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Abstract: Assessing the influence of landscape pattern changes on ecosystem service value (ESV) is
critical for developing land-use polies and increasing ecosystem services. The data sources include
remote-sensing image data and statistical yearbooks from 2000, 2010, and 2020. This study employs
the patch-generating land-use simulation model, landscape pattern index, and ecological service
value estimation to analyse the changes in landscape patterns and ESV in Fujian coastal areas over
the last 20 years. The landscape pattern and ESV in the future (2050) are then simulated under the
low-carbon scenario (LCS), with the natural development scenario (NDS) serving as a comparison.
The results show that: (1) the most noticeable changes from 2000 to 2020 are the reduced cultivated
land area and the rapid expansion of construction land area. By 2050, construction land will account
for 7.67% of the total land area under LCS, whereas NDS will account for 9.45%, and changes in the
landscape pattern indices all indicate there will be greater variety and fragmentation of the landscape,
with the NDS being more serious than the LCS; (2) From 2000–2020, the total ESV value showed a
decreasing trend. In 2050, the ESV under the LCS will be 122.387 billion yuan, which is higher than
the 121.434 billion yuan under the NDS. Regulating services contribute the most to the total ESV,
followed by support services; and (3) In the past 20 years, except for a slight increase in water area,
the ESV of other landscapes has decreased, with a net decrease of 3.134 billion yuan in total. The
R2 fitting between the area change of cultivated and construction land and the total ESV reached
0.9898 and 0.9843, respectively. The correlations between ESV and landscape indices indicate that
landscape pattern changes significantly impact ESV. Simulating ESV in LCS can provide guidance
for optimising landscape patterns, promoting the benign operation of the regional ecosystem, and
achieving sustainable ecological development.

Keywords: ecosystem service value; scenario simulation; landscape patterns; patch-generating
land-use simulation (PLUS) model; Fujian coastal areas

1. Introduction

Carbon emissions affect the ecosystem by influencing climate change, thus affecting
ESV [1]. In September 2020, China put forward the goal that “carbon dioxide emissions
should reach the peak by 2030 and strive to achieve carbon neutrality by 2060” at the UN
General Assembly [2]. With policies such as the dual control of CO2 emissions, major
cities around the world are exploring landscape models for low-carbon scenarios [3]. To
respond to the goal and mandate of carbon emission reduction, there is an urgent need to
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find a reasonable balance between landscape structure and low-carbon emissions, and to
increase its ecological effects accordingly [4]. Coastal areas are often the ecosystems with
the relatively highest economic development but with the most intense human disturbance.
This significantly alters landscape patterns which, in turn, affects the formation, distribution,
and provision of ecosystem services (ESs) by changing the structure, function, and spatial
patterns of ecosystems [5,6]. Therefore, assessing the response mechanisms between the
value of ecosystem services and changes in landscape patterns in coastal areas based on a
low-carbon perspective is important for optimising the overall benefits of ecosystem service
provision and promoting coordinated socioeconomic and ecological development [7].

In 1997, Costanza proposed the following important factors to consider in ecosystem
service value (ESV) assessments: first, human and other species’ lives are important and
their changes need to be assessed through the valuation of ESs; second, there should be
greater recognition of transparent ESV in public decision-making; and third, weighing
and choosing between different ESs needs to be based on ecological value valuation [8].
The valuation of ecosystem services is now increasingly used by scholars as a framework
for ecosystem restoration, nature conservation, watershed management, and sustainable
development. For example, Xie et al., used the Aksu River as an example to reveal the
relationship of ESV with natural conditions, climate change and human activities, helping
decision-makers achieve sustainable management of ecosystem service and develop land-
use strategies in an arid inland–oasis river basin [9]. Gao et al. took Shijiazhuang as an
example to evaluate the value of ESV under three scenarios for 2030, effectively enhancing
urban ESV and safeguarding urban ecological security [10]. However, studies using
ecosystem service valuation have mostly focused on watersheds and city–county areas, and
lacked detailed quantifications on a macroscopic scale (e.g., provincial coastal areas). The
ESV evaluation approaches are generally classified into two categories. The first category is
a value evaluation based on the unit-service function, usually applied to relatively small
areas. This method is complex, data-intensive, and redundant, and the determination of
parameters is vulnerable to subjective factors [11]. The second technique is the equivalent-
factor method, based on the unit-area value provided by Costanza et al. It is a value-transfer
approach, that uses landscape as a vehicle to estimate ESV by assigning a value factor
to each unit area of the ecosystem. It is more suitable for assessing ESV in large-scale
areas, such as Fujian coastal areas [12–14]. However, this method needs to be based on the
determined value coefficient; therefore, it is particularly critical to adapt the factor to the
actual situation of the study area.

Various landscape structure simulation models have been developed to predict future
changes in landscape patterns. Relative to CLUE-S, ANN [15], CA [16], and FLUS [17], the
patch-generating land-use simulation (PLUS) model developed by Liang et al. has high
accuracy and fast operation in simulating landscape components [18]. There has been a
large body of research on the response of changing ‘past-status’ landscape patterns to the
ESV. Some scholars have modelled changes in ESV under multiple scenarios, but fewer
studies have incorporated a low-carbon scenario (LCS) in ESV as a constraint to account
for future landscape pattern changes. Not only is the estimation of ESV, which is closely
related to landscape patterns, highly dependent on economic drivers and development
strategies, but also it is subject to considerable uncertainty. To address this issue, this study
proposes a low-carbon scenario analysis to pave the way for rational decision-making in
response to the development direction of future society [19].

