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Abstract: Elevated runoff export and declines in soil microbial biomass and enzyme activity following
forest conversion are known to reduce soil inorganic nitrogen (N) but their relative importance
remains poorly understood. To explore their relative importance, we examined soil inorganic N
(NH4

+ and NO3
−) concentrations in relation to microbial biomass, enzyme activity, and runoff

export of inorganic N in a mature secondary forest, young (five years old) Castanopsis carlessi and
Cunninghamia lanceolate (Chinese fir) plantations, and forests developing through assisted natural
regeneration (ANR). The surface runoff export of inorganic N was greater, but fine root biomass,
soil microbial biomass, enzyme activity, and inorganic N concentrations were smaller in the young
plantations than the secondary forest and the young ANR forests. Microbial biomass, enzyme activity,
and runoff inorganic N export explained 84% and 82% of the variation of soil NH4

+ and NO3
−

concentrations, respectively. Soil microbial biomass contributed 61% and 94% of the explaining
power for the variation of soil NH4

+ and NO3
− concentrations, respectively, among the forests.

Positive relationships between microbial enzyme activity and soil inorganic N concentrations were
likely mediated via microbial biomass as it was highly correlated with microbial enzyme activity.
Although surface runoff export can reduce soil inorganic N, the effect attenuated a few years after
forest conversion. By contrast, the differences in microbial biomass persisted for a long time, leading
to its dominance in regulating soil inorganic N concentrations. Our results highlight that most of the
variation in soil inorganic N concentration following forest conversion was related to soil microbial
biomass and that assisted natural regeneration can effectively conserve soil N.

Keywords: assisted natural regeneration; fine root biomass; forest conversion; microbial biomass;
soil inorganic nitrogen; surface runoff

1. Introduction

Large areas of natural forests have been replaced by forest plantations around the
world. Globally the area of naturally regenerating forests decreased by 301 million ha while
the area of forest plantations increased by 123 million ha between 1990 and 2020 [1]. China
manages ~70 million ha monoculture forest plantations by 2013, the largest area in the
world [2], with most of the forest plantations converted, directly or indirectly (i.e., converted
to other land use types in the past), from natural forests [3]. Specifically, forest plantations
increased 47% from 4.7 × 105 ha in 1998 to 6.9 × 105 ha in 2013 [4]. A large number of
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studies have examined the effects of forest conversion on important ecosystem services
and processes [5–7]. The conversion of natural forests to forest plantations often causes
soil degradation [8–10], especially the decline of nitrogen (N) availability [11–13]. Nitrogen
is a common limiting nutrient element for ecosystem productivity [14] and is available
to plants mainly in inorganic form (i.e., NH4

+ and NO3
−) in the soil. The depletion of

soil inorganic N is of great ecological importance [15] and may constrain the fertilization
effect associated with elevated atmosphere CO2 concentration [16,17]. Thus, revealing key
processes leading to the decline of soil inorganic N availability is critical to probe into the
decline of net primary productivity and soil fertility following forest conversion [18–20].

Forest conversion can affect soil inorganic N availability [21] through altering soil
microbial biomass, composition, and enzyme activity [22–24], as well as through increased
N export via elevated surface runoff [25]. Because microorganisms participate in important
N-cycling processes such as N fixation, nitrification, denitrification, and mineralization,
changes in microbial abundance, composition, and activity have major influences on soil
N availability. On the other hand, surface runoff is a major carrier of N export from
ecosystems [26], so that changes in the quantity, intensity, and temporal patterns of runoff
also have major effects on soil N availability [25,27].

Fine roots are the major link between plants and soil microorganisms [28,29]. Through
exudation and turnover (and subsequent decay), fine roots add carbon into the soil. Fine
root biomass has been shown to be positively related to soil microbial biomass N [30,31],
and is a key factor affecting soil microbial composition in the subtropical region following
forest conversion [32]. Rhizosphere N mineralization is a major source of soil inorganic
N [33–35]. Root exudation may activate soil microorganisms to synthesize N-acquiring
enzymes, thereby enhancing N mineralization [36–38]. Rhizosphere N transformation
processes are also closely related with fine root biomass [39].

