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Abstract: Soil salinization and nitrogen (N) enrichment in saline–alkali soils resulting from human
activities cause potential environmental pressure on Phragmites australis. However, the response of
P. australis to N addition under different salt conditions remains unknown. This study examined the
changes in soil properties and growth indices as well as their relationship to N addition through
an in situ field experiment using three soil salinity levels with P. australis in the Yellow River Delta.
The study showed that soil salinity levels significantly affected the effects of N addition on soil
pH and water contents. N addition increased the soil NO3

– contents and decreased soil available
phosphorus (Avail. P) contents; however, soil salinity levels did not impact the effects of N addition
on soil NO3

− and Avail. P contents. N addition decreased the biomass of P. australis, since the
decrease in the competitiveness for N sources changed the vegetation diversity. The results suggest
that the biomass, plant height, and leaf soil plant analysis development (SPAD) values of P. australis
increased with increasing soil Avail. P contents rather than soil NO3

– contents. Therefore, we suggest
the important role of Avail. P addition in N enrichment conditions in saline–alkali wasteland and
estuarine wetland ecosystems.

Keywords: N addition; soil properties; growth indices; salinity gradients; Yellow River Delta

1. Introduction

Phragmites australis is one of the most extensively distributed emergent plant species
throughout the world [1,2]. P. australis provides ecosystem services such as nitrogen
removal, water purification, and maintaining biodiversity for saline–alkali wasteland and
estuarine wetland ecosystems [3,4]. Human activities, including reclamation, aquaculture,
and pollutant emissions, aggravate soil salinization and water eutrophication, which can
cause irreversible changes to the P. australis community in saline–alkali wasteland and
estuarine wetland ecosystems [5–7].

Nitrogen (N) is one of the key elements limiting the growth of salt marsh plants [8,9].
The increased N input resulting from human activities has many deleterious effects on
ecological function in saline–alkali wasteland and estuarine wetland ecosystems [10,11].
N enrichment has affected plant morphological traits, thus changing plant N uptake
strategies [12,13]. For example, the excessive N input has increased the stem production
rates of P. australis [14,15] and decreased the flexural strength of P. australis by reduc-
ing sclerenchyma [16]. However, when N is no longer a limiting resource, the competi-
tive advantage for N in plant communities changes [17]. Therefore, P. australis regulates
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morphological traits for superior performance, resulting in a competitive advantage for
N resources [18,19].

The Yellow River Delta is located at the junction of the Bohai Sea and Yellow River
and has a unique ecosystem and important ecological functions [20,21]. In recent decades,
coastal agriculture, fertilization, irrigation, tillage, and other management practices in the
Yellow River Delta have added complexity to soil water and salt transport processes and
intensified soil salinization and degradation [22]. Primary and secondary salinization and
soil degradation cause potential environmental pressure on P. australis [23,24]. Meanwhile,
the increasing N deposition caused by agricultural N inputs in the Yellow River Delta
seriously affects the structure and function of the saline–alkali wasteland and estuarine
wetland ecosystems [25,26]. However, the response of P. australis to N addition under
different salt conditions remains unknown.

In this study, we examined differences in the response of P. australis to N addition
among soil salinity gradients as well as the links between P. australis growth and changes
in soil characteristics. To achieve our objectives, we conducted a field experiment in which
N was not added or was added to the soil of P. australis at each of three sites exclusively
dominated by P. australis and differing in soil salinity levels. Specifically, we hypothesized
that (1) N addition would affect the performance of P. australis and alter soil characteristics
and (2) the impacts of N addition would vary with different soil salinity levels.

2. Materials and Methods
2.1. Site Description

The study sites were located in the Yellow River Delta adjacent to the muddy coastal
zone (118◦59′26′ ′ E, 37◦39′54′ ′ N; Figure 1). Sites were characterized by a temperate semi-
arid climate, which is representative of agriculturally intensive areas of North China, with
a mean annual temperature of 12.6 ◦C and a mean precipitation of 580 mm. Approximately
70% of the annual precipitation occurs in June–September. The soil is classified as a coastal
saline soil derived from alluvial loess parent materials [27].
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Figure 1. Location of the study area (a) and overview of the experimental site (b).