Fujian coastal areas are situated in the lower sections of the rivers, where the to-
pography is undulating and fragmented. There are difficulties such as environmental
pollution and water and soil loss, and natural catastrophes such as typhoons and floods
occur year-round. Consequently, the natural environment is quite delicate. In addition,
it is located in the hub of mountain and sea areas, with a rapid rate of socio-economic
development and human population growth; thus facing problems such as intensified
land-use, serious land fragmentation, and reduced ESV [20,21]. This study analyses the
changes in landscape patterns and ESV in Fujian coastal areas from 2000 to 2020, and uses
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the PLUS model to simulate the spatiotemporal distribution of the landscape patterns in
2050 under the two scenarios of LCS and NDS, on the basis of which ESV is estimated, thus
revealing the response mechanism. The objectives of this study were to: (1) explore the
spatiotemporal dynamics of the landscape patterns and ESV in coastal Fujian; (2) predict
landscape patterns and ESV in 2050 in response to different scenarios; and (3) reveal the
response of ESV to changes in the landscape patterns. The research results provide new and
actionable insights into optimising the landscape pattern and improving the ESV of Fujian
coastal areas under the guidance of carbon neutrality, as well as promote the co-creation of
ecological civilisation and the harmonious co-existence of human and nature.

2. Materials and Methods
2.1. Study Area

The study area is the Fujian coastal areas (between 23◦73′ and 27◦47′ N and 117◦16′

and 120◦20′ E), which are a crucial ecological transition zone and area of interlocking plant
and animal distribution in China, as well as Fujian’s most economically developed region.
The coastal area of Fujian is adjacent to the Pearl River Delta urban agglomeration in the
south, the Yangtze River Delta city cluster in the north, and the Taiwan Province across
the sea [21]. It mainly includes six prefectural cities: Ningde, Fuzhou, Putian, Quanzhou,
Xiamen and Zhangzhou. The total area is 5.48 × 104 km2, accounting for 44.2% of the total
area of the Fujian Province. The study area has a typical subtropical monsoon climate with
average temperatures ranging from 17 ◦C to 22 ◦C and average precipitation ranging from
1200–1700 mm (Figure 1).
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Figure 1. Geographical location and administrative division of Fujian Coastal Areas.

2.2. Data Source

This study collected three land-use maps with a spatial resolution of 30 m for 2000,
2010, and 2020. The Resource and Environmental Science Data Centre of the Chinese
Academy of Sciences (http://www.resdc.cn/, accessed on 28 November 2022) classifies
land-use types into six major categories including cultivated land, woodland, grassland,
water, construction land and unused land. The accuracy of their maps are all over 94.3%.
The drivers used in the study include natural factors, socio-economic factors and acces-
sibility factors. The natural factors DEM was obtained from Geospatial Data Cloud, and
slope and direction data were extracted from the DEM. Annual precipitation, average
annual temperature and soil type data were obtained from the Resource and Environment
Data Centre of the Chinese Academy of Sciences (http://www.resdc.cn/, accessed on
28 November 2022). Kilometre-grid GDP, luminous lights, population grid data and other

http://www.resdc.cn/
http://www.resdc.cn/
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socio-economic factors also come from the Resource and Environmental Sciences Data
Centre. Accessibility factors include the distance to different graded roads, water sources
and railway stations extracted from OpenStreetMap (https://www.openstreetmap.org/,
accessed on 28 November 2022). All spatial datasets were resampled to a resolution of
30 × 30 m and converted to the same projection (WGS_1984_UTM_ Zone_50N) for consis-
tent analysis (Table A1).

2.3. Research Process and Methods
2.3.1. Research Process

The flow chart of this study mainly included four parts (Figure 2). First, the collected
social and economic data was processed. Secondly, Markov chain was used to predict
LUCC demand, and the PLUS model was used to distribute the demand. Thirdly, the
landscape index was used to describe landscape pattern changes. Fourthly, ESV was
quantified and the response of ESV to landscape pattern changes was analysed.
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2.3.2. Landscape Types Simulation and Prediction Based on LCS

The PLUS model couples Land Expansion Analysis Strategies (LEAS), Cellular Au-
tomata (CA), Markov Chains and Random Forests [18]. First, the extension parts of various
types of landscape are extracted, then the RFC is used to analyse the relationship between
the extension parts and the driving variables, and to calculate the growth probability to
obtain the conversion rules. Finally, the CA model is used to simulate and forecast future
landscape [22].

This study chose 15 influencing factors from three aspects—natural factors, socioeco-
nomic factors, and accessibility—and included elevation, slope, precipitation, temperature,
soil type, kilometre-grid GDP, population density, night light and distance from differ-
ent levels of roads. They are unified with the projection-coordinate system and spatial
resolution of land cover data (Figure 3). Combined with the transfer of landscape types
in the study area, the parameters were tuned several times to determine the land-use
transfer-cost matrix. The probability of random patch seeding was set to 0.0001 (parameter
range 0~1; a value closer to 1 means that the type of land is more likely to produce new
patches). The neighbourhood-factor parameters of cultivated land, woodland, grassland,
water, construction land and unused land were set to 0.11, 0.02, 0.25, 0.05, 1, 0.002 [23].
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The accuracy of the simulation results was assessed by the Kappa coefficient and the
FoM (Figure of Merit) coefficient. The Kappa coefficient is 0~1. When Kappa ≥ 0.75, the
consistency between actual degree and simulation degree is high [18]. Theoretically, the
FoM value ranges from 1% to 59%. The higher the value, the higher the accuracy of the
simulation results. In fact, FoM is usually less than 30% [24,25].

