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Abstract: This study modelled the relationships between vegetation response and available wa-
ter below the soil surface using Terra’s moderate resolution imaging spectroradiometer (MODIS),
Normalised Difference Vegetation Index (NDVI), and soil water content (SWC). The Soil & Water
Assessment Tool (SWAT) interface known as ArcSWAT was used in ArcGIS for the groundwater
analysis. The SWAT model was calibrated and validated in SWAT-CUP software using 10 years
(2001–2010) of monthly streamflow data. The average Nash-Sutcliffe efficiency during the calibration
and validation was 0.54 and 0.51, respectively, indicating that the model performances were good.
Nineteen years (2002–2020) of monthly MODIS NDVI data for three different types of vegetation
(forest, shrub, and grass) and soil water content for 43 sub-basins were analysed using the WEKA,
machine learning tool with a selection of two supervised machine learning algorithms, i.e., support
vector machine (SVM) and random forest (RF). The modelling results show that different types of
vegetation response and soil water content vary in the dry and wet seasons. For example, the model
generated high positive relationships (r = 0.76, 0.73, and 0.81) between the measured and predicted
NDVI values of all vegetation in the sub-basin against the groundwater flow (GW), soil water content
(SWC), and combination of these two variables, respectively, during the dry season. However, these
relationships were reduced by 36.8% (r = 0.48) and 13.6% (r = 0.63) against GW and SWC, respectively,
in the wet season. Our models also predicted that vegetation in the top location (upper part) of the
sub-basin is highly responsive to GW and SWC (r = 0.78, and 0.70) during the dry season. Although
the rainfall pattern is highly variable in the study area, the summer rainfall is very effective for
the growth of the grass vegetation type. The results predicted that the growth of vegetation in the
top-point location is highly dependent on groundwater flow in both the dry and wet seasons, and any
instability or long-term drought can negatively affect these floodplain vegetation communities. This
study has enriched our knowledge of vegetation responses to groundwater in each season, which
will facilitate better floodplain vegetation management.

Keywords: ArcSWAT; machine learning; floodplain vegetation; MODIS NDVI; groundwater

1. Introduction

Floodplain vegetation plays an important role in catchment hydrology and energy
flow. Floodplain vegetation distribution is directly influenced by several factors, including
rainfall, temperature, and groundwater [1]. Rainfall, temperature, and groundwater are
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highly variable in arid and semi-arid regions [2]. The annual rainfall in arid regions is much
less than the annual potential evapotranspiration and surface water flows (i.e., surface
runoff), which provides limited water supply for vegetation systems [3]. Therefore, ground-
water becomes the only water source in arid regions affecting the spatial and temporal
distribution of soil water content (SWC) which, in turn, affects the growth of vegetation [4].
An accurate understanding of the distribution of SWC in arid regions is important since wa-
ter deficit is gradually becoming one of the major factors limiting agricultural productivity
and ecological development [5]. As one of the driest continents in the world, Australia has
been facing severe droughts over the last 50 years, noticeably in the south-eastern part of
the country [6]. This area will become drier in the coming decades due to increasing annual
average temperatures and decreasing rainfall [7]. Therefore, understanding the vegetation
response to SWC is critical for sustainable ecosystem improvements in arid regions [8].

SWC can be estimated using both direct and indirect methods. The direct method,
such as the oven drying technique, is widely used because of its reliability and simplicity [9];
however, the direct method is labour-intensive, time-consuming, and costly for continuous
application in large catchments. On the other hand, hydrological simulation and remote
sensing techniques can be used for the same purpose at a catchment or global scale [10].
SWC can also be estimated for previous years using remote sensing techniques, which is
not possible to obtain from experimental measurements [10]. Therefore, model-simulated
results can fulfil temporal and spatial data requirements and improve SWC and vegetation
response relationship studies.

The SWC also influences vegetation productivity and water stress [11,12]. The amount
of soil water availability in drought regions for vegetation intake affects the length of the
growing period [13]. However, groundwater is the main source of water for vegetation
growth in arid regions [14]. Any changes in the groundwater tables decrease the accessibil-
ity of the dependent vegetation and may create water stress [15]. Moreover, water stress
can trigger a longer growing period and photosynthesis reduction, thereby resulting in
reduced productivity and increased vegetation mortality [12]. The reduction in accessible
soil water availability under a changing climate may exaggerate ecological droughts during
the plantation season [16]. Researchers have identified that the change in groundwater
depth affects the vegetation physiology and dynamics [17,18]. Another study also focused
on individual vegetation responses by examining the leaf, tree, canopy, and population [19].
However, according to our knowledge, accessible water in soil and vegetation response
modelling is still lacking. This research focuses on SWC that is accessible to floodplain
vegetation and understanding their relationship in a seasonal context.

The Soil and Water Assessment Tool (SWAT) is a physically based and semi-distributed
hydrological model widely used for quantitative hydrological modelling [20,21]. Many
researchers have used SWAT for evaluating soil water at the catchment scale [22–24].
Previous studies have shown that changes in the water balance components, specifically
soil water storage, evapotranspiration, land use/land cover dynamics, and water yield,
are more sensitive under wet climate and heterogeneous soils [25,26]. The SWAT model
has also been successfully applied in the U.S. to estimate SWC for drought monitoring
and predicting crop production [27]. However, the SWAT application in the Australian
region is limited [28]. In our study, a SWAT model was used to estimate SWC for the
Burrinjuck Dam sub-catchment within the Murrumbidgee River catchment. The suitability
of the model simulation for long-term SWC datasets was assessed using a combination of
physically measured and remotely sensed data. This type of simulation helps to correlate
with long-term historical vegetation data.

The Normalised Difference Vegetation Index (NDVI), which can be derived from
remote sensing, is frequently applied for studies on vegetation dynamics over large
scales [29–32]. Researchers used NDVI to understand the relationships between terrestrial
vegetation and climate [31]. Several studies found a linear relationship between NDVI
and climate variables in arid regions [33–35]. Relationships also were investigated for
NDVI and groundwater levels and groundwater flow discharge [36–38]. However, none of
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these previous studies analysed the relationship between NDVI and hydrological model
simulated SWC in an arid region.