2.2. Experimental Design

We selected three soil salinity levels with P. australis at the study sites based on a soil
investigation in June: (1) high salinity level (soil salt contents ≥ 8 g kg−1), (2) medium
salinity level (soil salt contents ranged between 4 and 8 g kg−1), and (3) low salinity level
(soil salt contents ≤ 4 g kg−1). To keep microclimatic conditions similar, the distance
between any two adjacent stands of the three soil salinity levels was 5 m. The details of the
soil physicochemical characteristics at the three salinity levels are shown in Table 1.
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Table 1. Soil physicochemical characteristics of 20 cm topsoil samples at three salinity levels.

Salinity
Level

Salt
Contents
(g kg−1)

EC
(ds m−1) pH

Organic
Matter

(g kg−1)

Total N
(g kg−1)

Avail. P
(mg kg−1)

Avail. N
(mg kg−1)

High
Range 13.06–8.54 2.23–3.39 8.28–7.97 8–4.19 0.53–0.25 13.4–12.3 43.9–18.9
Mean 11.03 2.87 8.07 5.92 0.39 12.7 26.6
S.E.s 1.71 0.47 0.11 1.30 0.11 0.4 9.2

Medium
Range 6.94–4.19 1.11–1.82 8.49–8.13 12.16–2.8 0.86–0.47 12.3–11.2 49.1–26.7
Mean 5.43 1.42 8.29 6.97 0.55 11.7 40.0
S.E.s 0.95 0.27 0.12 3.66 0.14 0.4 9.0
Low

Range 3.97–2.02 0.55–1.05 8.65–8.24 11.5–5.72 0.76–0.43 12.4–11.1 82.7–20.7
Mean 3.20 0.85 8.49 7.92 0.60 11.7 49.1
S.E.s 0.75 0.22 0.15 1.90 0.10 0.5 21.9

The experimental site with N addition was set up on 10 July 2020 and was then
followed by high (H), medium (M), and low (L) salinity levels without N addition and three
soil salinity levels with N addition (HN, MN, and LN, respectively), with three replicates for
each treatment. Within each salinity level, 6 plots (2 m× 2 m), including three N addition
plots and three control plots, were randomly established. The distance between any two
adjacent plots within a stand was 5 m. To achieve the N addition, N was added to the
plots in the form of urea by dissolution in deionized water with application, for a total of
20 g N m−2 [28]. The N addition rates were in accordance with the N deposition rates in
the Yellow River Delta. Before the N addition experiment, the living plants were removed
inside the plots to ensure that the initial state of the test was consistent.

2.3. Sampling and Analyses

The growth indices of P. australis in each plot were measured at 20, 30, 40, 50, 60, and
70 d after N addition, including plant height and leaf soil plant analysis development
(SPAD) values. The leaf SPAD values indicated the level of chlorophyll and were measured
with a SPAD-502 (Minolta Camera Co. Ltd., Osaka, Japan) portable chlorophyll meter. Ten
healthy and fully expanded leaves were randomly measured at the middle layer leaf and
averaged to a single SPAD value for each experimental plot [29].

To measure aboveground biomass, P. australis and other plant stems in each plot were
cut at the soil level 70 d after N addition, the period of maximum biomass of P. australis.
The aboveground biomass was separated by species. The aboveground stems of P. australis
were dried at 70 ◦C for 48 h and weighed. Vegetation diversity in each plot was calculated
using Shannon–Weiner diversity [30].

Soil was collected at 30, 50, and 70 d after N addition. Five soil cores were taken at
two depths in each plot and combined into one mixed sample. The soil samples were
immediately transported to the laboratory and sieved through a 2 mm mesh to determine
the physicochemical properties.

2.4. Soil Properties

The soil water content (SWC) was measured by the oven-drying method [31]. The soil
electrical conductivity (EC) and pH were measured using a 1:5 soil:water solution (w/v).
The amount of 0.5 M NaHCO3 was used to extract soil available phosphorus (P) contents
(Avail. P) using an ultraviolet spectrometer (UV2600, Shimadzu, Kyoto, Japan). Fresh soils
were extracted with 2 M KCl, and the extracts were used to determine soil NO3

− using an
autoanalyzer (AA3, Bran-Luebbe, Norderstedt, Germany).