2.3.3. Scenario Setting and Conversion-Cost Matrix

In this study, the scale of landscape development in coastal areas of the Fujian
Province was constrained in accordance with the General Land Use Plan of Fujian Province
(2006–2020) and the Fourteenth Five-Year Plan for National Economic and Social Devel-
opment of Fujian Province and the Outline of Visionary Targets for 2035 [26]. This study
establishes a LCS to predict changes in Fujian’s landscape pattern in 2050, and uses the NDS
as a comparison [27]. The NDS is the basis for constraining the simulation of landscape-
change modelling. It directly simulates the future landscape based on the transformation of
the past landscape, without the constraining influence of policy on landscape development.
The LCS aims to increase carbon sink capacity and reduce carbon emissions by reducing
the probability of conversion of woodland, grassland and water land into construction
land, and limiting the conversion between more different landscape types, so as to add
low-carbon factors into the LCS.

Under space constraints, the number of landscapes in the future is the same, but their
spatial positions are different. The space constraint is mainly adjusted by changing the
space-transfer matrix, and the transformation rule of the transfer matrix is whether one
type of space can be converted to another type of space [28]. In the conversion-cost matrix,
0 signifies that the category cannot be transferred to another, while 1 means the reverse. In
this paper, two conversion-cost matrices are set for different scenarios (Table A2).

2.3.4. Index-Selected Landscape Patterns

Landscape indices are extremely condensed information about landscape patterns
that reflect their structural composition and spatial configuration. Because some landscape
indices are redundant, we chose typical indices to reflect the landscape patterns based on
actual situation and research demands [29]. Twelve landscape indices were selected on the
two scales of patch type and landscape level. These included the number of patches (NP);
patch density (PD) and average patch area (AREA_mn) that can reflect the density and
difference; the percentage of patch area (PLAND) and the largest patch (LPI) that reflect
the change of area size; the average European nearest neighbour distance (ENN_mn) that
reflects the proximity of patches; Edge density (ED) and landscape shape (LSI), reflecting
changes in landscape shape; as well as conglomeration index (CLUMPY), aggregation index
(AI), dispersion in juxtaposition index (IJI) and contagion index (CONTAG), reflecting
aggregation and dispersion (Table A3) [30–32]. All indices were used with Fragstats 4.2.1
to quantify the spatial and temporal characteristics of landscape change [33].

2.3.5. Estimation of ESV and Correction of Coefficients

Xie et al. set the food production function of farmland to 1, which represents the
economic value of natural food production per unit area of farmland per year on average
throughout the nation [34,35]. In this study, the economic value of food production per
unit area was revised to match the ecosystem assessment of the Fujian coastal areas, where
the ESV for construction land was defined as 0 (Table A4) [36,37].

Considering the land-use change under the regional background, the sown area, yield,
and average price of three major crops (rice, sweet potato and soybean) in Fujian coastal
areas from 2000 to 2020 were taken as the basic data. The economic value of food crops per
unit area of ecosystem in Fujian coastal areas was calculated as 1817.8 yuan/hm2 according
to Equation (1). The estimation formula is:

Ea = 1/7 ∑m
i=1

oi piqi
M

m = (1, 2, 3) (1)
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where Ea is the economic value of the ecological service equivalent factor per unit area of
farmland in Fujian coastal areas, and oi is the area of the ith food crop (hm2); pi is the yield
of the ith food crop (kg/hm2); qi is the average price of food crop i (yuan/kg); and M is the
total area of the three food crops. The unit area ESV of Fujian coastal landscape types was
determined by using the ecosystem service coefficient and land-use area (Table 1).

Table 1. Coefficient tables of ESV in the study area (Unit: Chinese yuan (RMB)/ha).

Ecosystem Service Class Cultivated
Land Woodland Grassland Water Unused

Land

Supply Service FP 2472 424 424 464 18
RM 164 976 624 454 55

Regulation Service

GR 2018 3199 2193 1745 200
CR 1036 9574 5799 3272 182
PE 309 2848 1915 3363 564
HR 4944 6926 4248 22050 382

Support Service
SFM 18 3896 2672 2118 236
MNC 345 297 206 164 18

BP 382 3551 2430 7171 218
Cultural Service AL 164 1557 1073 4308 91

According to Table 1, the total ESV, the ESV of each landscape land type and the
individual service function values for the Fujian coastal areas from 2000 to 2050 were
obtained respectively and calculated as follows:

ESV = ∑ Ai ×VCi (2)

ESV = ∑ Aif ×VCif (3)

where ESV represents the total regional ecosystem service value ($); Ai represents the
area of the ith landscape type (hm2); VCi represents the value coefficient for landscape
type i [($hm−2 a−1)]; ESV f represents the value of a single ecosystem service ($); and VCi f

represents the value coefficient of a single service [($hm−2 a−1)].

2.3.6. ESV and Landscape Patterns Index Correlation Test

The study used SPSS.21 software to calculate Pearson correlation coefficients between
landscape indices and the ESV at a grid cell of 3 km × 3 km, flagging correlations above the
0.05 level of significance to reflect the influence of landscape patterns indices on the ESV.

3. Results
3.1. Spatiotemporal Characteristics of Landscape Transition and Landscape Pattern Evolution
under LCS Simulation
3.1.1. Spatiotemporal Characteristics of Landscape Transition

Based on the pattern of landscape type changes in Fujian’s coastal region from 2000
to 2010, the 2020 landscape distribution (Figure 4b) was simulated and compared with
the actual landscape distribution (Figure 4a). The simulation results are generally in good
agreement with the observed landscape distributions. The accuracy of its precision was
verified by the Kappa and FoM coefficients, which had a Kappa value of 0.889 and FoM
value of 0.141, respectively, making the PLUS model suitable for predicting future landscape
changes in the coastal region of Fujian.