This study aims to analyse and model the relationships between seasonal SWC vari-
ability and floodplain vegetation responses using MODIS-derived NDVI data and machine
learning algorithms for 20 years (2001–2020). The specific objectives of this study are
the following: (a) to understand the relationship between different types of vegetation
responses (NDVI) and groundwater variables as simulated by the SWAT model at the basin
level; (b) to assess the correlation between the vegetation response (as measured by NDVI)
and SWAT-simulated variables at different positions (top and bottom) within the sub-basin;
and (c) to model seasonal vegetation responses to groundwater variables at the basin level
using the WEKA machine learning tool developed by the University of Waikato, New
Zealand [39,40].

The WEKA tool is a collection of machine learning algorithms for data mining activi-
ties that supports data pre-processing, clustering, classification, regression, and visualiza-
tion [41]. This software can be run under the General Public License (GNU) with a selected
classifier compared to other data mining tools [42].

The results of this study provide qualitative information on catchment hydrology and
water resources on temporal and spatial dimensions at the sub-catchment level. A calibrated
model at this scale can be used for various analyses such as sedimentation, water pollution,
and future stream flow prediction. This study also contributes to developing sustainable
water resource management for the dry and wet season in an efficient way. The modelling
results may be used to improve domestic agricultural production by selecting appropriate
crops and plants that can grow commercially in similar regions. An understanding of
seasonal vegetation water requirements from this study can be implemented to review the
floodplain water management policies for better water management.

2. Materials and Methods
2.1. Study Area

The study area resides within the Upper Murrumbidgee catchment (Figure 1) in the
south-east of the Murray Darling Basin (MDB), in south-eastern Australia. The Burrin-
juck Dam catchment area size is 13,000 km2 (approx.) which is one-seventh that of the
Murrumbidgee River catchment [43]. The latitude and longitude of the study area are
34.53◦ S–35.14◦ S and 148.31◦ E–148.55◦ E. The Burrinjuck Dam is situated within the upper
catchment of the Murrumbidgee River basin, which was built (1910–1927) to develop an
irrigation project after the devastating drought in 1902. The Murrumbidgee River rises at
an altitude of around 1500 m in Kosciuszko National Park and flows approximately 316 km
before entering Burrinjuck Reservoir at an altitude of 370 m (approx.). The topography of
the Burrinjuck Dam area consists of gentle and moderate slopes and the elevation varies
from 370 to 934 m [44]. The upper mountainous section of the Murrumbidgee River flow is
regulated by dams for hydroelectric power generation and water supply [45]. The main
land use in this part is forest and pasture. However, this area also contributes to agricultural
production by growing wheat and cereals [46]. Having a diverse climate in the upper and
lower Murrumbidgee, the mean annual rainfall varies 350 mm in the Riverina plains and
1700 mm in the Snowy Mountains [47]. According to the Köppen-Geiger climate classifica-
tion system, the climate of the study area is temperate, without a dry season mostly hot
summer with average 22 ◦C temperature in the hottest months [48]. The Burrinjuck Dam
and surrounding area contribute to the maximum river flow by adding 24% of the total
rainfall as runoff [49]. The climate has enriched the Burrinjuck reserve possesses a high
diversity of vegetation types and ecosystems.
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Figure 1. Study area of the Burrinjuck Dam sub-catchment of the Murrumbidgee River catchment
within the Murray-Darling Basin region.

2.2. Methods

Figure 2 presents an overview of the research methods applied in this study. The
SWC and groundwater flow (GW) were simulated in ArcSWAT. The datasets used in
this study were obtained from various local and international data portals, such as the
Australian Bureau of Meteorology (BOM) and U.S. Geological Survey (USGS). We used
the ArcGIS tool [50] and Microsoft Excel [51] for spatial and attribute data pre-processing
and formatted the data to apply in the ArcSWAT hydrological model. We analysed the
model output data using the WEKA machine learning tool [52] with different vegetation
responses as measured by MODIS NDVI values. Different machine learning algorithms
have been applied to model the relationships between vegetation types, and their location
within the sub-basin and seasonal groundwater variability.
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2.3. Hydrological Model Setup

An ArcSWAT interface of the SWAT2012 model was used in this study [21]. We
installed compatible ArcGIS version 10.6 on a desktop to run SWAT2012 from the user
interface. The SWAT model is a continuous physically based distributed parameter model
that operates on a daily time-step. This model is capable of simulating catchment hydrol-
ogy, land use impact on water, sediments, plant growing, agricultural-chemical yields,
etc., within agricultural watersheds [21,53]. SWAT divides the watershed into multi-
ple sub-basins based on spatial characteristics. These sub-basins are further subdivided
into hydrological response units (HRUs) that consist of unique land use, soils, and slope
characteristics [54]. Each HRU is simulated for SWC, groundwater flow, nutrient cycles,
sedimentation, crop growth, and management practices [44]. The simulated results from
the HRUs represent the sub-basin scale. SWAT [53] simulates the hydrological cycle based
on the following daily water balance equation:

SWt = SW0

t

∑
i=0

(
Rday −Qsur f − Ea −Wseep −Qgw

)
i

(1)

where SWt is the ultimate water content in (mm), SW0 is the amount of water content
on the first soil of the day i (mm), t is time (days), Rday is the amount of rainfall on day
i (mm), Qsurf is the amount of surface runoff on specific day i (mm), Ea is the amount of
evapotranspiration on day i (mm), Wseep is the amount of water percolated into the vadose
zone from the soil profile on day i (mm), and Qgw is the amount of return flow on day
i (mm).

The SWAT model was delineated from a 30 m resolution digital elevation model (DEM)
(Figure 3). A threshold drainage area of 1342 km2 was selected based on the DEM and
Murrumbidgee River network to divide the watershed into 43 sub-basins, which were later
categorised into 350 HRUs depending on land cover and land use, soil types, and slope.
The model was run for 20 years of data, starting from 2001 and ending in 2020. The SWC
data for Australia was obtained from the Australian Water Resource Assessment Landscape
water balance model (AWRA-L), which was calibrated against the streamflow data. It is not
best practice to use data from a different model simulation to run a hydrological model as it
may not provide good modelling results. To avoid this confusion, the model was calibrated
and validated against observed streamflow data instead of SWC.
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Figure 3. In the above figure four images are captured: (a) Study area soil map, (b) Land use/land
cover map, (c) DEM, and (d) Delineated watershed.

2.3.1. Data Preparation

A combination of climatological and land properties data were required to develop
a semi-distributed model using the ArcSWAT interface (Appendix A). Some data such
as DEM, soil, land use, and weather data are mandatory to run the dynamics of the
watershed; however, streamflow, reservoir information, sediment, water quality, chemical,
and pesticide data are non-mandatory. The data used in this study and their sources are
listed in Table 1.