Many studies have reported changes in soil microbial biomass, community abundance,
and inorganic N availability following forest conversion [12,31,40,41], but most of these
focused on post-conversion mature forests. For example, a large number of studies in
China have investigated microbial attributes and soil N availability in mature commercial
plantations converted from natural forests [42–44], while the patterns in young and middle-
age forest plantations, which account for 64% of the forest plantations by area in China [4],
are largely unknown. Moreover, compared to mature forests, the role of soil N availability
in ecosystem processes could be more important in young forests due to their high nutrient
demands associated with rapid tree growth [45,46].

Replacing natural forests with forest plantations is often accompanied by elevated
surface runoff due to decreased vegetation cover and soil infiltration capacity [47–49].
Surface runoff N export is a major pathway of ecosystem N loss [50], especially in humid
montane ecosystems characterized by high surface runoff [51]. However, a recent study
spanning tropical, subtropical, and temperate forests indicated that soil NO3

− export via
denitrification was six-fold the amount exported via leaching to runoff [52], suggesting
that microbial processes played an important role in regulating soil inorganic N availability.
Although studies have examined the effects of forest conversion on N availability [53–55],
few studies have explicitly quantified the relative importance of changes in soil microbial
properties and runoff N export on soil N availability.

In this study, we quantitatively examined the importance of surface runoff, soil micro-
bial biomass, and enzyme activity in explaining differences in soil inorganic N concentration
in a mature secondary forest and three types of young forest in southeastern China. Specif-
ically, we addressed the following questions. First, is the response of soil inorganic N
concentration to forest conversion similar among different types of young forests? Second,
which is a more important predicting factor of differences in post-conversion soil inorganic
N concentrations among young forests, microbial biomass, enzyme activity or N export via
surface runoff?
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2. Materials and Methods
2.1. Site Description

The study was carried out in the Fujian Sanming Forest Ecosystem National Observa-
tion and Research Station in southeastern China. This region has a maritime subtropical
monsoon climate, with a mean annual rainfall of 1550 mm (approximately 80% occurring
in March–August) and an annual mean temperature of 20.1 ◦C (10 ◦C in January and 30 ◦C
in July) from 2011 to 2015 [56]. The landscape is characterized by low-elevation mountains
and hills with a mean slope of ~30◦. The soil developed from biotite granite can be classified
as sandy clay Ferric Acrisol. The main natural vegetation is subtropical evergreen broadleaf
forests dominated by species of Fagaceae.

2.2. Experimental Design

Details of the experimental design and the treatments can be found in the study
by Yang et al. [57]. Briefly, four types of forest, including a mature secondary natural
forest and three types of young forest, were used to explore the relationships among soil
inorganic N concentrations and fine root biomass, microbial biomass, microbial enzyme
activity, and the surface runoff export of inorganic N (NH4

+ and NO3
−). The three types of

young forest are assisted natural regeneration (ANR) forests, Castanopsis carlessi (Hemsl.)
Hayata plantations, and Chinese-fir (Cunninghamia lanceolata (Lamb.) Hook) plantations.
The forests are in close proximity, with similar edaphic and topographical (slope angle
and aspect) characteristics [56]. The secondary forest was naturally regenerated from a
selectively logged natural forest in 1976. In December 2011, part of the secondary forest
was cleared to establish the young forests. For each of the three types of young forest, three
30 m by 40 m plots were randomly established in the up, middle, and down slope with a
randomized block design. Within the remaining uncut mature secondary forest, three plots
were also established in the up, middle, and down slopes.