The mean values of soil properties at 0–20 and 20–40 cm represented the soil properties
in the upper layer. The mean values of soil properties at 40–60, 60–80, and 80–100 cm
represented the soil properties in the deeper layer.
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2.5. Data Analysis

One-way ANOVA with least significant difference (LSD) multiple comparisons was
performed to explore the differences in growth indices of P. australis and soil physicochemi-
cal properties. Two-way ANOVA was applied to examine the main and interactive effects
of N addition and salinity levels on P. australis biomass, dry matter, plant moisture and
vegetation diversity. Multiple-factor repeated-measures ANOVA was used to assess the
effects of N addition, salinity levels, growth stage, and soil depth as fixed factors on plant
growth indices and soil physicochemical properties.

We used linear mixed models to evaluate the effect of soil characteristics in the upper
and deeper layers on the dependent variables with growth indices of P. australis developed
in the “lme4” and “lmerTest” packages [32]. This allowed the potential differences in
variance among mesocosms to be considered when evaluating the coefficients of the models
and their confidence intervals.

All statistical analyses were performed by using R 3.6.2.

3. Results
3.1. Soil pH and Water Contents in Different Growth Stages

The mean values of soil pH under high, medium, and low salinity levels were 8.1, 8.2,
and 8.7, respectively (Figure 2a). The soil pH increased with the decrease in soil salinity
levels. N addition increased soil pH under medium and low salinity levels (p < 0.05) during
the growth periods and had no significant effect on soil pH under high salinity levels.
Meanwhile, soil pH was also significantly affected by the soil depth and growth stages of
P. australis (Table 2).
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Table 2. Results of multiple-way ANOVA on the effects of salinity (S), N addition (N), growth stage
(G), and soil depth (D) and their interactions on soil pH and water contents.

Soil
Properties

Salinity
(S)

N Addition
(N)

Growth
Stage (G)

Soil Depth
(D) S × N

pH *** *** *** * ***
SWC * ** *** *** **

The multiple-way ANOVA analysis results are also shown for indicating the significance of main and interaction
effects: ***, p < 0.001; **, p < 0.01; *, p < 0.05.

The soil salinity levels significantly changed the SWC in the upper layer (0–40 cm) at
30 d (Figure 2b). Compared with the SWC under the high salinity level, the SWC under
the low salinity level increased by 14.2% and 16.6% at 0–20 and 20–40 cm, respectively, at
30 d (p < 0.05). However, the soil salinity level had no significant effect on the SWC in the
deeper layer (40–100 cm). Compared with the effects of soil salinity and N addition, the soil
depth had more significant effects on the SWC (Table 2), which increased with increasing
soil depth.

3.2. Soil Salt and Nutrient Characteristics in Different Growth Stages

The soil EC increased with the increase in soil salinity levels and was also not sig-
nificantly affected by N addition (Figure 3a). The soil EC increased with the growth of
P. australis in the soil depth profiles and decreased with increasing soil depth (p < 0.001,
Table 3).
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Table 3. Results of multiple-way ANOVA on the effects of salinity (S), N addition (N), growth stage
(G), soil depth (D) and their interactions on soil salt and nutrient characteristics.

Soil
Properties

Salinity
(S)

N Addition
(N)

Growth
Stage (G)

Soil Depth
(D) S × N

EC *** * *** *** –
NO3

− * *** *** *** ***
Avail. P *** *** – *** ***

The multiple-way ANOVA analysis results are also shown for indicating the significance of main and interaction
effects: ***, p < 0.001; *, p < 0.05; –, not significant.

Soil NO3
− contents were not significantly affected by soil salinity but were significantly

changed by N addition (Figure 3b). Under the three soil salinity levels at 30d, the soil NO3
−

contents increased from 5.6 mg kg−1 to 45.8 mg kg−1 (p < 0.05) in the upper layer (0–40 cm)
and increased from 4.9 mg kg−1 to 20.5 mg kg−1 (p < 0.05) in the deeper layer (40–100 cm).
With the growth of P. australis, N addition still affected soil NO3

− contents in the upper
layer but had no significant changes in the deeper layer. The soil NO3

− contents decreased
with the growth of P. australis and the increase in the soil depth (p < 0.001, Table 3).

