proportion of positive data are labeled, such as the positive and unlabeled
learning algorithm proposed by Elkan and Noto [17]. In the case-control scenario, the
positive data are sampled from the positive class and the unlabeled data are separately
sampled from the population, such as the presence and background learning algorithm [25]
and the positive and background learning with constraints (PBLC) algorithm [26].

In flood susceptibility modeling, the negative samples collected from non-flooded
areas should be regarded as pseudo-negative or unlabeled data, since they are not truly
negative. Meanwhile, the positive and negative samples are sampled independently. Thus,
PU learning in the case-control scenario is suitable for flood susceptibility modeling, but
it has not yet been well studied in this field. In this study, we propose to apply the novel
PBLC algorithm for flood susceptibility mapping in the high-density city of Guangzhou
and investigate the effectiveness of PBLC to address the problem of case-control sampling
with contaminated controls in flood susceptibility modeling.
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2. Materials and Methods
2.1. Positive and Background Learning with Constraints

The flood susceptibility or risk magnitude can be defined as a posterior probability
conditional on environmental covariates, i.e., Pr(y = 1 | x) where y is a binary response
variable and x denotes the environmental covariates. The positive class (flood events) is
defined as y = 1 and the negative class (non-flood events) is defined as y = 0. Let s = 1 denote
labeled data and s = 0 denote unlabeled data. Unlabeled data are a mixture of positive and
negative data, but their true class labels are not known. In the setting of PU learning, only
positive data are labeled, but none of the negative data are labeled. Historical records of
flood events are positive data (y = 1) and, hence, labeled data (s = 1). The pseudo-negative
data collected from the study area are called background samples, treated as unlabeled data
(s = 0). Thus, a model trained from labeled positive (s = 1, x) and unlabeled background
(s = 0, x) samples can be denoted as Pr(s = 1 | x). In the case-control sampling scenario, the
desired model Pr(y = 1 | x) and trained model Pr(s = 1 | x) have the following relationship:

Pr(s = 1 | x) =
Pr(y = 1 | x)

Pr(y = 1 | x) + 1−c
c

(1)

where c is a constant factor indicating the probability of a positive sample being labeled,
i.e., Pr(s = 1 | y = 1). Let Pr(s = 1 | x) be a function g of environmental covariates x with
parameter of β, i.e., Pr(s = 1 | x) = g(β, x). By minimizing the following loss function, we
can infer the parameter β:

L(β) = −∑k
i=1{silog[g(β, xi)] + (1− si)log[1− g(β, xi)]} (2)

where k is the total number of training samples. Let Pr(y = 1 | x) be a function f of x with
parameter of ω, i.e., Pr(y = 1 | x) = f (ω, x). According to Equation (1), the loss function in
Equation (2) can be rewritten as:

L(ω, c) = −∑k
i=1

{
silog

[
f (ω, xi)

f (ω, xi) +
1−c

c

]
+ (1− si)log

[
1− f (ω, xi)

f (ω, xi) +
1−c

c

]}
(3)

In order to make the parameters ω and c identifiable, a regularization term is added to
Equation (3), leading to:

L(ω, c) = −∑k
i=1

{
silog

[
f (ω, xi)

f (ω, xi) +
1−c

c

]
+ (1− si)log

[
1− f (ω, xi)

f (ω, xi) +
1−c

c

]}
+ λ|max[ f (ω, x)]− Pmax|2 (4)

where Pmax is the maximum value of posterior probability and λ is the regularization
coefficient. Therefore, we can infer the parameter ω and, hence, the desired model
Pr(y = 1 | x) by minimizing the loss function in Equation (4) using positive and unla-
beled background data. In practice, we can set the highest flood risk Pmax as one and tune
the regularization coefficient λ to make the maximum value of estimated probabilities
close to the user-defined value of Pmax. This PU learning algorithm is named positive and
background learning with constraints (PBLC) and more details can be found in Li et al. [26].

2.2. Study Area and Dataset

Guangzhou is the capital city of Guangdong Province in Southern China (23◦06′32′′ N,
113◦15′53′′ E), with an area of 7434.4 km2. It has a subtropical monsoon climate, with
long-term annual mean precipitation of about 1800 mm [27]. Urban flooding events have
occurred frequently in recent years [2]. Historical records of flood locations between 2020
and 2022 were collected from the news released by Guangzhou Water Authority. After
geocoding and removing outliers, we obtained 532 positive samples shown in Figure 1.
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Figure 1. The distribution of flood locations in each district of Guangzhou.