The landscape types were converted from 2000 to 2020. Cultivated land and woodland
had the highest turnover, with turnover areas of 1522 km2 and 739 km2, respectively. The
main direction of turnover was construction land, with turnover areas of 1361 km2 and
520 km2. In addition to cultivated land and woodland, grassland and water bodies were
also the main contributors to the increase in construction land area, and the transferred
areas were 229 km2 and 199 km2, respectively (Table A5).
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Figure 4. Observed and simulated results of landscape types: (a) observed landscape types of 2020;
(b) simulated landscape types of 2020.

Based on the current landscape distribution between 2000 and 2020, the distribution
of landscape types between 2030 and 2050 was predicted under the NDS and the LCS
(Figure 5). The results showed that the historical and simulated landscapes in the Fujian
coastal area had similar spatial distribution. In 2020, the woodlands accounted for 56.14%
of the total area, mainly distributed in the west and north of the study area. The second
largest landscape type was cultivated land, with a percentage area of 19.73% in 2020, mainly
located in Zhangzhou, Quanzhou, and Ningde. Grassland had an area of 15.97% in 2020,
and was located primarily in Ningde, Zhangzhou, and Quanzhou. Construction land
was concentrated in the Min Delta, with 69% of the total construction land in Quanzhou,
Xiamen, and Zhangzhou and 18% of the total construction land in Fuzhou. The water body
in Fuzhou accounted for 34.48% of the total water body area, followed by Zhangzhou and
Ningde, which together accounted for 43.86%. Under the two scenarios of LCS and NDS,
construction land will expand by 2030, 2040, and 2050. The proportion of construction land
in the LCS ranged from 5.58%, 6.62% to 7.67%, whereas that in the NDS ranged from 7.65%,
8.57% to 9.45%. It can be seen that the expansion of construction land in the NDS is more
extensive than that in the LCS. Areas with greater construction land expansion per unit
area were mainly in Xiamen and Quanzhou. In contrast, the proportion of cultivated land
between 2030 and 2050 declined in both scenarios, with the NDS declining more than the
LCS. The rest of the land-use types did not change significantly.
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Figure 5. Spatial distribution of landscape types in Fujian coastal area from 2000 to 2050.

3.1.2. Spatiotemporal Characteristics of Landscape Pattern Changes

The ED, LSI and PD indices at the landscape level increased over the research period,
showing that landscape fragmentation increased, and the shape tended to become more
complicated. The CONTAG index, which reflects the spreading trend, and AREA_mn,
which reflects the average size of patches, decreased, indicating that the continuity between
landscape types became lower and gradually fragmented. The IJI demonstrated the degree
of separation between landscapes, with larger values indicating more adjacent landscape
types. From 2000 to 2020, the IJI increased from approximately 54.12 to 62.17, and the IJI
index will reach 66.63 in 2050 under NDS, which further indicates that the landscape frag-
mentation is increasing; the PAFRAC index and SHAPE_mn index remain at approximately
1.4 and 1.9, respectively, with no apparent fluctuation trend, indicating that the overall
shape of the landscape is relatively simple between 2000 and 2020. In 2050, the PAFRAC
and SHAPE_mn indices remain stable at approximately 1.3 and 1.9 under LCS, respectively,
whereas these fall to 1.29 and 1.21 under the NDS (Figure 6).
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At the landscape-type level, the LPI and PLAND indices for woodland were con-
sistently significantly higher than for other landscape types, verifying the dominance of
woodland landscape types, as represented in the Figure 7. Except for construction land, the
LPI and PLAND indices of other landscape types decreased yearly. It is worth noting that
under the LCS, the decreasing trend of the indices is significantly convergent compared
with that under the NDS. The increasing trend of the PD and NP indices for each landscape
type indicated an increase in fragmentation and complexity of shape, with fragmentation
more pronounced in the NDS, most notably in cultivated land and grassland. ED is the
edge density; the larger its value, the higher is the landscape fragmentation. Woodland and
cultivated land have a larger ED, but the rising trend is not apparent across the years; the
ED of construction land is lower, but the increasing trend is more obvious. At the same time,
both the CLUMPY and AI indices continued to decrease, indicating that their landscape
connectivity was further weakened and the aggregation of patches became weaker. The
ENN_mn index for unused land is significantly higher than that for other landscapes,
indicating that unused land is further apart from each other, whereas the values of this
index for other types of land are always low and weakly changing, indicating that the rest
of the landscape is consistently more densely distributed. A decreasing trend in ENN_mn
is also evident for unused land; however, in the LCS, an increase occurs in 2050.

3.2. Spatiotemporal Characteristics of ESV under LCS Simulation
3.2.1. Spatiotemporal Distribution of ESV

In this paper, a 3 km × 3 km grid is used to express the spatial variation in the total
ESV in Fujian coastal areas from 2000 to 2050, and the values per unit grid are classified into
I (0–1.5× 107 yuan), II (1.5–2.0× 107 yuan), III (2.0–2.5× 107 yuan), IV (2.5–2.8 × 107 yuan),
and V (>2.8 × 107 yuan) categories (Figure 8).
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Figure 7. Landscape patterns index at landscape type level in Fujian coastal areas from 2000 to 2050.
Abbreviations: a (cultivated land), b (woodland), c (grassland), d (water), e (construction land), f
(unused land).