Table 1. The datasets used in this study including their descriptions and sources.

Data Frequency Description Source

Precipitation Daily Station gauged, temporal Bureau of Meteorology
Temperature Daily Station gauged, temporal Bureau of Meteorology

Evapotranspiration
Wind speed

Daily
Hourly

Satellite-derived, 0.05 degree
(approximately 5 × 5 km)
Station gauged, temporal

Bureau of Meteorology
Bureau of Meteorology

Runoff Daily Satellite-derived, 0.05 degree
(approximately 5 × 5 km) Bureau of Meteorology

Streamflow (discharge) Daily Station gauged, temporal NSW Office of Water
MODIS NDVI 16-Day 250 m spatial resolution U.S. Geological Survey

DEM - 30 m spatial resolution U.S. Geological Survey
Soil Map - 250 m spatial resolution Digital Atlas of Australian Soil

Land cover/land use map - 50 m spatial resolution NSW Office of Environment and Heritage

2.3.2. Study Period

The study period (2001–2020) was selected to include a long-term drought (2001–2006)
and flooding (2007–2010) phases. Both dry and wet phases were included in the study to
ensure any long-term change in the vegetation condition was identified in the NDVI data.
The annual data were divided into two seasons: (i) dry and (ii) wet, which were categorised
based on rainfall and temperature anomalies. The average dry season (Oct–Mar) and wet
season (Apr–Sep) rainfall are 52.4 mm, 66.45 mm and 70.74 mm, 73.91 mm in the drought
and flooding periods, respectively.
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2.3.3. DEM

The sub-basin parameters (gradient and length of the slope) and stream network
characteristics (slope, width, and length of the channel) were obtained from the DEM
file. For this study, we used a 30 m resolution DEM downloaded from the Shuttle Rader
Topography Mission (STRM) using the USGS data portal [55]. DEM for the Burrinjuck Dam
study area was masked for the SWAT application (Figure 3c).

2.3.4. Land Use/Land Cover Data

The land use data for the study area used in the ArcSWAT HRU delineation was
developed by the NSW Office of Environment and Heritage. These satellite imagery data
were derived for the period of 2001 to 2005 and verified with Google Earth and a field
survey of specific land cover types. The raster files were processed in ArcGIS to reclassify
for the SWAT model (Figure 3b).

2.3.5. Soil Data

The SWAT model requires soil information of the basin area including a database table
of soil texture, pH number, available water content, hydraulic conductivity, bulk density,
and organic carbon content for each soil type [44,56]. The soil map of the study area was
downloaded from the Digital Atlas of Australian Soil [8] (Figure 3a). A ‘usersoil’ database
table was prepared for this study from the available soil information and lookup tables,
and then replaced the default ‘usersoil’ table in the SWAT database.

2.3.6. Climate Data

The climate data we used in this study included daily rainfall, temperature (maximum
and minimum), wind speed, solar radiation, and relative humidity. They were obtained
from the Australian Bureau of Meteorology [57]. The climate data was obtained for a period
of 21 years (from 2000 to 2020) in daily time series format. These data were processed
using the Microsoft Excel tool to fill 0.2 of the missing data by the linear interpolation
method [58].

2.3.7. Sensitivity Analysis and Hydrological Model Calibration

We applied sensitivity analysis following the guidelines explained in the previous
studies [59], using the SWAT Calibration and Uncertainty Programs (SWAT-CUP). The
SWAT-CUP has five algorithm options for model calibration (SUFI-2, PSO, GLUE, ParaSol,
and MCMC), 11 functions (mult, sum, R2, chi2, NS, br2, ssqr, PBIAS, KGE, RSR, MNS) and
integrated features such as plot visualisation [60]. The sensitivity analysis was done using
SUFI-2, considering the one-at-a-time method of 15 parameters related to the processes
of streamflow, recharge, evapotranspiration, percolation, and infiltration from the list
to identify the most sensitive ones for the model simulations at the Burrinjuck Dam.
According to previous studies [61], the Curve Number for moisture condition II (CN2) and
the coefficient of water percolation to the deep aquifer (RCHRG_DP) were identified as the
two most important sensitive parameters. Based on the literature review, among the two
sensitive parameters, CN2 was chosen for the model calibration of this study. However,
some other parameters such as the surface runoff lag coefficient (SURLAG) and Manning’s
roughness coefficient (CH_N2) were also analysed, which were not as sensitive as in the
previous modelling done by Saha and Zeleke [44]. The fact is that the previous study was
done in the Yass River gauging station, which was upstream of the Burrinjuck Dam basin,
while the present study focuses on the whole basin. Acquiring knowledge from several
previous studies that applied the SWAT model close to the study area helps parameter
selection for sensitivity analysis. Thirteen parameters were chosen to do sensitivity analysis
(Table 2) based on previous SWAT model applications in the Kyeamba Creek basin [28] and
Yass River basin [44]. The difference in basin scale could interfere in the sensitivity analysis.
Therefore, the parameters used for calibration in this study are not necessarily the same
proposed by Saha [44].
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Table 2. The table below shows the number of parameters applied, their definitions, and ranking in
the SWAT-CUP simulation.

Parameter Definition Value Range Unit Method Par.inputfile Ranking

Initial SCS runoff curve number for
moisture condition 35–89 % r CN2 1

Effective hydraulic conductivity in the main
channel alluvium 0–500 mm/h v CH_K2.rte 13

Manning’s n value for the main channel 0–0.3 — v CH_N2.rte 12
Base flow alpha factor 0–1 days v ALPHA_BF.gw 5

Groundwater delay 30–500 days v GW_DELAY.gw 10
Groundwater “revap” coefficient 0.02–0.2 — v GW_REVAP.gw 11

Threshold depth of water in the shallow
aquifer for return flow to occur 0–5000 mm H2O v GWQMN.gw 3

Threshold depth of water in the shallow
aquifer required for “revap” to occur 0–1 mm H2O v REVAPMN.gw 8

Soil evaporation compensation factor 0–0.65 - v ESCO.bsn 2
Average slope length 10–150 m r SLSUBBSN.hru 9

Surface runoff lag coefficient 0.05–24 — v SURLAG.bsn 15
Available water capacity of the soil layer −0.5–0.5 mm H2O/mm r SOL_AWC.sol 4