Soil salinity levels and N addition had significant effects on the soil Avail. P (Figure 3c,
Table 3). During the three growth stages, the soil Avail. P in the upper layer under the high
salinity level was 14.5% and 55.9% greater than that under the medium and low salinity
levels, respectively (p < 0.05). However, the soil salinity levels did not significantly change
the soil Avail. P in the deeper layer. Under high and medium salinity levels, N addition
decreased the soil Avail. P during experimental periods at the 0–40 cm depth by 5.6–41.3%
(p < 0.05). The soil Avail. P with N addition at the 40–100 cm depth was also lower than
that without N addition (p < 0.05). The soil Avail. P decreased with increasing soil depth
(p < 0.001) but was not affected by the growth of P. australis (Table 3).

3.3. Growth Indices of P. australis

The soil salinity levels had significant effects on the growth indices of P. australis
(Figure 4a). With increasing soil salinity levels, the plant height increased during the
growth periods. For the influence of N addition, the plant height with N addition was
greater than that without N addition during 20 d–30 d; in particular, a significant difference
in plant height between the treatments with and without N addition existed under high
and medium soil salinity levels (p < 0.05). With the growth of P. australis, the plant height
without N addition was greater than that with N addition. During 50 d–70 d, the plant
height with N addition decreased by 44.8–85.6% (p < 0.05) under the high soil salinity level,
decreased by 8.7–11.9% under the medium soil salinity level, and decreased by 8.8–45.6%
(p < 0.05) under the low soil salinity level compared with those without N addition.

Consistent with the effect of soil salinity levels on the plant height of P. australis, leaf
SPAD values also increased with the soil salinity levels. Under the high salinity level, the
leaf SPAD values with N addition were 11.6% and 24.1% greater than those without N
addition at 20 d and 30 d, respectively. During 50 d–70 d, N addition decreased leaf SPAD
values by 8.6–12% (p < 0.05) under the high salinity level. Under medium and low salinity
levels, N addition had no significant effect on leaf SPAD values. Therefore, the soil salinity
significantly affected the leaf SPAD values (p < 0.001), which were not significantly affected
by N addition (Table 4).

The effects of soil salinity levels on the biomass and dry matter of P. australis were
significant. The biomass and dry matter of P. australis under the high salinity level were
significantly greater than those under the medium and low salinity levels (p < 0.05, Table 5).
N addition decreased the biomass and dry matter of P. australis by 35.4–39.1% (p < 0.05)
and 36.2–40.3% (p < 0.05), respectively, compared with those without N addition under the
three soil salinity levels (p < 0.05). The plant moisture under the high soil salinity level was
greater than that under the medium and low salinity levels. Compared with the effects
of N addition, the soil salinity levels had more significant effects on the plant moisture
(p < 0.001). For the vegetation diversity, the treatment with the medium salinity level had
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the greatest values among the six treatments, which was significantly greater than the
vegetation diversity under the high salinity level (p < 0.05). Under the three salinity levels,
N addition increased the vegetation diversity in the plots (p < 0.05).
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Table 4. Results of multiple-way ANOVA on the effects of salinity (S), N addition (N), growth stage
(G), and soil depth (D) and their interactions on growth indices of P. australis.

Growth
Indices

Salinity
(S)

N Addition
(N)

Growth
Stage (G) S × N S × N × G

Plant height *** *** *** *** ***
SPAD *** – *** – *
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Table 5. Mean values and results of multiple-way ANOVA on the effects of salinity (S), N addition
(N), and their interactions (S × N) on aboveground biomass and other growth indices of P. australis.

Treatments Biomass
(t ha−1 F.W.)

Dry Matter
(t ha−1 D.W.)

Plant Moisture
(%)

Vegetation
Diversity

H 33.5 ± 1.2 a 18.1 ± 0.8 a 53.8 ± 0.6 a 0.50 ± 0.01 c
HN 21.7 ± 0.5 c 11.5 ± 0.3 c 53.2 ± 0.3 ab 0.75 ± 0.01 b
M 28.5 ± 1.1 b 14.7 ± 0.6 b 51.5 ± 0.6 b 0.82 ± 0.02 b

MN 18 ± 0.4 d 8.8 ± 0.2 d 48.6 ± 0.3 c 1.36 ± 0.02 a
L 12.5 ± 0.5 e 5.9 ± 0.3 e 47 ± 0.5 c 0.44 ± 0.01 c