According to the literature and data availability, we selected 14 environmental co-
variates in this study, including elevation, slope, aspect, plan curvature, profile curvature,
slope length factor (SLF), stream power index (SPI), topographic position index (TPI), TWI,
distance to rivers, distance to roads, land use, normalized difference vegetation index
(NDVI), and precipitation, all of which were preprocessed at a spatial resolution of 30 m.
DEM was obtained from U.S. Geological Survey and slope, aspect, plan curvature, profile
curvature, SLF, SPI, TPI, and TWI were derived from DEM. The value of aspect ranges
from 0 to 360 degrees and we reclassified it into four categories: east, north, west, and
south. The vector layers of rivers and roads were obtained from National Geomatics Center
of China (http://www.ngcc.cn/ngcc/, accessed on 21 January 2022) and we calculated
Euclidean distances to rivers and roads, respectively. Land use map in 2020 was obtained
from the GLOBELAND30 (http://www.globeland30.org, accessed on 1 July 2022) and we
reclassified the land types into four categories, including water, vegetation, soil, and built
up (impervious surface). The mean NDVI (2020–2021) was derived from Landsat8 imagery
in Google Earth Engine (GEE) and the mean precipitation (1991–2020) was obtained from
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences. Since
aspect and land use were categorical features, we converted them into continuous features
using the following approach:

h(xi) =
Pr(xi | y = 1)

Pr(xi)
(5)

http://www.ngcc.cn/ngcc/
http://www.globeland30.org
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where xi refers to the ith category of feature x (i = 1, 2, 3, 4), Pr(xi) refers to the frequency
of xi within the whole study area, and Pr(xi | y = 1) refers to the frequency of xi among
the positive locations. The maximum value of Spearman’s correlation coefficients between
covariates is 0.7939 and the maximum value of variance inflation factor is 5.2747, which
indicate that the multicollinearity is low [28]. Therefore, all of the environmental covariates
were used for flood susceptibility modeling in this study (Figure 2).
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Figure 2. The environmental covariates in the study area. Training points refer to the recorded flood
locations in the training set.

2.3. Model Development

PBLC can be used to train a binary classifier that has the capability to estimate pos-
terior probability, such as logistic regression, ANN, and CNN [26]. Since we only have
532 positive samples in total, the number of samples might not be sufficient to train a
complex model, such as CNN. Therefore, we used ANN, which has been widely applied in
flood susceptibility modeling, as the classifier in this study.

The recorded flood locations are labeled positive data and unlabeled background data
were randomly sampled from the study area. Since non-flood is the majority class in this
study area, the number of unlabeled data should be relatively larger to better represent the
non-flood class. According to Li et al. (2021), we empirically set the number of unlabeled
data as five-times the positive data [26]. The positive and unlabeled data were combined
together and we randomly split them into two subsets: 70% for training and 30% for
testing. Realizations of training and test sets were randomly repeated 10 times. As a
comparison, the ANN model was trained using two different approaches, i.e., traditional
supervised learning approach and PBLC, which were named ANN and PBLC, respectively.
TensorFlow [29] was used to implement the ANN and PBLC models, with the Adam
optimizer [30]. The number of hidden layers was set as two and the number of neurons
was 10 for the first hidden layer and 5 for the second hidden layer. The activation function
logistic sigmoid was used for the output layer and rectified linear unit was used for other
layers. The learning rate was set as 0.005 and the iteration was stopped when training error
became stable but validation error started to increase. The validation set was randomly
held out from the initial training set (i.e., 25%).

The model performances were evaluated from different perspectives. The area under
the receiver operating characteristic curve (AUC) is a threshold-independent measure to
evaluate the continuous output [31], whereas F1-score is a threshold-dependent measure to
evaluate the binary output [32]. Both AUC and F1-score are traditional measures derived
from the confusion matrix requiring an independent test set including both positive and
negative data. However, the test set here only consisted of positive and unlabeled data,
which also suffered from the problem of contaminated controls. With positive and unlabeled
data, the relative value of AUC is still able to rank models, but the absolute value of AUC
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should be interpreted with caution [33,34]. F1-score does not work with positive and
unlabeled data, so we used Fpb instead, which is a proxy of F1-score developed for the
case-control positive and unlabeled background data [35]. If a binary model can predict
calibrated probabilities, a threshold of 0.5 can generate reasonable binary predictions.
Therefore, we applied a threshold of 0.5 to both ANN and PBLC and calculated Fpb to
evaluate the predicted accuracies of flood probabilities indirectly. The definition of Fpb is
shown in Equation (6):

Fpb =
2× TP

TP + FN + FP
(6)

where TP refers to the number of correctly predicted positive samples, FN refers to the
number of positive samples that are falsely predicted as negative, and FP refers to the
number of unlabeled samples that are predicted as positive, respectively [35].