Depth from the soil surface to layer bottom −0.5–0.5 mm r SOL_Z.sol 6
Peak rate adjustment factor for

sediment routing 1–2 - r ADJ_PKR.bsn 14

Maximum canopy storage 0–100 mm H2O v CANMX.hru 7

In this study, we used the sequential uncertainty fitting algorithm (SUFI-2) and se-
lected the Nash–Sutcliffe model efficiency (NS) coefficient as a target function for calibration
procedures. In the calibration process, SUFI-2 captures the uncertainties of the model run.
The six parameters applied in the calibration process were selected from the sensitivity
analysis table based on their ranking (Table 2). A researcher [61] found that the calibration
process and uncertainties are closely related, and identifying these relationships are im-
portant. In the SUFI-2 interface, the input parameter uncertainty is expressed as ranges,
whereas the output parameter’s uncertainties are expressed from the 95 PPU (95% proba-
bility distribution), which is calculated using Latin American hypercube sampling from
the cumulative distribution of an output variable at 2.5% and 97.5%. The adjustment
between the simulation results and observed data can be done by the p-factor (the fraction
of measured data bracketed by the 95PPU band) and the R-factor (ratio of the average
width of the 95PPU band and the standard deviation of the measured variable) known
as statistical indices [61]. The p-factor value > 0.7 and R-factor value <1.5 are desirable for
streamflow discharge depending on the situation [62].

The SWAT model was calibrated (2004–2007) and validated (2008–2010) with a warm-
up period of three years (2000–2002). The calibration and validation processes were done in
monthly timestep at two different points within the watershed, starting from the upstream
of the streamflow station (Yass station) and then to the downstream station (Burrinjuck
Dam station).

2.3.8. Hydrological Model Performance Evaluation

In this study, we assessed model calibration performance using the coefficient of
determination (R2), Nash-Sutcliffe efficiencies (NSE), and percent bias (PBIAS) quantitative
statistics, which were used in previous studies [56,63,64]. Moreover, we applied 15 param-
eters in the SWAT-CUP simulation and ranked them following the model performance
acceptance guidelines documented by Arnold et al., [21], which are presented in Table 2.
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The Nash–Sutcliffe simulation efficiency (NSE) coefficient is a dimensionless statistic,
indicating the accuracy of simulated versus observed data against the 1:1 line [65]. NSE is
the most widely used statistical indicator for hydrological model performance, in which
the NSE value 1 represents observed and simulated values as the same, while negative
NSE value means simulations are extremely poor. NSE is defined as:

NSE = 1− ∑n
i=1(Qobs, i−Qsim, i)2

∑n
i=1

(
Qobs, i−Qobs

)2 (2)

where n is the number of time steps, Qobs, i is the observed flow at time step i (daily here),
Qobs is the mean of the observed flow, and Qsim, i is the simulated flow. The range of NSE
is [−∞,1], where 1 represents a perfect match between the observed and simulated flow.

A hydrological model with higher R2 is considered as a good result [66]. R2 is de-
fined as:

R2 = {
∑n

i=1

(
Qobs

i −Qsim
)(

Qsim
i −Qsim

)
∑n

i=1

(
Qobs

i −Qobs
)2

∑n
i=1

(
Qobs

i −Qobs
)2 }

2 (3)

where, Qobs
i and Qsim

i are representing the measured and simulated data for ith observation

and Qobs and Qsim are the mean of the measured and simulated data, respectively.
The percent bias (PBIAS) determines the average tendency to be greater or smaller

simulated values than their observed data [63]. The maximum PBIAS value is zero, indicat-
ing the simulation is exactly the same as the observed data. In general, a smaller PBIAS
value signifies accurate model simulation. PBIAS is calculated as:

PBIAS =
∑n

i=1

(
Qobs

i −Qsim
i

)
∗ 100

∑n
i=1 Qobs

i
(4)

where Qobs
i and Qsim

i are representing the measured and simulated data for the ith observa-
tion, respectively.

2.3.9. Remote Sensing Data

Moderate resolution imaging spectroradiometer (MODIS) data are available from the
U.S. Geological Survey website for free of cost [55]. We used the MODIS (Terra) 16-Day
Global 250 m composite product of MOD13Q1 (version V006) to identify the vegetation
condition. The NDVI values were selected from the available vegetation indices in the
MOD13Q1 product from imagery acquired during the period 2001 to 2020. We have
selected six plots of different vegetation types (average size between 1 and 2 km2) within
the study area (such as grass, shrub, and tree). These plots were selected randomly (i.e.,
stratified random sampling) based on the specific vegetation type dominant in the selected
plot area. We also selected point areas (500 m radius) at the bottom and top of each sub-
basin (Figure 4). A total of 60 areas (point area) were calculated for 40 sub-basins (three
sub-basins were too small to create a point). These plots have been converted into polygons
in the Google Earth Pro and then saved as KML files, which were later processed into
shapefiles in ArcGIS [50]. A pre-processing tool called the Application for Extracting and
Exploring Analysis Ready Samples (AppEEARS) was selected to obtain pre-processed
NDVI time-series data for those shapefiles prepared earlier.
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Figure 4. The vegetation NDVI was also calculated for the point area with a radius of 500 m selected
both from the top and bottom location within all sub-basins. The above figure only shows the point
locations of sub-basin 1 and 2.

2.3.10. Normalised Difference Vegetation Index (NDVI)

The NDVI data were processed using the AppEEARS tool [67]. The MODIS sensor
captures a range of broad spectrum of reflected sunlight from tree leaves. The healthy
vegetation mostly absorbs light from the red spectrum and reflects light from the near-
infrared (NIR) spectrum. NDVI utilises the contrast of strong reflectance in the near-infrared
region and the strongly absorbed reflectance in the red wavelength region. The NDVI
calculation was performed applying the difference between the red and near-infrared bands
and normalising it over the sum of the red and near-infrared bands (Equation (5)).

NDVI =
(Near In f rared−Visible red light)
(Near In f rared + Visible red light)

(5)

Three types of vegetation indices were obtained using the Google Earth map and U.S.
Geological Survey website. Firstly, the plots were selected for forest type vegetation within
the watershed in Google Earth Pro and saved into KML files. These KML files were then
processed in ArcGIS to convert into shapefiles and later used to obtain 20 years (2001–2020)
of NDVI data from USGS. These similar steps were followed to obtain NDVI data for shrub
and grass type vegetation within the watershed. We also calculated NDVI for each of the
43 sub-basins for the same period (2001–2020).