The ESV in the Fujian coastal area showed a decreasing trend in space. The area
with a low ESV was gradually expanded, and the area with a high ESV value gradually
reduced, especially in the midwest of Fuzhou City, west of Quanzhou City and the south
of Zhangzhou City. This was mainly because of the gradual increase in landscape segmen-
tation caused by the accelerated urbanisation process, which reduced the cultivated land
landscape area and expanded the landscape fragmentation process from the coastal areas
to the central part of the Fujian Province, thus leading to spatial changes in the ESV in the
study area [38]. According to statistics, the ESV in 2000, 2010, and 2020 was 129.877 billion
yuan, 127.744 billion yuan, and 126.743 billion yuan, respectively, showing an all-time
decreasing trend. By 2050, the ESV under the NDS will be 123.815 billion yuan, whereas
that under the LCS will be 125.109 billion yuan, an increase of 1.294 billion yuan, indicating
that the optimised LUCC structure is consistent with the LCS objective.
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3.2.2. Change Characteristics of Individual ESVs

The first-level service function of a single ecosystem regulates services that contribute
the most to the ESV in coastal areas of Fujian, with a total ESV exceeding 83 billion in
the past 50 years, accounting for approximately 67% of the total contribution. Support
services are second only to regulating services, with a total value of over 27 billion and
a contribution of over 20%. In terms of individual secondary ESs, climate, hydrological,
soil conservation, biodiversity, and gas regulation are the most important ESs in coastal
Fujian. From 2000 to 2050, the ESV of climate regulation was more than 32.5 billion yuan,
and the ESV of hydrological regulation was more than 28.5 billion yuan, contributing more
than 20% to the ESV of each period. The ESV of soil conservation, biodiversity, and gas
regulation was more than 12.5 billion yuan, contributing more than 10% of the ESV in each
period. The above five categories contributed to more than 80% of the ESV (Figure 9).
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Figure 9. Changes in the individual ecosystem service value (ESV) in Fujian coastal areas from 2000 to
2050. Food production (FP), material production (MP), gas regulation (GR), climate regulation (CR),
purified environment (PE), hydrological regulation (HR), soil conservation (SC), maintain nutrient
cycle (MNC), biodiversity (BD), aesthetic landscape (AL), supply services (SS1), regulating services
(RS), support services (SS2), cultural services (CS).

The overall ESV decreased from 2000 to 2020, with a change rate of 28.6%. From 2020
to 2050, the overall ESV also dropped, with a change rate under NDS of 27.3%, whereas it
was 14.11% under LCS. Among the individual ESV, the decline rate of food production was
the largest, reaching 7.78% from 2000 to 2020, which is related to the loss of cultivated land
in Fujian coastal areas. The rate of change of ESV in food production will still rank first by
2050. Under the NDS, the decline rate of food production reached 7.51%, and under the
LCS, the decrease rate was 2.88%, indicating that LCS can reduce the serious situation of
farmland loss (Table 2).

Table 2. Changes in ESV in the study area from 2000 to 2050 (×108 yuan/hm2).

Ecosystem Service Class ESV Change Rate (%)

NDS LCS

2000–2020 2020–2050

Supply services FP 7.78 7.52 2.89
MP 2.03 1.79 1.07

Regulating services

GR 3.21 2.90 1.42
CR 1.86 1.60 1.01
PE 1.78 1.68 1.08
HR 2.95 3.14 1.65

Support services
SC 1.57 1.35 0.93

MNC 4.21 3.81 1.69
BD 1.65 1.73 1.15

Cultural services AL 1.54 1.76 1.20
Total ESV 28.6 27.3 14.11

3.3. Response of ESV to Landscape Pattern Changes

Landscape patterns caused changes in the ESV in the Fujian coastal areas. The areas
with medium–high ESV values were mainly distributed in dense woodland and grassland
areas with relatively complete natural ecosystems, whereas the areas with low ESV values
were primarily distributed in areas with high population density, apparent urban expansion,
and serious loss of cultivated land. From 2000 to 2020, the main landscape change pattern
was the mutual shift between cultivated, woodland, and grassland (Table A5). The area
of construction land increased, whereas the area of other land-uses, such as cultivated
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land and grassland, decreased. Accelerated urbanisation has led to the rapid expansion of
construction land at the expense of large areas of cultivated land, which has reduced the
ESV of cultivated land in coastal Fujian by RMB 1.502 billion between 2000 and 2020 [39].

Predicting the change in ESV under the NDS and LCS provides a basis for realising
the dual control goal of CO2 emissions in China and sustainable land-use decisions [40,41].
The ESV in coastal areas of Fujian increased first and then decreased, with a net increase
of 205 million yuan (6.86%), whereas the rest of the landscape types decreased, with a net
decrease of 3.134 billion RMB in the total ESV. By 2050, the ESV of all landscapes will show
a downward trend, but the decline value in the next 30 years will be slightly lower than
that in the previous 20 years. The decline rate of cultivated land in 2050 under LCS is 4.10%.
Compared with the decline rate of cultivated land in the NDS of 11.39%, the decline in ESV
was greatly mitigated (Figure 10) (Table 3).
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Table 3. Changes in ESV of different landscape types from 2000 to 2050.

Landscape Type

ESV (108 Yuan) Change Rate (%)

NDS LCS NDS LCS

2000 2010 2020 2050 2050 2000–2020 2020–2050

Cultivated land 133.15 122.54 118.13 104.68 113.28 11.28 11.39 4.10
Woodland 952.24 946.59 943.10 933.45 934.91 0.96 1.02 0.87
Grassland 183.42 174.90 174.19 169.54 172.63 5.03 2.67 0.90

Water 29.89 33.36 31.94 30.44 30.21 6.86 4.71 5.42
Barren land 0.06 0.06 0.06 0.05 0.05 1.28 25.76 26.69
Total ESV 1298.77 1277.44 1267.43 1238.15 1251.08 9.13 45.55 37.98