In addition, we used the frequency ratio analysis to evaluate the reliability of pre-
dicted flood susceptibility levels. The posterior probability of flooding was reclassified to
five susceptibility levels with equal intervals: very low (0~0.2), low (0.2~0.4), moderate
(0.4~0.6), high (0.6~0.8), and very high (0.8~1). The recorded flood locations in the test
set were imposed on the predicted susceptibility map and the relative frequency ratio for
susceptibility level i (Ri) is calculated as:

Ri = Fi/Ai (7)

where Fi refers to the percentage of flood points associated with susceptibility level i and
Ai refers to the percentage of area with susceptibility level i in the whole study area. The
relative frequency ratio should increase from the lowest to the highest level of susceptibility
because flooding events are more likely to occur in a higher level of susceptibility zone [36].

The feature importance was also evaluated using the permutation feature importance,
which is defined as the decrease in model performance in terms of AUC when a specific
feature is randomly permuted [37,38]. The percentage of contribution of a feature, namely
Ck, was calculated using the following equation:

Ck =
Dk

∑14
k=1 Dk

× 100 (8)

where Dk refers to the decrease in AUC when feature k was randomly permuted. Figure 3
shows a flowchart of the experiment.
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3. Results

A comparison of model performances by ANN and PBLC is shown in Table 1. The
AUC values produced by ANN and PBLC are similar, but the Fpb values produced by PBLC
are larger than those from ANN. The average values of AUC by ANN and PBLC over ten
random realizations of sample sets are 0.8984 and 0.8974, respectively, whereas the average
values of Fpb by both models are 0.7245 and 0.8614, respectively. On average, the minimum,
average, and maximum values of predicted probabilities by ANN are 0.0009, 0.1721, and
0.7558, respectively, whereas the minimum, average, and maximum values of predicted
probabilities by PBLC are 0.0002, 0.2409, and 0.9775, respectively.

Table 1. Performances of ANN and PBLC over ten realizations of sample sets.

ANN PBLC

Repetition Prmin Prave Prmax AUC Fpb Prmin Prave Prmax AUC Fpb

1 0.0000 0.1794 0.8162 0.8893 0.6887 0.0014 0.2691 0.9818 0.8888 0.8127
2 0.0013 0.1788 0.8112 0.8789 0.6891 0.0000 0.2075 0.9695 0.8777 0.7634
3 0.0000 0.1742 0.6983 0.9033 0.7313 0.0006 0.2410 0.9723 0.9058 0.9299
4 0.0000 0.1807 0.7597 0.9021 0.8465 0.0000 0.2463 0.9770 0.9015 0.8905
5 0.0000 0.1648 0.7855 0.8892 0.6601 0.0000 0.2219 0.9704 0.8842 0.7722
6 0.0014 0.1701 0.7232 0.9017 0.7130 0.0000 0.2391 0.9817 0.9021 0.8848
7 0.0000 0.1645 0.6877 0.9093 0.8100 0.0000 0.2200 0.9862 0.9095 0.8968
8 0.0015 0.1814 0.7775 0.9109 0.8411 0.0000 0.2473 0.9620 0.9063 0.8811
9 0.0017 0.1657 0.7724 0.9027 0.6635 0.0000 0.2499 0.9843 0.9010 0.8811

10 0.0027 0.1610 0.7264 0.8967 0.6019 0.0000 0.2665 0.9897 0.8967 0.9010
AVE 0.0009 0.1721 0.7558 0.8984 0.7245 0.0002 0.2409 0.9775 0.8974 0.8614
STD 0.0010 0.0078 0.0450 0.0100 0.0826 0.0005 0.0198 0.0087 0.0105 0.0574

Prmin: minimum value of predicted probability. Prave: average value of predicted probability. Prmax: maximum
value of predicted probability. AVE: average. STD: standard deviation.