2.3.11. Machine Learning Algorithms for Data Analysis

A machine learning (ML) algorithm is a set of computational codes that can process a
large amount of data in a complex way [68]. It is also known as data-driven methods that
build models based on evidence obtained from a sample data set. The algorithms read and
processed data to learn the maximum possible patterns about the data [49]. In this study,
we applied the Waikato Environment for Knowledge Analysis (WEKA) tool, developed by
the University of Waikato, New Zealand [39,40]. Firstly, the WEKA tool was set up to run a
random forest model using 43 different datasets. These datasets included the combination
of SWC, groundwater flow towards stream, and different types of vegetation responses
(NDVI values). Each dataset was initially set for linear regression to find the collinear and
non-collinear variables. Secondly, the machine learning tool was prepared to run a support
vector machine (SVM) model using the same datasets.

The performance of all models was assessed in two ways: (a) using a 10-fold cross-
validation, which is a leave-one-out approach, and (b) using the 80 and 20 per cent split-
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sample method. These two approaches were performed to compute the root mean square
error (RMSE) and correlation coefficient (r) between the SWAT output variables (SW and
GW) and predicted vegetation response (NDVI value) of each model. We selected models
with higher correlation coefficient (r) values and smaller RMSEs to analyse the relationship
against soil water content (SWC) and groundwater flow (GW). We also analysed these
relationships based on rainfall intensity such as dry season (October to March) for less
intensity and wet season (April to September) for high intensity.

3. Results
3.1. Hydrological Model Calibration and Validation

Table 2 shows the sensitivity ranking of the different model parameters and their
ranges applied during the calibration. The model was calibrated and validated at two
different stations (Figure 5), for which the results are listed in Table 3. The results explained
that manual calibration performed better than auto-calibration. The 0.51 NSE value for the
manual calibration performance parameters can be marked as ‘satisfactory’ for the SWAT
model developed in the study area. The model in the study area was able to simulate about
51% of the variance on observed streamflow data.
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two different locations based on the available station, (i) Burrinjuck Dam, and (ii) Yass River station.

Table 3. The table below shows the number of parameters applied, their definitions, and ranking in
the SWAT-CUP simulation.

Scenario NSE R2 PBIAS

Default 0.25 0.36 73.2
Manual calibration 0.51 0.72 54.2

SUFI-2 0.41 0.55 68.2

The statistical indicators reflected a regression between observed and simulated stream-
flow for those two points with NSE 0.51, PBIAS 54.2, R2 0.72, p-factor 0.63 and NSE 0.54,
PBIAS 58.6, R2 0.73, and p-factor 0.68, respectively. The hydrographs show that the ob-
served and simulated values have a noticeable difference in the plots. Additionally, the
model slightly overestimated the low flow during the calibration and validation periods.

3.2. Relationships of Vegetation Responses and Groundwater

The average monthly SWC and groundwater data were presented in Table 4. The
average correlation coefficient of different vegetation types and SWAT model output vari-
ables over the study period in shown in Figure 6. The different correlation patterns of
vegetation types of responses and SWC (SWC) suggested that vegetations were influ-
enced considerably by SWC. The linear regression results show that shrub vegetation
NDVI is highly correlated (R2 = 0.82) to SWC than forest and grass type vegetation NDVI
(R2 = 0.78, and R2 = 0.72, respectively). However, grass type vegetation response is higher
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(R2 = 0.59) to groundwater (GW) compared to forest vegetation (R2 = 0.24) and shrub
vegetation (R2 = 0.25).

Table 4. ArcSWAT produced simulated soil water content (SWC) and groundwater flow (GW) data
presented as average monthly for the study area.

Variable January February March April May June July August September October November December

SWC 86.28 98.54 93.18 96.25 112.64 130.79 131.11 129.71 122.23 106.23 100.48 78.14
GW 6.07 3.72 5.10 4.59 4.60 9.13 21.15 29.00 28.73 24.57 15.01 10.96
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The WEKA modelling results show that sub-basin NDVI (including all vegetation
types within the sub-basin no 28) was highly responsive (r = 0.78) compared with forest
NDVI (r = 0.61) when the ML algorithms were applied against SWC and GW (Table 5).
Similarly, sub-basin NDVI (including all vegetation types within the sub-basin no 19 and
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28) was highly responsive (r = 0.76 and r = 0.74 respectively) than shrub and grass type
vegetation (r = 0.67 and r = 0.56 respectively) (Tables 6 and 7).

Table 5. The WEKA-generated modelling results for forest, sub-basin, top-point, and bottom-point
NDVI against SWAT-simulated variables, soil water content (SWC), and groundwater flow (GW).
The r represents the correlation coefficient.

Sub-Basin GW SWC SWC and GW

# 28 r RMSE RRSE r RMSE RRSE r RMSE RRSE

FOREST
SVM 0.373 0.064 91% 0.592 0.055 79% 0.610 0.055 78%
RF 0.219 0.076 110.42% 0.446 0.067 91% 0.540 0.060 85%

SB_NDVI
SVM 0.597 0.075 80% 0.710 0.066 70% 0.781 0.059 62%
RF 0.484 0.088 94% 0.604 0.079 84% 0.736 0.064 68%

TP_NDVI
SVM 0.471 0.072 89% 0.624 0.063 78% 0.660 0.061 75%
RF 0.407 0.080 98% 0.624 0.063 78% 0.631 0.064 79%

BP_NDVI
SVM 0.267 0.072 96% 0.513 0.064 85% 0.521 0.063 85%
RF 0.132 0.085 113% 0.330 0.078 104% 0.434 0.070 93%

Table 6. The WEKA machine learning produced modelling results for vegetation NDVI from shrub,
sub-basin, top point, and bottom point against the SWAT variables soil water content (SWC) and
groundwater flow (GW). The r represents the correlation coefficient in the below results.