LN 7.6 ± 1.2 f 3.6 ± 0.5 f 46.9 ± 1 c 0.74 ± 0.06 b

S *** *** *** ***
N *** *** * ***

S × N ** ** – ***
Mean values ± S.E.s (n = 3) are displayed. Significant differences are denoted by letters (p < 0.05). The two-way
ANOVA analysis results are also shown for indicating the significance of main (S, salinity levels; N, N addition)
and interaction effects: ***, p < 0.001; **, p < 0.01; *, p < 0.05; –, not significant.
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3.4. The Relationship between P. australis Growth and Soil Characteristics

For growth indices of P. australis, we estimated the fixed effects of the soil characteristics
at different soil depths (SWC and Avail. P in the upper and deeper layers, NO3

−, pH and
EC) at the three growth stages of P. australis with linear mixed models (Figure 5). We found
significant positive effects of soil Avail. P in the upper layer on plant height (estimate = 4.35,
p < 0.01) and leaf SPAD values (estimate = 0.922, p < 0.01). In particular, an increase in the
biomass of P. australis with increasing soil Avail. P contents was also observed (Figure 5c).
For vegetation diversity in the plots, significant positive effects of soil Avail. P in the deeper
layer (estimate = 0.09, p < 0.05) occurred (Figure 5d). The soil pH had significant negative
effects on the biomass of P. australis (estimate = −4.8, p < 0.001) and vegetation diversity
(estimate = −0.28, p < 0.05).
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Figure 5. Relationship between growth indices of P. australis and soil properties. The coefficient
estimate of plant height (a, AIC = 475.2, R2 = 0.56), leaf SPAD value (b, AIC = 328.2, R2 = 0.69),
biomass (c, AIC = 285.8, R2 = 0.63) and vegetation diversity (d, AIC = 81.79, R2 = 0.64) effect sizes
with±95% confidence intervals, while accounting for the random effect of soil properties tested using
the linear mixed-effects model. Mean coefficient estimates are significant if their 95% confidence
intervals did not contain 0. Negative or positive trend values indicate temporal decrease or increase,
respectively. *, p < 0.05. **, p < 0.01. ***, p < 0.001. SWCU, soil water content in the upper layer (0–40
cm). SWCD, soil water content in the deeper layer (40–100 cm). NIT, soil NO3

− contents. Av. PU, soil
Avail. P contents in the upper layer. Av. PD, soil Avail. P contents in the deeper layer.

4. Discussion
4.1. Responses of Soil Characteristics at Salinity Levels to N Addition

N inputs directly changed the soil salinity, soil pH, inorganic N pools, and other soil
chemical characteristics [33,34]. The high background values of soil salinity in saline–alkali
soils mitigated the effects of N addition on soil salinity [35,36]. Soil electrical conductivity
(EC) is a measurement that correlates with soil properties, including soil water-soluble base
cations and cation exchange capacity [37]. Therefore, we reported that N addition did not
change the soil EC values (Figure 3a). N addition significantly improved soil nitrification
rates, resulting in more released H+ [38,39]. Therefore, N addition decreased soil pH and
intensified soil acidification [40]. The complicated ion constitution in saline–alkali soils
reduced the impact of short-term N inputs on soil pH [41]. In this study, N addition
increased soil pH under high and medium salinity levels in the upper layer (Figure 2a),
caused by NH4

+ leaching into the upper layer. Moreover, the increased soil salt contents by
N inputs directly decreased the soil water potential and mitigated soil water evaporation
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rates; therefore, N addition could maintain moisture in the soil [42]. Our results also
suggested that N addition increased the soil water contents under medium and low salinity
levels at 30 d (Figure 2b). Therefore, soil salinity levels significantly affected the effects of N
addition on soil pH and water contents.

Urea, as an N source, directly increased soil inorganic N pools and soil nitrification
rates, resulting in increased soil NO3

− contents. Due to leaching, sedimentation and
nitrification, the effects of N addition on soil NO3

− contents were reduced with increased
soil depth [43]. We also reported that N addition increased the soil NO3

− contents in
the upper layer at the three salinity levels (Figure 3b). With the growth of P. australis, N
addition increased soil NO3

− contents in the deeper layer, caused by NO3
− leaching along

the soil profile. Under the wetting–redrying alternating environment in the saline–alkali
wasteland and estuarine wetland ecosystems, the stable soil Avail. P contents caused by
the slow decomposition of soil organic matter and plant litter did not increase microbial P
limitation [44]. Previous studies [36,45] have suggested that the effects of N addition on
soil total and available P contents were not significant. However, N addition improved the
soil phosphatase activities and increased the soil P availability, enhancing the acquisition of
P by plants [46]. The increased plant P uptake decreased the soil Avail. P contents. Our
results also indicated that N addition decreased soil Avail. P contents (Figure 3c). Therefore,
N addition increased the soil NO3

− contents and decreased soil Avail. P contents, but soil
salinity levels did not change the effects of N addition on soil NO3

− and Avail. P contents.