In the young ANR forests, the boles were removed and branches, twigs, and leaves
were retained. Seedlings germinated from seed bank or sprouted from tree stumps and
soil were conserved in the first 3 years and then left for development through secondary
succession. The growth of seedlings in the ANR forests was facilitated by slashing some
shade-intolerant and densely clustered plants in 2015. The young Chinese-fir and young
Castanopsis plantations were established by planting seedlings at a density of 2860 and
2400 plants per hectare, respectively, following residue burning three months after the
logging in March 2012 to mimic the common practices of forest plantations in the region.
In the Chinese-fir and Castanopsis plantations, weeding was carried out twice a year in the
first 3–5 years until canopy closure. No fertilizers were used in any of the forests.

2.3. Soil and Fine Root Sampling, and Fine Root Biomass Estimation

Six soil cores were randomly collected from the surface layer (0–10 cm) in each plot
in April 2017 when the young forests were five years old. Before sample collection, litter
and fermented materials were carefully removed. Samples were immediately brought
to the laboratory at the site and refrigerated at 4 ◦C. Fine roots (diameter < 2 mm) were
carefully selected, and then the soil samples were sieved through 2 mm mesh to remove
gravel and plant debris within 24 h of sampling. Sieved soil samples from the same plot
were combined to form one composite sample and refrigerated at −20 ◦C prior to further
analyses, which took place within a week. Fine roots were washed with deionized water
and then oven-dried at 65 ◦C until the weight remained constant. Fine root biomass of each
plot was estimated from fine root dry weight per unit area of each sampling core, following
Ostonen et al. [58].

2.4. Soil Physical and Chemical Property Analysis

Soil bulk density was determined using a known volume stainless steel cylinder. Soil
NH4

+ and NO3
− were extracted with 2 mol L−1 KCl solution with a soil-to-solution ratio
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of 1:5 (v/v) and determined with a continuous flow injection analyzer (Skalar San++, Breda,
The Netherlands).

2.5. Soil Microbial Properties Assay

Analysis of phospholipid fatty acids (PLFAs) was employed to evaluate soil microbial
biomass and community composition following Huang et al. [59]. The extracted fatty
acid methyl esters (FAMEs) were quantified and identified by using Gas Chromatography
(Hewlett Packard 5890 GC, Agilent, Palo Alto, California, USA) equipped with the MIDI
Sherlock Microbial Identification System (MIDI Inc., Newark, DE, USA). Each fatty acid
group was quantified by comparing individual peak areas with that of the internal standard
19:0 (Matreya Inc., State College, PA, USA), and its quantity was expressed in nmol PLFA
per gram of dry soil. Microbial communities were classified into the following groups:
Gram-positive (GP) bacteria (i15:0, a15:0, i16:0, i17:0 and a17:0), Gram-negative (GN)
bacteria (16:1ω7c, 18:1ω7c, cy17:0 and cy19:0), actinomycetes (ACT) (10Me16:0, 10Me17:0
and 10Me18:0), arbuscular mycorrhizal fungi (AMF) (16:1ω5), and total fungi (the sum of
18:2ω6,9c and 18:1ω9c), following previous studies [60–63].

2.6. Potential Soil Enzyme Activity Measurement

Enzyme activities of acid phosphatase (AP), β-1, 4-glucosidase (BG), Nacetyl-β-d-
glucosaminidase (NAG), Cellobiohydrolase (CBH), and peroxidase (PER) were measured
using fluorometric method modified from Saiya-Cork et al. [64]. The pre-measurement
treatment was based on Liu et al. [65]. Fluorescence was measured using a Spectra Max M5
Molecular Devices (US) multiplate reader with an excitation of 365 nm and an emission of
450 nm, at 20 and 100 flashes.