The area of the six landscape types was correlated with the total ESV in the NDS
from 2000 to 2050, and a simple regression analysis was conducted between the areas
of the four landscape types that are strongly associated with the total ESV: cultivated
land, woodland, grassland and construction land (Figure 11). The changes in cultivated
and construction land areas fit the total ESV best, with R2 as high as 0.9864 and 0.9856,
respectively, explaining the changes in ESV well. Woodland and grassland also fit better,
with R2 values of 0.974 and 0.862, respectively, complementing the results of the correlation
analysis. In contrast, unused land and water correlated less well with the total ESV. The
results show that an increase in the area of construction land caused a decrease in the total
ESV, and an increase in the area of other types of landscape caused an increase in the total
ESV. From 2000 to 2050, the area of cultivated land, woodland, and grassland under the
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NDS decreased by 1204 km2, 310 km2, and 230 km2, respectively, and their ESV volume
decreased by 2.847 billion yuan, 1.879 billion yuan, and 1.388 billion yuan, respectively.
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Figure 11. Regression analysis of the change in landscape area of cultivated, woodland, grassland
and construction land and total ecosystem service value (ESV). (a) Cultivated land area and total ESV;
(b) Woodland land area and total ESV; (c) Grassland land area and total ESV; (d) Construction land
area and ESV.

The total ESV was significantly positively correlated with PLAND, LPI, and AI indices,
and negatively correlated with ED and NP, but not significantly correlated with CLUMPY,
LSI, and ENN_mn indices. This shows that the greater the number and complexity of the
shape of the landscape, the lower the ecological service value, whereas the concentration
of patches and the increase in landscape dominance were conducive to the enhancement
of ESV. The correlation between the landscape index and individual ESV was broadly
similar to that between the landscape index and the total ESV. In addition, the ESV of
food production had a strong negative correlation with ED and NP. CLUMPY had a
strong negative correlation with the ESV of raw material production, gas regulation, and
climate regulation. ENN_mn was only strongly positively correlated with the ESV of gas
regulation, hydrological regulation, and nutrient cycling. NP was weakly correlated with
the ESV of soil conservation but not the ESV of gas regulation. The ESV of food production,
biodiversity, and aesthetic landscapes were weakly correlated with AI. The ESV of gas
regulation, hydrological regulation, and nutrient cycling were weakly correlated with
ED (Figure 12).
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Figure 12. Correlation between landscape patterns index and ecosystem service value (ESV). Ab-
breviations: a (food production), b (material production), c (gas regulation), d (climate regulation),
e (purified environment), f (hydrological regulation), g (soil conservation), h (main nutrient cycle),
i (biodiversity), j (aesthetic landscape).

4. Discussion
4.1. Combination of LCS and PLUS Model

The changing landscape patterns of an area are dynamic in a nonlinear mode, involv-
ing complex layers of landscape change, and represent a typical complex system [42]. This
complexity poses significant challenges for landscape planning and ecosystem manage-
ment. To overcome these challenges, various simulation models have been developed to
accurately, effectively, and dynamically inform regional landscape planning. The PLUS
model used in this study had a high prediction accuracy for large regions, and its maximum
Kappa coefficient for the simulation of future landscape types in the coastal region of Fujian
was 0.889, higher than those of other models. Therefore, it is extremely credible that LCS
was included in PLUS model as a constraint condition to forecast future landscape pattern
changes [43]. Zhao et al. used the PLUS model to create three scenarios and successfully
predicted the landscape structure of Wuhan in 2035. The simulation results were com-
pared with those of other models, and the simulation accuracy was higher; therefore, the
landscape pattern was most similar [44]. In conclusion, the simulation results of the PLUS
model became more accurate and reliable in the various scenarios. The model was used in
this study to simulate the landscape patterns of Fujian coastal areas, giving the alternative
futures of a LCS and NDS in 2050. This provides substantial guidance and flexibility for
decision-makers to manage landscape patterns under different development goals.

4.2. Interrelationship between Landscape Patterns and ESV

The evolution of the landscape at the surface causes changes in the regional landscape,
area, and spatial location, with different landscape types providing different ecosystem
services [45]. Comparing the landscape patterns and ESV changes in the study area, it
was found that there was high consistency between the two. The accelerated urbanisation
and industrialisation, and massive increase of population in Fujian coastal areas have
direct impacts on landscape patterns, and consequently the entire ecosystem [46]. The
rate of ESV loss was higher in areas with significant changes in the landscape patterns.
Correlation-matrix analysis of the relationship between landscape type and ESV proved
important and effective as a way of studying the spatial patterns [47].

We concluded that the changes in cultivated and construction lands in Fujian coastal
areas exerted the greatest impact on the overall ESV. The major ways in which the cultivated
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land increased ESV were through conversion to water and woodland, but its significant
conversion to construction land eventually caused the ESV to fall. Since the expansion of
construction land in Fujian coastal areas, in particular, in the Min Delta, has not yet ended,
it is important to follow the land-use target of limiting the building area [48]. Similar to
cultivated land, the extensive conversion of woodland to construction land significantly
reduced the total ESV. As the ecosystem with the major productivity in the research region,
forests made up approximately 55% of the total area, but provided approximately 74% of
the ESV annually. Therefore, the forest protection red line should ensure that it is not subject
to government intervention, and it is essential to monitor the spatiotemporal dynamics of
the conversions from farmland to forests in the Fujian coastal areas [49]. The ESV simulated
in 2050 in this study was higher under LCS than NDS. The results of the study are useful
in providing guidance for the construction and development of the coastal areas in Fujian
from the perspective of optimising the ESV.

The use of correlation analysis to quantify the association between the landscape
pattern index and ESV was beneficial for developing a more reasonable ecosystem spatial
pattern [50]. This study showed that the total ESV of the coastal Fujian was significantly
positively correlated with PLAND, LPI and AI, and negatively correlated with ED and
NP, indicating that the more complex the landscape shape was, the greater the number of
landscapes, and the lower the ecological service value. This is consistent with the findings
by Hou et al. for the city of Xi’an, in which the ESV was significantly positively correlated
with FRAC_mn, PLAND, and AI, and strongly negatively correlated with ED and PD [51].
However, Lu et al. showed that the total ESV in Nanjing was positively correlated with
LPI, negatively correlated with CONTAG, and not strongly correlated with PD, SHDI, or
SPLIT [52]. This shows that there are differences between landscape patterns and ESV and
their interrelationships in the study areas, and different landscape patterns have different
ecological effects and affect ESs. Therefore, the relationship between landscape pattern
changes and ESV is not simply non-causal, and the ecological and geographical significance
of this relationship must be explored [53].