4.2. Effects of N Addition on Growth Indices of P. australis at Different Salinity Levels

High plant height and leaf chlorophyll improve access to light and increase the pho-
tosynthetic carbon-assimilating pathway, resulting in greater biomass and promoting the
growth of P. australis [11,47,48]. Under salt stress, P. australis adapts to saline conditions
by adjusting the distribution of photosynthate [49]. Therefore, the biomass of P. australis
increases with increasing soil salt content, which is basically consistent with the results
of the effects of salinity levels on the biomass and dry matter of P. australis in this study
(Table 5). Sufficient available N stimulates the dry matter production of P. australis, whereas
superfluous N supply results in the death of the plants [14,15]. In this study, N addition in-
creased the plant height of P. australis during 20 d–30 d, especially under high and medium
salinity levels (Figure 4a). N addition supported available N for plant growth, resulting in
an increase in tolerance to salt stress in P. australis [50].

As limiting factors of chlorophyll biosynthesis, N inputs directly regulate the chloro-
phyll content and SPAD values of salt marsh plants [51]. Our results suggested that N
addition increased leaf SPAD values from 20 d to 30 d (Figure 4b). Along with the pheno-
logical development of P. australis, N addition decreased the plant height and leaf SPAD
values (Figure 4). Previous studies have suggested that superfluous N supply caused a
lack of mineral elements related to chlorophyll biosynthesis (e.g., Ca2+, Mg2+), decreasing
the leaf chlorophyll contents [52,53]. However, we suggest that N addition changes the
competitive relationship for N sources among plant communities under high salinity levels,
resulting in the loss of competitiveness of P. australis [54,55]. Therefore, more available N is
taken up by other superior plants, limiting the N uptake and chlorophyll biosynthesis of
P. australis. We also report that N addition increased the vegetation diversity and decreased
the biomass of P. australis (Table 5), which proved that N addition affected the N uptake of
P. australis by changing the plant communities.

4.3. Relationship between P. australis Growth and Soil Characteristics

In response to N addition, the differentiation of soil characteristics affected plant
communities. The changes in soil characteristics and plant communities both affected
P. australis growth. N sources are essential for P. australis growth and development, whereas
N addition changes the competitiveness for N sources of P. australis by improving vegetation
diversity, resulting in decreased P. australis growth. Therefore, soil available N contents
under salt conditions may not affect or limit the growth of P. australis. The organic acid
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secreted from the rhizosphere of P. australis solubilizes soil sediment P [56]. Therefore,
P. australis with greater biomass and developed roots might be related to an increase in soil
Avail. P contents. Our results of linear mixed models suggested an increase in biomass,
plant height, and leaf SPAD values of P. australis with increasing soil Avail. P contents
instead of soil NO3

− contents (Figure 5). This phenomenon is most likely attributed to the
coordinated effects of N and P on plant growth [57]. Therefore, we suggest the important
role of available P addition in N enrichment conditions in saline–alkali wasteland and
estuarine wetland ecosystems.

5. Conclusions

Our study demonstrates that soil salinity levels significantly affected the effects of
N addition on soil pH and water contents. N addition increased the soil NO3

− contents
and decreased soil Avail. P contents, but soil salinity levels did not change the effects of N
addition on soil NO3

− and Avail. P contents. N addition increased the plant height and
leaf SPAD values of Phragmites australis during the jointing stage under high and medium
salinity levels. With the growth of P. australis, N addition decreased plant height, leaf SPAD
values, and biomass, since the decrease in the competitiveness for N sources of P. australis
changed the vegetation diversity. The results of linear mixed models suggested an increase
in biomass, plant height, and leaf SPAD values of P. australis with increasing soil Avail.
P contents instead of soil NO3

– contents. Therefore, we suggest the important role of
available P addition in N enrichment conditions in saline–alkali wasteland and estuarine
wetland ecosystems.
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