The predicted probabilistic maps of flooding and the corresponding histograms are
shown in Figure 4. It is obvious that the predicted probabilities of flooding by ANN are
smaller than that by PBLC. In the probabilistic map by PBLC, most of the flood locations in
the test set are associated with high probabilities close to one. By contrast, the test points are
associated with relatively low probabilities in the prediction map by ANN. The histogram
by PBLC also indicates that it produces more calibrated probabilistic predictions covering a
range of 0~1. However, the histogram of ANN only covers a range of 0~0.7, indicating that
the probabilistic predictions are biased towards zero.

The binary predictions and susceptibility maps of flooding by both models are shown
in Figure 5. The predicted flooding area by ANN is much smaller than PBLC, with a large
proportion of test points not correctly predicted by the model. In contrast, the predicted
flooding area by PBLC is much larger and most of the test points align with the predicted
flooding area. Meanwhile, most of the test points fall in the high or very high susceptibility
zones in the map predicted by PBLC, whereas most of the test points fall in the moderate
susceptibility zone in the map predicted by ANN. According to Table 2, the frequency ratio
values by both models increase as the level of susceptibility increases, but the ratio value in
the highest susceptibility level predicted by the ANN model is not available because the
very high susceptibility zone is not predicted by the model.
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Table 2. The frequency ratio values for susceptibility maps by ANN and PBLC.

ANN PBLC

Susceptibility Percentage of Flood
Points (%)

Percentage of
Area (%) Ratio Percentage of Flood

Points (%)
Percentage of

Area (%) Ratio

Very low 7.69 79.10 0.0972 7.69 79.49 0.0968
Low 18.88 7.54 2.503 9.09 3.63 2.5048

Moderate 53.15 11.59 4.5873 11.19 3.96 2.8268
High 20.28 1.77 11.4786 20.98 5.94 3.5345

Very high 0 0 NA 51.05 6.99 7.3084

The percentages of flood susceptibility zones in different districts produced by PBLC
are summarized in Table 3. The high and very high flood susceptibility zones are mainly
located in the central urban districts. For example, the areas of high and very high flood
susceptibility zones in the central districts of Yuexiu, Haizhu, Liwan, and Tianhe are all over
47%. In the suburban districts, such as Nansha, Conghua, and Zengcheng, the areas of high
and very high flood susceptibility zones are all smaller than 10%. According to Figure 6,
the most important influencing factors of flooding in this study area include distance to
roads, NDVI, DEM, and land type. The effects of slope, precipitation, and distance to rivers
are moderate, whereas the effects of TWI, SLF, aspect, TPI, SPI, plan curvature, and profile
curvature are the lowest.

Table 3. The percentages (%) of susceptibility zones in each district of Guangzhou.

Susceptibility Yuexiu Haizhu Liwan Tianhe Baiyun Huangpu Huadu Panyu Nansha Conghua Zengcheng

Very low 20.57 34.13 17.03 36.20 57.83 68.47 77.96 58.08 80.84 96.42 87.53
Low 7.86 7.69 7.18 7.47 4.60 5.66 4.20 7.94 5.52 1.30 2.32

Moderate 11.78 9.59 10.90 8.96 5.20 6.36 4.37 8.90 5.87 1.06 2.63
High 25.16 17.89 22.41 16.13 10.51 9.63 6.60 12.56 6.07 0.93 4.10

Very high 34.64 30.69 42.47 31.25 21.87 9.87 6.87 12.54 1.71 0.29 3.43
Total 100 100 100 100 100 100 100 100 100 100 100
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4. Discussion

Machine learning methods have been widely applied in flood susceptibility mapping
due to their good abilities to model the complex relationship between influencing factors
and flood occurrences. However, traditional machine learning algorithms suffer from
the problem of case-control sampling with contaminated controls. Negative (non-flood)
samples contaminated by positive (flood) samples will lead to the underestimation of
posterior probability Pr(y = 1 | x). If the fraction of positive samples in the training set
is not equal to the class prior Pr(y = 1), the estimated posterior probability Pr(y = 1 | x)
will be biased. Meanwhile, flooding is usually the minority class in many study areas, so
it is very common that the training set contains a small number of flood samples and a
large number of non-flood samples, leading to the problem of class imbalance [14]. PU
learning has the potential to address these issues because it is designed to learn a classifier
from a small set of positive data and a large set of unlabeled data [17], but it has not yet
been widely applied and investigated in this field. With a case study in Guangzhou, we
show that the novel PU learning algorithm PBLC can be successfully applied in flood
susceptibility modeling. PBLC is a flexible model learning approach that could be applied
to multiple classifiers, but we only investigate ANN in this study due to the limited size of
flood samples. Applications of PBLC to other classifiers, such as CNN, could be further
examined when more samples are available.

