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Abstract: The ecological and natural conditions in drought regions are harsh. Water shortages and
land desertification are prominent features of these regions. The land cover in these regions has a
large impact on global climate change, as well as on ecological protection and construction. To make
rational and sustainable use of land resources, it is crucial to quickly grasp the accuracy and spatial
distribution differences of multi-source remote sensing land cover products in drought regions. Therefore,
taking northwestern China as the study area, in this study, the accuracy and spatial pattern distribution
differences of three high-resolution (10 m) land cover products, namely, the Finer Resolution Observation
and Monitoring of Global Land Cover (FROM-GLC), European Space Agency (ESA), and Environmental
Systems Research Institute (ESRI) products, were compared and analyzed via area composition similarity,
spatial pattern consistency, and absolute accuracy assessment for three validation samples. The results
show that the FROM-GLC product had the highest overall accuracy, ranging from 53.81% to 73.45%. The
ESRI product had the lowest overall accuracy, ranging from 35.90% to 64.16%. The spatial consistencies of
the three products were low, accounting for 46.26% of the total area, and they were mostly distributed
in a single area (mainly bare land and forest). The low accuracy for grassland, bare land, shrubland, and
other vegetation types was the primary reason for the large differences between the three products. Future
research should focus on improving the mapping accuracy for these vegetation types. Accuracies for
water and cropland of the three products were consistent, and, thus, the FROM-GLC, ESA, and ESRI
products can be used as auxiliary data in research related to water resources and cropland resources in
drought regions.

Keywords: land cover products; 10 m resolution; spatial consistency; accuracy evaluation; drought
regions; northwestern China

1. Introduction

Resource and environmental research, along with sustainable social development strategies,
need to be based on land cover data. In order to realize efficient land use, the spatial–temporal
changes in land cover were revealed and the influencing factors of the land cover change were
analyzed [1–3]. Land cover data and their dynamic change information are of great importance
in environmental modeling and change research [4–8]. In particular, in global environmental
change research, land cover change has become the focus of attention [9]. With the rapid
development of remote sensing technology, low-cost and efficient acquisition of land cover data
has become possible [10–16], for example, the GLC2000 land cover product produced by the
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European Union Joint Research Center [17], the Globecover land cover products produced by
the European Space Agency [18], and the GlobeLand30 land cover products produced by the
National Geomatics Center of China [19]. The emergence of these land cover products provides
data support for the academic community to carry out relevant research [20–24].

However, there are differences in the dataset development rules (e.g., classification methods,
original images, and classification systems) established by the land cover products’ production
institutions, which can lead to great differences in the products themselves and their relevant
applications [25–27]. Several scholars have carried out comparative analyses of the land cover
products with different resolutions [28–31]. For example, Herold et al. [32] compared and ana-
lyzed four types of global land cover products (International Geosphere-Biosphere Programme
(IGBP) DISCover, University of Maryland (UMD), Moderate Resolution Imaging Spectrora-
diometer (MODIS) 1 km, and Global Land Cover dataset for 2000 (GLC2000)) with resolutions
of 1 km. Their results revealed that the accuracy and consistencies for the evergreen broad-
leaved forest, bare land, and ice/snow land cover types were relatively high. Giri et al. [33]
evaluated the GLC2000 and MODIS products with resolutions of 1 km on the global scale. Their
results revealed that the consistencies for the sparse grassland, shrubland, and wetland were
low. Dong et al. [34] evaluated the consistency of the MCD12Q1 land cover product with a
resolution of 500 m by taking GlobeLand30 data as a reference. Their results revealed that the
spatial consistency of the MCD12Q1 product was lower in areas with greater surface landscape
heterogeneity. Rendenieks et al. [35] analyzed the impact of using input data with different
resolutions (scales of 1:10,000, 1:50,000, and 1:100,000) on the landscape pattern analysis. Their
results revealed that the scale threshold is very important for ecological research and landscape
pattern planning. Kang et al. [36] conducted a consistency evaluation of three 30 m land cover
products using the landscape ecology method. Their results revealed that there were significant
differences in the landscape pattern characteristics.

However, few comparative assessments of land cover products under different subdivi-
sions (e.g., climate subdivisions) have been conducted [37]. In fact, the accuracies for some
complex land cover types are low. Land cover has a great impact on vegetation carbon storage,
water resources, and ecological environment construction in drought regions, which account
for about 40% of the global area, due to its complex causes, diverse land cover types, and
rapid change process. Therefore, it is very important to quickly grasp the accuracy and spatial
distribution differences of different land cover products for drought regions. However, no
comparative analysis of land cover products for drought regions has been conducted. The
landforms in northwestern China are complex and diverse, and most of the areas are drought
and semi-drought regions. The ecological environment is harsh, and there is a shortage of water
resources. Northwestern China is rich in resources, but they are difficult to develop. Since
the 1950s, continuous development of oasis agricultural land has led to serious ecological and
environmental problems (e.g., soil erosion). Therefore, it is particularly important to strengthen
ecological environmental monitoring and construction in northwestern China. However, land
cover is the most direct manifestation of the regional ecological environment, and its accurate
spatial distribution information is the key.