4.3. Policy Guidance

With the introduction of China’s ‘double carbon’ target and carbon-peaking initiatives,
enhancing ESV by gradually restoring the ecological environment and implementing green-
ing initiatives is an important technical means to achieve the ‘double carbon’ target [54].
The basic direction of the relationship between the ‘double carbon’ target and ESV in the
new development pattern is to combine policy orientation with technology integration to
build rich and beautiful low-carbon cities. This study is based on a low carbon context,
and through the establishment of the LCS scenario, the landscape structure is adjusted
to ultimately achieve the ESV enhancement target for Fujian coastal areas. The results of
the study show that the ESV value of the coastal region of Fujian in 2050 under the LCS
scenario is 125.109 billion, which is 1.294 billion higher than that of the NDS. Therefore,
the scenario setting established under the policy guidance is successful in optimising the
landscape structure for this study, which can provide a theoretical basis for the low-carbon
landscape-use pattern and ecological civilisation construction, and also provide the spatial
basis for the future coordinated conservation and development of the coastal areas of
Fujian [55].

4.4. Limitations of the Study and Future Work

Landscape pattern changes are a complex and dynamic process, and the analysis of
historical data alone cannot fully predict changes in landscape patterns. By analysing
landscape patterns in past and simulated scenarios, the impact of future landscape pattern
changes on ESV under the influence of low-carbon targets was explored [56]. The results of
this study enrich the research on the future ESV impacts of landscape pattern changes in
coastal Fujian, and can also be used as a reference for landscape pattern changes and ESV
studies in other larger regions. However, accurate assessment of ESV is a great challenge,
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and the equivalence-factor method we used is an alternative method that can easily and
quickly assess regional ESV levels [57]. The standard value of ESV, measured by the
economic value of grain production per unit area, changes with the development of the
market economy. The price change of crop varieties over time is not considered, making
the ESV prediction inaccurate to some extent [58]. Increases or decreases in landscape area
and changes in spatial layout can certainly lead to changes in the shape and connectivity of
patches in the study area, which in turn affect the value of ecosystem services. However,
changes in implicit patterns such as land quality, inputs, and outputs can also affect
regional landscape patterns and ESV; therefore, changes in landscape patterns caused by
socioeconomic factors and implicit land pattern shifts should be taken into account in the
future [59]. Finally, because of the complexity of the social and natural composition of
construction land, the ESV of construction land was ignored in the calculation process, and
the estimation of the ESV of construction land needs to be addressed in future studies.

5. Conclusions

This study uses the PLUS model to simulate dynamic changes in landscape patterns
and ESV in 2050 under the LCS. By exploring the correlation between different types of
landscape areas, landscape pattern indices, and ESV, an attempt was made to find the
intrinsic link between them, with the following conclusions:

1. The historical and simulated landscape types were similar in spatial distribution, and
the woodland landscape type had the largest area, followed by cultivated land and
grassland. The construction land in Quanzhou, Xiamen, and Zhangzhou accounted
for 69% of the total construction land area, whereas Fuzhou accounted for 18%. From
2030 to 2050, the construction land area under LCS will account for 5.58%, 6.62%
to 7.67%, whereas that under NDS will account for 7.65%, 8.57% to 9.45% of the
total area.

2. At the landscape scale, the ED, LSI, PD, and IJI indices increased, the CONTAG
and AREA_mn indices decreased, and the PAFRAC and SHAPE_mn indices did not
fluctuate significantly. At the landscape type scale, woodland land was the dominant
landscape in the study area, and its LPI and PLAND indices were always high. The
two indices of construction land increased on a yearly basis, whereas the other land-
scape types decreased, and the declining trend of LCS was relatively slow. The PD, NP,
and ED indices of each landscape type showed a rising trend, whereas the CLUMPY
and AI indices decreased. The changes in these indices indicate that the landscape
shape in the Fujian coastal areas tended to be complex and fragmented, the continuity
of landscape types became low, and the aggregation of patches became weak.

3. The total value of ESV in coastal Fujian decreased by 3.134 billion from 2000 to 2020,
and the LCS resulted in a 1.294 billion higher ESV in 2050 than the NDS, indicating that
the optimised LUCC structure is consistent with low-carbon conservation objectives.
Among the individual ESs, the contribution of regulating services is approximately
67%, and support services are more than 20%. Climate regulation, hydrological
regulation, soil conservation, biodiversity, and gas regulation are the most important
ecosystem service functions in coastal Fujian.

4. Over the past 20 years, the total ESV has decreased by 3.134 billion yuan. Except
for the slightly higher ESV in the water area, the ESV of the other landscape types
decreased. Urban expansion came at the cost of cultivated land loss, with a decline in
ESV of 11.39% for cultivated land in the natural conservation scenario and 4.10% in
the LCS. The total ESV values in the study area were significantly and positively corre-
lated with cultivated land, woodland, and grassland and significantly and negatively
correlated with construction land. The total ESV values were significantly and posi-
tively correlated with PLAND, LPI, and AI indices and significantly and negatively
correlated with ED and NP, whereas the remaining correlations were not strong.
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Appendix A

Table A1. Coefficients of ecosystem service value (ESV) per unit area in study area. (RMB/ha/year).