Sub-Basin GW SWC SWC and GW

# 19 r RMSE RRSE r RMSE RRSE r RMSE RRSE

SHRUB
SVM 0.533 0.059 82% 0.681 0.051 70% 0.671 0.052 72%
RF 0.596 0.056 77.96% 0.625 0.055 74% 0.626 0.054 74%

SB_NDVI
SVM 0.579 0.073 82% 0.689 0.064 72% 0.759 0.058 65%
RF 0.462 0.084 94% 0.577 0.076 85% 0.685 0.066 74%

TP_NDVI
SVM 0.674 0.078 74% 0.697 0.075 71% 0.812 0.061 58%
RF 0.609 0.087 82% 0.571 0.090 86% 0.772 0.067 64%

BP_NDVI
SVM 0.247 0.082 97% 0.456 0.075 89% 0.451 0.075 89%
RF 0.041 0.098 117% 0.267 0.091 108% 0.363 0.082 97%

Table 7. The WEKA machine learning modelling results for grass type vegetation NDVI (sub-basin
combined, vegetation located at the top point, and vegetation located at the bottom point) against
SWAT variables. The correlation coefficient (r) for the random forest and support vector machine
algorithms are listed in the below table.

Sub-Basin GW SWC SWC and GW

# 23 r RMSE RRSE r RMSE RRSE r RMSE RRSE

GRASS
SVM 0.4642 0.1116 84.57% 0.5342 0.105 79.28% 0.5629 0.1024 76.98%
RF 0.4876 0.1094 83.15% 0.4607 0.112 82.75% 0.4955 0.1088 80.10%

SB_NDVI
SVM 0.6004 0.1071 80.63% 0.649 0.1007 75.75% 0.7431 0.0889 66.92%
RF 0.5369 0.1171 88.10% 0.4353 0.1299 97.78% 0.6522 0.1025 77.11%

TP_NDVI
SVM 0.6528 0.1276 75.90% 0.6729 0.1238 73.62% 0.7883 0.1035 61.55%
RF 0.581 0.1422 84.62% 0.4665 0.1605 95.47% 0.7031 0.121 71.97%

BP_NDVI
SVM −0.0069 0.1265 101.07% 0.1134 0.1242 99.19% 0.2045 0.1223 97.67%
RF −0.0646 0.1519 121.35% 0.0884 0.1438 114.89% 0.1552 0.1312 104.79%

3.3. Vegetation Responses Considering Their Location within the Watershed

The results shown in Figure 6 were calculated from the average data for 40 sub-basins.
The monthly average correlation coefficient result shows that vegetation in the top-point
location in a sub-basin is more sensitive (R2 = 0.77) to SWC when compared with vegetation
in the bottom point location (R2 = 0.72). On the other hand, vegetation in the bottom point
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location is more correlated to groundwater (R2 = 0.62) than vegetation in the top point
location (R2 = 0.57).

The average correlation coefficient of top-point (distant from outlet) and bottom-point
(close to outlet) NDVI and SWC is shown in Figure 7. The modelling results show that
vegetation in the top-point location of the sub-basin has moderate r values against GW
and SWC (0.67 and 0.69 respectively) compared with vegetation in the bottom location
(0.25, and 0.46 respectively). Moreover, the result shows strong correlations for the top
point vegetation NDVI against these two variables (r = 0.81 and r = 0.79, respectively)
(Tables 6 and 7). The negative value of r (−0.0069) shows that vegetation in the bottom
location of sub-basin #23 has no response to the GW (Table 7).
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plotted against the Soil Water Content (SWC) and groundwater flow (GW) to calculate the co-efficient
of determination (R2).

3.4. Seasonal Vegetation Responses

The results of the linear correlation analysis for different vegetation types for two
distinct seasons are shown in Figure 8. The correlation results show that shrub and forest
vegetations are highly correlated (R2 = 0.89 and R2 = 0.82, respectively) to SWC during the
wet season compared with grass type vegetation (R2 = 0.47). However, grass vegetation
shows a better response during the dry season (R2 = 0.52) compared with the shrub and
forest (R2 = 0.45 and R2 = 0.43, respectively).

The vegetation responses were observed for different locations within the sub-basin
(Figure 9). The regression analysis shows that vegetation in the top point and bottom point
locations of the sub-basin are highly correlated to GW in the dry (R2 = 0.79 and R2 = 0.84,
respectively) and wet season (R2 = 0.81 and R2 = 0.85, respectively). However, vegetation
in these two locations is moderately correlated to SWC during the wet season (R2 = 0.66
and R2 = 0.71, respectively) than the dry season (R2 = 0.51 and R2 = 0.54, respectively).

The WEKA modelling results show that shrub vegetation is moderately responsive to
GW and SWC (r = 0.62 and r = 0.63, respectively) in the dry season. However, forest and
grass type vegetation are less responsive to GW and SWC (r = 0.52, r = 0.48, r = 0.27, and
r = 0.38, respectively) in the dry season (Table 8). All three types of vegetation were less
responsive to GW and SWC in the wet season.

In contrast to the sub-basin level, the vegetation NDVI is highly responsive to GW
and SWC (r = 0.75 and r = 0.73, respectively) in the dry season. Furthermore, the sub-basin
NDVI shows a strong relationship with SWC and GW (r = 0.81) (Table 8) in the dry season,
and moderate relation (r = 0.62) in the wet season (Table 9). This result clearly indicates
that the vegetation in the sub-basin is positively influenced by groundwater flow both in
the dry and wet seasons.
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determination (R2).

Table 8. The below table shows the modelling results for different types of vegetation responses and
vegetation located at different points in the sub-basin. This result shows the relationship during the
dry season. The r value shows the correlation coefficient of the modelling results.

Sub-basin GW SWC SWC and GW
# 28 r RMSE RRSE r RMSE RRSE r RMSE RRSE

FOREST
SVM 0.527 0.053 0.837 0.481 0.056 0.871 0.594 0.051 0.792
RF 0.581 0.053 0.828 0.317 0.068 1.074 0.560 0.054 0.844

SB_NDVI
SVM 0.730 0.058 0.674 0.570 0.071 0.815 0.782 0.054 0.625
RF 0.702 0.062 0.716 0.434 0.084 0.974 0.750 0.058 0.666

TP_NDVI
SVM 0.564 0.068 0.817 0.539 0.070 0.840 0.649 0.063 0.753
RF 0.592 0.069 0.826 0.379 0.085 1.017 0.637 0.065 0.777

BP_NDVI
SVM 0.362 0.061 0.921 0.368 0.061 0.917 0.403 0.060 0.901
RF 0.420 0.063 0.944 0.254 0.073 1.099 0.403 0.062 0.935
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Table 8. Cont.