In this study, the AUC values produced by ANN and PBLC are similar, but the
Fpb value produced by PBLC is significantly larger than that by ANN. AUC is a measure of
ability to distinguish between positive and negative classes but not a measure of predictive
accuracy of probabilities, so it is only related to the relative ranking of predicted scores
rather than absolute posterior probabilities [35,39]. According to Equation (1), Pr(s = 1 | x)
by ANN is a monotonically increasing function of Pr(y = 1 | x) by PBLC. In other words,
the predictions by ANN and PBLC are consistent in ranking, leading to their similar AUC
values. By contrast, Fpb is a measure of accuracy of binary predictions, dependent on the
selected probability threshold [35]. We can see that the histogram of predicted probabilities
by PBLC is more reasonable, whereas the histogram of predicted probabilities by ANN
is biased towards zero due to underestimation of probabilities caused by contaminated
control samples. As a result, the binary prediction by PBLC with a threshold of 0.5 is
more accurate than that by ANN, which explains why PBLC produces a higher value
of Fpb than ANN. Meanwhile, the frequency ratio analysis indicates that the predicted
susceptibility map by PBLC is more reliable with over 70% of the flood points intersecting
high and very high susceptibility zones [1,40], but only 20% of the flood points intersect the
high-susceptibility zone with none of the very-high-susceptibility zone being predicted by
ANN. Overall, these facts altogether indicate that PBLC provides more calibrated predicted
posterior probabilities of flooding than ANN.

Like model training, accuracy assessment also suffers from the problem of case-control
sampling with contaminated controls. Please be aware that the relative values of AUC
and Fpb can be used to rank model performances, but their absolute values are not truly
informative because negative data are replaced by unlabeled data in the test set [33,35].
With positive and unlabeled data, the calculated value of AUC will be smaller than its
true value. According to Li and Guo (2021), the constant c can be applied to calibrate the
biased AUC value [34]. The estimated value of c provided by PBLC is 0.58 and the AUC
value of ANN and PBLC is around 0.90, so the true value of AUC should be around 0.96
after calibration. Similarly, the constant c can also be applied to calibrate Fpb to obtain the
unbiased estimate of F1-score [35]. The Fpb values of ANN and PBLC are 0.72 and 0.86, so
their true values of F1-score should be 0.65 and 0.73, respectively.

The accuracy assessment shows that the selected environmental covariates are suc-
cessful in modeling the urban flood susceptibility of Guangzhou. The analysis of feature
importance indicates that distance to roads, NDVI, DEM, and land type are the most
important conditioning factors of urban flooding in Guangzhou. The recorded flood lo-
cations and the high-flood-susceptibility zones predicted by PBLC are mainly located in
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the central urban districts. Similarly, previous studies also pointed out that most of the
flooding events in Guangzhou are concentrated in the central districts, including Yuexiu,
Haizhu, Liwan, and Tianhe [2,41]. These areas are characterized by low elevation, high
intensity of urbanization, high density of road networks, high imperviousness, and low
vegetation cover, all of which could increase the risk of urban flooding [2,42,43]. While
previous studies indicate that other factors, such as soil, geology, lithology, and drainage
density, can also affect the occurrence of flooding [1,7,23], we do not include these factors
in this study because data are not available, which is one of the limitations of our study.

5. Conclusions

In this study, we investigated the effectiveness of a novel PU learning algorithm,
namely positive and background learning with constraints (PBLC), in modeling of urban
flood susceptibility. Unlike traditional supervised learning that trains a binary classifier
from positive (flood) and negative (non-flood) data, the PBLC algorithm trains a binary
classifier from positive and unlabeled data. The case study in Guangzhou shows that PBLC
can provide more calibrated probabilistic predictions of flooding events than the traditional
ANN model and the most important conditioning factors of flooding in Guangzhou include
distance to roads, NDVI, DEM, and land type. Our results indicate that PBLC has the
potential to address the problem of case-control sampling with contaminated controls that
commonly exists in flood susceptibility modeling. We do not investigate the implementa-
tion of PBLC with CNN due to the limited sample size and we do not incorporate other
factors, such as soil, geology, lithology, and drainage density, which are the limitations of
this study. We will investigate these issues when more data are available in the future.
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