2.7. NH4
+ and NO3

− Export via Runoff

One 20 m (along the slope) × 5 m (along the contour line) runoff plot was installed
in each replicated plot of the young forests following the Water and Soil Conservation
Experiment Specification (SL 419—2007) published by the Ministry of Water Resources of
the People’s Republic of China. A stainless-steel tank of 2 m (length) × 1 m (width) × 1 m
(height) was installed at the bottom of each runoff plot to collect surface runoff. Because
the mature forest yielded less runoff than young forests [66], a 1 m × 1 m × 1 m runoff
tank was installed at the bottom of each runoff plot of the mature secondary forest. Runoff
was recorded and sampled after each rainfall event (with measurable runoff in the steel
tank) between 2012 and 2015. A sub-sample of 100 mL was passed through a 0.45 µm
syringe filter. NH4

+ and NO3
− concentrations of filtered samples were analyzed using a

Continuous Flow Injection Analyzer (Skalar San++, Breda, The Netherlands). Runoff NH4
+

and NO3
− exports of each runoff event were calculated by multiplying NH4

+ and NO3
−

concentrations by runoff volume. More detail can be found in the study by Yang et al. [57].

2.8. Data Analysis

Differences in soil mineral N concentration, microbial attributes, and annual runoff
NH4

+ and NO3
− export among the four forest types were examined using one-way ANOVA

after Levene Homogeneity test followed by least significant difference tests at p < 0.05.
Pearson correlation analysis was used to investigate the relations between microbial at-
tributes, fine root biomass and soil NH4

+ and NO3
− concentrations. The above analyses

were performed using SPSS 22.0 (SPSS Inc., Chicago, IL, USA).
The roles of total microbial biomass, enzyme activity, and runoff inorganic N export in

explaining variation in soil inorganic N concentrations among the forests were examined
using multiple regression models. Following Bååth and Anderson [60], total PLFAs was
used to represent microbial biomass. Total activity of the five enzymes was used to represent
microbial enzyme activity. All predictors and response variables were standardized using
Z-score and predictors were log-transformed when necessary. To partition the relative
importance of the three predictors of soil NH4

+ and NO3
− concentrations, we calculated
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the predicting power of each predictor and compared it with the predicting power of all
predictors combined using R version 3.3.1 (R core team, 2016).

3. Results
3.1. Soil Inorganic N Concentrations, Microbial Properties, and Physicochemical Properties

The conversion of the mature secondary forest into young Chinese-fir and Castanopsis
plantations significantly reduced soil NH4

+ and NO3
− concentrations (Figure 1). The

soil NH4
+ and NO3

− concentrations in the plantations were only 24%~38% of those in
the mature secondary forest (Figure 1). However, forest conversion did not significantly
reduce NH4

+ and NO3
− concentrations in the young ANR forests, which had a significantly

higher mean NH4
+ concentration relative to that of the young Chinese-fir and Castanop-

sis plantations and a higher mean NO3
− than that of the young Chinese-fir plantations

(Figure 1).

Land 2022, 11, x FOR PEER REVIEW 6 of 17 
 

was used to represent microbial biomass. Total activity of the five enzymes was used to 
represent microbial enzyme activity. All predictors and response variables were stand-
ardized using Z-score and predictors were log-transformed when necessary. To partition 
the relative importance of the three predictors of soil NH4+ and NO3- concentrations, we 
calculated the predicting power of each predictor and compared it with the predicting 
power of all predictors combined using R version 3.3.1 (R core team, 2016). 

3. Results 
3.1. Soil Inorganic N Concentrations, Microbial Properties, and Physicochemical Properties 

The conversion of the mature secondary forest into young Chinese-fir and Castanopsis 
plantations significantly reduced soil NH4+ and NO3- concentrations (Figure 1). The soil 
NH4+ and NO3- concentrations in the plantations were only 24%~38% of those in the ma-
ture secondary forest (Figure 1). However, forest conversion did not significantly reduce 
NH4+ and NO3- concentrations in the young ANR forests, which had a significantly higher 
mean NH4+ concentration relative to that of the young Chinese-fir and Castanopsis planta-
tions and a higher mean NO3- than that of the young Chinese-fir plantations (Figure 1). 

 
Figure 1. Soil NH4+ (a) and NO3- (b) concentrations (mean ± standard error) in different types of 
forest. ANR: assisted natural regeneration. Forests sharing no common letters are significantly dif-
ferent at α = 0.05. 