Sub-basin GW SWC SWC and GW
# 19 r RMSE RRSE r RMSE RRSE r RMSE RRSE

SHRUB
SVM 0.629 0.048 0.777 0.631 0.048 0.799 0.666 0.046 0.766
RF 0.627 0.048 .76.60% 0.604 0.050 0.784 0.633 0.048 0.771

SB_NDVI
SVM 0.755 0.052 0.650 0.731 0.054 0.676 0.812 0.046 0.580
RF 0.736 0.054 0.671 0.744 0.053 0.660 0.763 0.510 0.636

TP_NDVI
SVM 0.780 0.060 0.594 0.697 0.075 0.713 0.729 0.066 0.687
RF 0.777 0.060 0.623 0.789 0.059 0.605 0.789 0.059 0.605

BP_NDVI
SVM 0.424 0.062 0.892 0.322 0.065 0.958 0.442 0.061 0.893
RF 0.184 0.071 1.070 0.269 0.068 1.023 0.254 0.068 1.031

Sub-basin GW SWC SWC and GW
# 23 r RMSE RRSE r RMSE RRSE r RMSE RRSE

GRASS
SVM 0.271 0.094 0.967 0.382 0.090 0.920 0.412 0.088 0.902
RF 0.301 0.100 1.023 0.212 0.108 1.115 0.473 0.087 0.897

SB_NDVI
SVM 0.696 0.088 0.728 0.571 0.098 0.811 0.756 0.078 0.648
RF 0.572 0.101 0.837 0.442 0.116 0.956 0.730 0.083 0.682

TP_NDVI
SVM 0.708 0.109 0.709 0.575 0.124 0.808 0.763 0.100 0.649
RF 0.553 0.133 0.860 0.503 0.140 0.907 0.737 0.103 0.671

BP_NDVI
SVM −0.128 0.116 1.025 −0.206 0.116 1.026 0.008 0.123 1.092
RF −0.111 0.138 1.225 −0.139 0.138 1.227 −0.202 0.118 1.043

Table 9. The below table shows the modelling results for different types of vegetation responses and
vegetation located at different points in the sub-basin. This result shows the relationship during the
wet season. The r value shows the correlation coefficient of the modelling results.

Sub-basin GW SWC SWC and GW
# 28 r RMSE RRSE r RMSE RRSE r RMSE RRSE

FOREST
SVM 0.163 0.050 98% 0.372 0.047 93% 0.356 0.048 0.934
RF 0.230 0.055 107% 0.182 0.058 114% 0.242 0.053 1.035

SB_NDVI
SVM 0.501 0.060 86% 0.623 0.054 78% 0.710 0.049 0.699
RF 0.530 0.066 94% 0.458 0.067 96% 0.640 0.055 0.785

TP_NDVI
SVM 0.246 0.057 96% 0.371 0.054 92% 0.358 0.055 0.927
RF 0.361 0.058 99% 0.060 0.071 121% 0.092 0.076 1.288

BP_NDVI
SVM 0.089 0.058 99% 0.245 0.057 97% 0.203 0.057 0.981
RF 0.159 0.063 108% 0.028 0.071 121% 0.048 0.066 1.120

Sub-basin GW SWC SWC and GW
# 19 r RMSE RRSE r RMSE RRSE r RMSE RRSE

SHRUB
SVM 0.346 0.045 93% 0.431 0.044 90% 0.445 0.043 0.892
RF 0.460 0.044 90.10% 0.501 0.042 87% 0.474 0.043 0.889

SB_NDVI
SVM 0.478 0.062 87% 0.630 0.055 77% 0.623 0.056 0.778
RF 0.568 0.060 84% 0.637 0.055 77% 0.629 0.055 0.779

TP_NDVI
SVM 0.612 0.072 79% 0.612 0.072 79% 0.749 0.060 0.658
RF 0.640 0.072 79% 0.578 0.078 85% 0.676 0.068 0.746

BP_NDVI
SVM −0.037 0.076 101% 0.173 0.075 99% 0.114 0.076 1.013
RF −0.002 0.087 116% 0.118 0.086 114% 0.142 0.079 1.052

Sub-basin GW SWC SWC and GW
# 23 r RMSE RRSE r RMSE RRSE r RMSE RRSE

GRASS
SVM 0.228 0.120 97% 0.350 0.117 94% 0.339 0.117 0.946
RF 0.159 0.138 111% 0.071 0.145 117% 0.063 0.138 1.117

SB_NDVI
SVM 0.470 0.102 88% 0.519 0.099 85% 0.601 0.092 0.795
RF 0.460 0.109 94% 0.337 0.119 102% 0.510 0.103 0.885

TP_NDVI
SVM 0.621 0.109 78% 0.567 0.115 82% 0.709 0.098 0.701
RF 0.608 0.116 83% 0.353 0.142 102% 0.627 0.111 0.795

BP_NDVI
SVM 0.197 0.115 98% −0.281 0.117 100% 0.173 0.117 0.995
RF −0.062 0.144 123% −0.174 0.148 126% −0.043 0.134 1.143
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The vegetation in the top-point location within the sub-basin is also highly responsive
to GW and SWC (r = 0.78 and r = 0.70, respectively) than vegetation in the bottom-point
location (r = 0.42 and r = 0.32, respectively) in the dry season. The vegetation in the top-
point location has a higher r value (r = 0.79) when correlated against GW and SWC in the
dry season. However, vegetation in the top-point location has moderate responses to GW
and SWC (r = 0.64 and r = 0.61, respectively), and highly responsive (r = 0.75) against these
two variables together (Table 9).

4. Discussion
4.1. Relationship between Vegetation Responses (NDVI) and ArcSWAT Model Simulated Soil
Water Content (SWC) and Groundwater Flow (GW) Considering Vegetation Types and
Their Locations

This study presents a robust analysis of the relationships between groundwater avail-
ability and vegetation responses vigour in the floodplain zone. The hydrological model
simulated different groundwater variables by calculating a range of meteorological vari-
ables, which were later analysed in relation to NDVI using different machine learning
algorithms. Among random forest (RF) and support vector machine learning (SVM) algo-
rithms, the SVM represented higher r values (r = 0.78, r = 0.75, r = 0.74 etc.) compared with
RF (r = 0.73, r = 0.68, and r = 0.65 etc.) when analysed by different types of vegetation. A
previous study also mentioned outperformance of random forest in terms of vegetation
and water relationship modelling. Before the analysis, the SWAT model calibration was
completed and produced the 0.51 NSE value. This might reflect the high volume of ground-
water loss and disconnection of the deep aquifer in SWAT [10]. We found that the simulated
variables (SWC and GW) and vegetation NDVI relationships vary with vegetation types
when we applied data from the same sub-basin (watershed). The shrub-type vegetation
is highly correlated to SWC over forest and grass vegetation; however, grass vegetation
shows a high correlation to GW compared to forest and shrub vegetation [69]. The first
objective of this study to understand different types of vegetation responses to SWC and
groundwater is thus successful. Previous studies have found a strong correlation between
different types of vegetation and SWAT-simulated SWC [32]. However, in their studies,
different types of floodplain vegetation such as forest, shrub, or grass vegetation responses
have not been included.