Data Type Data Year Resolution Source

Base Data Land-use data 2000–2020 30 m CAS (https://www.resdc.cn/,
accessed on 28 November 2022)

Natural factors

DEM
2016 30 m

DEM generated by NASA
SRTM1 v3.0

Slope Extracted from DEM
Temperature

2019
1 km

CAS (https://www.resdc.cn/,
accessed on 28 November 2022)

Precipitation
Soil type 2008

Distance to water 2018 30 m
OpenStreetMap (https:

//www.openstreetmap.org/,
accessed on 28 November 2022)

Socioeconomic factors
Population

2018 1 km CAS (https://www.resdc.cn/,
accessed on 28 November 2022)

GDP
night-light 30 m

Accessibility factors

Distance to trunk road

30 m
OpenStreetMap (https:

//www.openstreetmap.org/,
accessed on 28 November 2022)

Distance to primary road
Distance to secondary road

Distance to tertiary road
Distance to railway

Distance to railway station

Constraint
factors Open water 2018 30 m

OpenStreetMap (https:
//www.openstreetmap.org/,

accessed on 28 November 2022)

Table A2. Landscape type conversion-cost matrix under two scenarios.

2000–2020
LCS NDS

a b c d e f a b c d e f

a 1 0 0 0 0 0 1 0 1 0 0 0
b 0 1 1 0 0 0 0 1 1 0 1 1
c 0 1 1 0 0 0 1 1 1 1 1 1
d 0 0 0 1 0 0 0 1 1 1 1 1
e 1 1 1 0 1 0 1 1 1 0 1 1
f 1 1 1 0 1 1 1 1 1 0 1 1

a, b, c, d, e and f represent cultivated land, woodland land, grassland, water, construction land, and unused land,
respectively; rows within the matrix indicate transfers out and columns indicate transfers in.

https://www.resdc.cn/
https://www.resdc.cn/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.resdc.cn/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
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Table A3. Description of landscape pattern index.

Landscape Metrics The Description of Metrics

NP = ni ni = number of patches in the landscape patch type (class) i

PD = ni
A (100,000)(100) ni = number of patches in the landscape patch type (class) i

A = total landscape area (m2). Units: per 100 ha

Area_mn = ∑m
i=1 xi
N xi = The area of patch I; N = The area of patchs

PLAND =
∑n

j=1 aij

A × 100
aij = the area of a patch in a certain landscape type; A = the sum
of the areas of all landscapes

LPI =

n
max

j=1
(aij)

A × 100

aij = the area of patch IJ
A = the total area of the landscape; including the internal
background of the landscape

Enn_mn = cv(mean[patchij])
ENN[patchij] = the Euclidean nearest-neighbour distance of
each patch.

ED = E
A 106 E = Total boundary length; A = Total boundary area

LSI = ei
minei

ei = total length of edge (or perimeter) by class i in terms of
number of cell surfaces; includes all landscape boundary and
background edge segments involving class I
minei = minimum total length of edge (or perimeter) of class i in
terms of number of cell surfaces. units:%

CLUMPY =

[
Gi−Pi

Pi
for Gi < Pi&Pi < 0.5, else

Gi−Pi
1−Pi

]
Gi = Similar to the adjacent; Pi = Focal patch type

AI =
[

gii
max→gii

]
(100)

gii = Number of similar adjacent patches of the corresponding
landscape type

CONTAG =1 +
∑m

i=1 ∑m
k=1

[
pi

{
gik

∑m
k=1 gik

}]
·
[

ln pi

{
gik

∑m
k=1 gik

}]
2 ln m

× 100

Pi = proportional abundance of each patch type (i)
gik = number of adjacencies (k) between cells of patch type (i)
m = number of different patch types units: %

IJI =
−∑m′

i=1 ∑m′
k=i+1[( eik

E )∗ln(
eik
E )]

ln
(
[m′(m′−1)]

2

) eik = the length (m) of each unique edge type
E = the total landscape edge
(m′) = number of patch types

Table A4. Equivalent factors of ecosystem service value (ESV).

Ecosystem Service Class Cultivated
Land Woodland Grassland Water Construction

Land
Unused

Land

Supply Service FP 1.36 0.23 0.23 0.26 0 0.01
MP 0.09 0.54 0.34 0.25 0 0.03

Regulation Service

GR 1.11 1.76 1.21 0.96 0 0.11
CR 0.57 5.27 3.19 1.80 0 0.10
PE 0.17 1.57 1.05 1.85 0 0.31
HR 2.72 3.81 2.34 12.13 0 0.21

Support Service
SC 0.01 2.14 1.47 1.17 0 0.13

MNC 0.19 0.16 0.11 0.09 0 0.01
BD 0.21 1.95 1.34 3.95 0 0.12

Cultural Service AL 0.09 0.86 0.59 2.37 0 0.05

Abbreviations: food production (FP), material production (MP), water resources supply (MRS), gas regulation
(GR), climate regulation (CR), purified environment (PE), hydrological regulation (HR), soil conservation (SC),
maintain nutrient cycle (MNC), biodiversity (BD), aesthetic landscape (AL).
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Table A5. Landscape type transition matrix in coastal areas of Fujian from 2000 to 2020/km2.

2020
Transfer

outCultivated
Land Woodland Grassland Water Construction

Land
Unused

Land

2000

Cultivated land 10629 58 14 89 1361 0 1522
Woodland 35 28645 136 47 520 1 739
Grassland 12 362 8291 11 229 2 616

Water 15 9 12 995 199 5 240
Construction land 8 6 5 15 1704 0 34

Unused land 0 0 2 0 1 38 3
Transfer in 70 435 169 162 2319 8

Land area gain or loss −1452 −304 −447 −78 2276 5
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