The concentrations of GP, GN, AMF, actinomycetes, fungi, and total PLFAs were all 
higher in the mature secondary forest and the young ANR forests than in the young plan-
tations, whereas no significant differences were found between the mature secondary for-
est and the young ANR forests (Figure 2). The total PLFAs in the mature secondary forest 
was 45% higher than in the young plantations (Figure 2). 

Figure 1. Soil NH4
+ (a) and NO3

− (b) concentrations (mean ± standard error) in different types
of forest. ANR: assisted natural regeneration. Forests sharing no common letters are significantly
different at α = 0.05.

The concentrations of GP, GN, AMF, actinomycetes, fungi, and total PLFAs were
all higher in the mature secondary forest and the young ANR forests than in the young
plantations, whereas no significant differences were found between the mature secondary
forest and the young ANR forests (Figure 2). The total PLFAs in the mature secondary
forest was 45% higher than in the young plantations (Figure 2).

The activity of the enzymes was lower in the young plantations than in the mature
secondary forest and young ANR forests except that there was no significant difference
in BG activity among different forest types and no significant differences in AP activity
between the Chinese-fir plantations, the mature secondary forest and the young ANR
forests (Figure 3). No significant differences were found between the mature secondary
forest and the young ANR forests and no significant differences were found between the
two types of young forest plantation in the activity of any of the five enzymes (Figure 3).
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The fine root biomass in the young ANR forests was significantly higher than that in
the young plantations, but it was significantly lower than in the mature secondary forest
(Table 1).

Table 1. Soil bulk density and fine root biomass of mature secondary forests, forests developing from
assisted natural regeneration (ANR), young Castanopsis carlesii plantations, and young Chinese-fir
plantations. For each raw, forests sharing no common letters are significantly different at α = 0.05.

Mature
Secondary

Forest

Young
ANR
Forest

Young
Castanopsis
Plantation

Young
Chinese-Fir
Plantation

Bulk density (g cm−3) 1.1 (0.03) b 1.1 (0.03) b 1.1 (0.06) ab 1.2 (0.05) a

Fine root biomass (g m−2) 436.4 (56.4) a 334.0 (26.9) b 186.7 (38.5) c 244.2 (21.3) c

3.2. Surface Runoff NH4
+ and NO3

− Export

Surface runoff NH4
+ and NO3

− exports were much higher in the young Chinese-fir
and Castanopsis plantations relative to those in the mature secondary forest and the young
ANR forests in the first year, but the differences declined sustainably in the second and
third years (Figures 4 and 5). Over the three-year period (2012–2015), runoff NH4

+ and
NO3

− exports were similar between the mature secondary forest and the young ANR
forests. The total runoff NH4

+ export in the young Chinese-fir and Castanopsis plantations
was 3.5~6.7 times that in the mature secondary forest, and the total runoff NO3

− export in
the young Chinese-fir and Castanopsis plantations was 9.9~17.8 times of that in the mature
secondary forest over the three years (Figure 5). However, no significant differences in
NH4

+ and NO3
− exports were detected between the young ANR forests and the mature

secondary forest in the same period (Figure 5).
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3.3. Soil Inorganic N Concentration in Relation to Soil Microbial Attributes and Surface Runoff

Soil NH4
+ concentration was positively correlated with AP, NAG, CBH, and PER

activity, microbial PLFAs of GP, GN, AMF, ACT, and fungi, and fine root biomass (Figure 6).
Similarly, except for AP, BG, and NAG, soil NO3

− concentration was positively correlated
with the measured microbial variables and fine root biomass (Figure 5). Both soil NH4

+

and NO3
− concentrations were significantly and negatively correlated with runoff NH4

+

and NO3
− export (Figure 6).

The soil microbial biomass, as indicated by total PLFAs, was the only significant
variable predicting soil NH4

+ and NO3
− concentrations based on the regression models.