We also noticed from our study that the vegetated location within the sub-basin also
impacts these relationships to SWC and GW. The vegetation located in the top point within
the sub-basin, which are distant to the water outlet or stream, showed higher response
to SWC (r = 0.69, 0.78 etc.). The SWC volume rate is usually high near the water outlet,
and that is why the vegetation located in the bottom point zone can easily access SWC
for their growth. This saturated soil enables surface and sub-surface flows and activates
connectivity between soils and streams [68,70]. Moreover, vegetation located in the top
point showed higher response to GW (R = 0.62) than vegetation located in the bottom point.
The modelling results also showed the correlation coefficient (r) value has increased by
42% against GW for vegetation located at the top point compared to the bottom point. The
correlation coefficient (r) was highly positive (0.81) for top-point vegetation when SWC and
GW variables were considered together as relationship predictors. This means vegetation
located in the top point can grow well when SWC and groundwater flow increases within
the sub-basin.

4.2. Seasonal Variability in Each Vegetation Type

In the seasonal domain, the vegetation responses become stronger in the wet season
when rainfall increases in the study area. As rainfall is the main source of water in the area
of interest, the average SWC and GW values increased by 22% and 32.68%, respectively,
during the wet season. Considering the inter seasonal water variability, the vegetation
responses to SWC and groundwater flow varied over different types of vegetation. We
found the grass vegetation response decreased by 10.6% in the wet season compared to the
dry season. This variation may also be related to inter-seasonal temperature differences.
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During the wet season, the average temperature in the study area is 18.45 ◦C (average
from 2001 to 2020), which negatively impacts vegetation growth in winter months [4,70].
However, forest and shrub vegetation types are highly responsive to the sub-basin’s SWC
during the wet season. Therefore, forest and shrub responses were increased by 48.8% and
49.43%, respectively, in the wet season when compared to the dry season.

Similarly, we analysed vegetation responses and groundwater relationships against
SWC and groundwater flow during the dry season using machine learning algorithms. The
vegetation NDVI (including all vegetation in the sub-basin) against GW and SWC produced
highly positive correlation coefficient values (r) (0.76, and 0.73 respectively). However,
when the model was run against GW and SWC together, the r value becomes higher (0.81).
The overall RF model performance was 7.3% better against runoff over the SVM classifier.
The result shows that the RF classifier performs better than the SVM algorithm in the
predictions. This result supports the findings of other studies where RF is widely used for
crop mapping, urban studies and particularly for land use/land cover applications [71].
In this study, the WEKA model produced different r values when we applied a combined
vegetation NDVI dataset at the sub-basin level. For example, the values of r between the
sub-basin NDVI and GW, SWC were 0.75, 0.73, and 0.81, respectively. This means that
vegetation in the sub-basin within a floodplain is highly responsive to groundwater flow
and SWC during the dry season.

Not surprisingly, we found that shrub and forest type vegetation are highly responsive
to GW (r = 0.63 and 0.58, respectively) compared to grass (r = 0.30). These results support
that woody vegetation type is highly responsive to groundwater, while the non-woody
vegetation type immediately responds to rainfall by seed or rhizome regeneration [72].
However, both shrub and forest vegetation were moderately responsive to SWC and GW
(r = 0.66 and 0.59, respectively). This means tree and shrub vegetation can grow well when
SWC and groundwater flow increase after the rainfall in dry season. Moreover, this study
suggests the grass vegetation type is highly dependent on groundwater during the dry and
winter season for their growth, and any instability or long-term drought can negatively
affect these floodplain vegetation communities.

A comprehensive documentation of different types of vegetation and groundwater
relationships can be prepared for efficient floodplain vegetation management based on the
results of this study. Agricultural production in similar regions around the world can be
increased by selecting appropriate crops based on their seasonal response to groundwater.

Authors should discuss the results and how they can be interpreted from the perspec-
tive of previous studies and of the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also
be highlighted.

5. Conclusions

The analytical results show that the vegetation system is highly dependent on ground-
water hydrology during the dry season in this study area, especially shrub and grass type
vegetation that are located distant from the water outlet in the HRU. This suggests that
small- and medium-rooted vegetation, for instance, quince, feijoa, wheat, and oats etc., can
grow well in similar floodplains globally, with possible implications for water management
during the dry season.

The results of the study conclude the relationship between floodplain vegetation and
catchment hydrology is two-way, and any change in the environment can directly influence
the vegetation response to groundwater. For example, suitable growing temperature and
available water can boost vegetation growth which, in turn, contributes to increasing the
potential evapotranspiration rate. On the other hand, grass type vegetation growth helps
to increase the infiltration. The hydrological simulation results suggested that rainfall
dominates the study area catchment water balance, in which groundwater flow increases
in the wetting period between April and September. Any changes in groundwater in the
basin area can directly impact vegetation conditions, which need to be included in future
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studies applying LAI in the hydrological modelling. As rainfall dominates the catchment
hydrology, any future changes in the rainfall pattern need to be considered carefully for
better floodplain management. Measuring the field soil moisture data and applying that
data for model calibration could be another option to compare model simulation to support
the output results.

In summary, this study contributes scientific insight into groundwater-vegetation rela-
tionship and outlines a methodology for modelling the relationship in contrast to seasonal
groundwater variations. The research outcomes can potentially support sustainable flood-
plain vegetation system development in arid environments. However, there are still some
drawbacks. This study considered vegetation types and their distance from the streamflow
while assessing their responses to the groundwater variables. There could be other factors,
e.g., vegetation density and depth of root can be included in the future studies.

Further research should consider improving the modelling results applying more data
for intense rainfall and drought years. Thus, the multiple regression including a time lag,
temperature, or rainfall frequency as well as future climate projections may give better
understanding on ecosystem hydrology.
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