The total PLFAs contributed 61% of the explaining power of the regression model for soil
NH4

+ concentration while it contributed 94% of the explaining power of the model for soil
NO3

− concentration (Figure 7).
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4. Discussion
4.1. Soil Inorganic N in Relation to Soil Microbial Attributes and Surface Runoff Inorganic N
Export

The differences in soil and runoff inorganic N concentrations among the four types of
forests suggest that different types of forest conversion have different effects on inorganic
N availability. Although the young forests were of the same age, unlike the reduced soil
inorganic N concentrations in the young plantations, the young ANR forests had soil
inorganic N concentrations similar to that of the mature secondary forest (Figure 1), in
accordance with variation in soil total N concentration among the forests [67]. In addition,
runoff inorganic N export from the young ANR forests was also similar to that from
the mature secondary forest, and was only 12%~30% of that from the young plantations
(Figure 5a,b). These results suggest that assisted natural regeneration following clear-
cut can effectively conserve soil inorganic N and support that forests developed through
assisted natural regeneration have the potential to retain ecosystem services similar to those
of mature secondary forests [57,68,69].

Variation in soil inorganic N concentrations among the young forests was associated
with their differences in microbial biomass and enzyme activity (Figure 6). In our study,
the young ANR forests had levels of microbial PLFAs and enzyme activity similar to
the mature secondary forest and higher than those of the young forest plantations. High
microbial biomass and activity help to enhance N mineralization and, therefore, contributed
to the higher soil inorganic N concentrations in the young ANR forests than the young
forest plantations (Figure 1). Because root-derived C is an important C source for soil
microorganisms [70–73], the higher microbial biomass and enzyme activity in the young
ANR forests than the young forest plantations may be ascribed to its higher fine root
biomass.

Different forms of nitrogen transformation, including ammonification, nitrification,
denitrification, and microbial immobilization, all involve microorganisms [74]. These
processes largely determine the proportions of different forms of N in and leaving the
soil [75]. For example, high rates of nitrification may cause large leaching loss of NO3

−

via surface runoff [76]. Denitrification that reduced soil NO3
− availability was unlikely

the dominant process affecting soil inorganic N concentration in the present study as the
positive relationship between soil NO3

− concentration and microbial PLFAs suggests that
enhanced microbial biomass positively, instead of negatively, affected soil NO3

−. The
positive relationships between microbial PLFAs and soil NH4

+ and NO3
− concentrations

point to the importance of ammonification and nitrification in regulating soil inorganic N
availability in the studied forests.

The more rapid plant growth in the ANR forests than the young plantations [57] likely
contributed to the higher root biomass, which provided soil microbes with more carbon
via root exudation, thereby contributing to greater N mineralization in the ANR forests
than in the forest plantations. In addition, the more rapid plant growth also provided
greater shading and had greater canopy interception and evapotranspiration [56] in the
ANR forests than in the young forest plantations, all of which reduced surface runoff and
rain splash, leading to minimized runoff inorganic N export in the ANR forests [25].

Studies in subtropical China have reported declines in soil fertility and N mineral-
ization and nitrification following the conversion of natural broadleaved forests to forest
plantations [10,12]. Our study indicates that with minimal human intervention, naturally
regenerated forests can retain levels of soil inorganic N similar to that of mature secondary
forests (Figure 1). Due to the close link between soil N availability and net primary pro-
ductivity and carbon sequestration [77–79], searching for forest management practices that
maximize soil N availability is of major importance in carbon and N cycling [80,81]. Our
study illustrates that assisted natural regeneration could be an effective forest management
practice for maintaining net primary productivity and carbon sequestration capacity. As-
sisted natural regeneration has also been shown to be effective in conserving biodiversity
and soil and water conservation [57,82]. Future studies examining the effectiveness of ANR
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on maintaining soil N and net primary productivity in other regions would help to evaluate
the applicability of our results on a global scale.

4.2. The Dominant Factors Influencing Post-Conversion Soil Inorganic N Concentrations

Although soil inorganic N concentrations were significantly correlated with enzyme
activity and runoff export of NH4

+ and NO3
−, through partitioning the variance (Figure 7),

we found that microbial biomass was more important than microbial enzyme activity and
surface runoff export in explaining the variation in the soil inorganic N concentrations
among the forests (Figure 7). Because the young forests were all converted from the same
secondary forest at the same time, the soil inorganic N concentrations of the forests should
be similar prior to the experimental treatment. Thus, the variation in soil inorganic N
among the forests occurred after forest conversion, either through differences in inorganic
N loss and/or via mineralization among the forests. The greater explaining power of
microbial biomass than runoff export suggests that post-conversion soil N availability is
more closely related to its formation than its loss via runoff.

Soil microbial enzyme activity is certainly related to microbial biomass, so it is not sur-
prising that both were positively correlated with soil inorganic N concentrations (Figure 6).
However, the greater predictive power of microbial biomass than enzyme activity on the
variation in soil mineral N concentrations suggests that although they both affect N min-
eralization [83,84], much of the variation in enzyme activity among the forests might be
attributable to their differences in microbial biomass. In other words, N mineralization was
likely more limited by microbial biomass than enzyme activity in the studied forests. Many
studies have examined the effects of land use change, including forest conversion, on soil
microbial enzyme activity [42,43,85–87]; based on our results, much of the effect could be
mediated by changes in microbial biomass.

Although surface runoff can export a large quantity of N, it only takes place dur-
ing rainfall events, unlike microbial N transformation, which takes place continuously.
Thus, although immediately following the forest conversion large amounts of inorganic
N, especially the highly mobile NO3

−, were exported by surface runoff (Figure 4a,b), the
runoff export effect attenuated substantially when the young forests began to grow rapidly
(Figure 4a,b). For example, maximum NO3

− export via surface runoff from the young
Chinese-fir plantations was 280 g ha−1 for a single runoff event in the first year, but it
dropped to 113 g ha−1 in the third year (Figure 4b). By the third year, annual NH4

+ loss
in the young Chinese-fir plantations was not significantly different from the loss in the
mature secondary forest (Figure 5a). The quick decreases in the severity of the runoff events
undermined its role in affecting soil N availability.

While the clearing-induced enhancement of surface runoff decreases with time as trees
grow, fine root biomass typically increases with time before forests mature [88]. Thus, the
importance of the effect of the loss of inorganic N via surface runoff export on soil inorganic
N concentrations decreased substantially in a few years following the conversion of mature
secondary forests to forest plantations. By contrast, the role of microbial biomass, which is
positively related to fine root biomass, on N mineralization tends to increase and persist
for a much longer period of time. The temporal contrast in their importance in affecting
soil inorganic N availability led to the greater predictive power of microbial biomass than
surface runoff inorganic N export on variation of soil inorganic N concentrations among
the forests.

5. Conclusions

Compared to the mature secondary forest, soil inorganic N concentrations were lower
in the young Chinese-fir plantations and Catasnopsis plantations, but not the young forests
established through assisted natural regeneration (ANR) five years following the conver-
sion. This result highlights that natural regeneration with minimal human intervention
can effectively maintain soil N availability. The more rapid plant growth in the young
ANR forests than in the two young plantations likely provided soil microbes with more
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carbon via roots, which contributed to greater N mineralization and, thus, higher mineral N
concentrations in the ANR forests than in the young plantations. More rapid plant growth
also reduced N export via runoff due to greater canopy interception and evapotranspiration.
The results of the variation partition indicate that microbial biomass is the dominant factor
in predicting soil inorganic N concentrations, suggesting that N mineralization, rather than
its loss via runoff, is the key to post-conversion soil inorganic N availability. The effects of
forest conversion on elevating surface runoff diminished a few years later as the trees grew,
while the differences in microbial biomass among the different forest types increased with
time, leading to the greater predictive power of microbial biomass than surface runoff on
soil inorganic N concentrations.
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