Therefore, in order to fill the gap in the existing research, in this study, northwestern
China was taken as the study area. The differences in the spatial distributions and accuracies
of the FROM-GLC, ESA and ESRI land cover products were analyzed from the aspects of
area composition similarity, spatial distribution consistency, and absolute accuracy using three
independent validation samples. The influencing factors were also investigated. The results
of this study provide guidance for improving the quality of land cover mapping in the future
and a reference for selecting suitable land cover products for climate change, land resource
sustainability analysis, and ecological environmental protection in drought regions.

2. Study Area and Data
2.1. Study Area

The study area is located in the northwestern region of China’s seven geographical
regions (Figure 1). The study area includes Xinjiang, Gansu, Qinghai, Ningxia, and Shaanxi
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provinces. The neighboring countries include Mongolia, Russia, Kazakhstan, Kyrgyzstan,
Tajikistan, Afghanistan, Pakistan, and India. Northwestern China covers a vast area
characterized by alternating mountains, plateaus, and basins, with complex and varied
landforms and huge differences. The study area has a large north–south span, a complex
geographical environment, and diverse ecological conditions, so there is a wide variety of
wild animals and plants. Northwestern China is characterized by poor natural conditions,
an extremely fragile ecological environment, sparse vegetation, and limited water vapor
evaporation from the ground. The annual precipitation in northwestern China is generally
larger in the east and smaller in the west, and it decreases from about 400 mm in the east to
200 mm, or even less than 50 mm, in the west. The rivers in this region are mainly internal
rivers, and the water supply is mainly from precipitation in the mountainous areas and
snow melt water. Drought is the main natural feature of northwestern China and is one of
the main reasons for its relatively fragile ecological environment. Northwestern China has
a long border and is China’s gateway to the west. It plays a very important role in China’s
political, national defense, and ecological security. Most of the study area has a continental
climate and is located in the mid-temperate zone and warm temperate zone, but some areas
have an alpine climate. The overall distribution of the annual average temperature is lower
in the north than in the south, and lower in the mountainous areas than on the plains.

 

Figure 1. Map showing the geographical location and elevation of the study area. 
 

 

Figure 1. Map showing the geographical location and elevation of the study area.

2.2. Data and Preprocessing

In this study, three high-resolution land cover products that are currently freely
published were selected for evaluation and analysis. The three products are the Finer
Resolution Observation and Monitoring of Global Land Cover (FROM-GLC) product
(http://data.ess.tsinghua.edu.cn./, accessed on 6 January 2022) produced by Tsinghua Uni-
versity [38], the ESA product (https://zenodo.org/record/5571936, accessed on 8 January
2022) produced by the European Space Agency, and the ESRI product (https://www.arcgis.
com/index.html, accessed on 2 January 2022) produced by the Environmental Systems
Research Institute [39] (Table 1). Although the time periods of the products selected for use
in this study vary, natural ecosystems usually change significantly over a period of 10 years
or more [40]. In addition, it was verified using a Google Earth high-resolution image that
the ecological status of the study area was in a relatively stable state during this period, so
the selected data satisfactorily support this research.

http://data.ess.tsinghua.edu.cn./
https://zenodo.org/record/5571936
https://www.arcgis.com/index.html
https://www.arcgis.com/index.html
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The original data was preprocessed before the data evaluation and analysis. This processing
mainly included data cutting, projection transformation, unification of the resolution, and the
unification of the classification systems among the different products. First, the ArcGIS software
was used to cut the three land cover data products using the vector boundary of the northwestern
region. Second, the coordinates of all of the land cover data were unified to the UTM projection
and WGS84 coordinate system. Finally, the unification of classification systems took place. In the
comparative evaluation of the different land cover products, the classification systems needed
to be merged under the same classification benchmarks [41] to reduce errors. According to
previous studies [42,43] and the definitions of tundra, moss, and lichen, the types of tundra in
the FROM-GLC product and moss and lichen in the ESA product were merged into shrubland.
In addition, the proportion of the cloud cover pixels in the ESRI product to the total pixels
in the study area was very small, and thus was ignored. Table 2 presents the classification
system for the three land cover products, and Figure 2 shows the three land cover products
after preprocessing.

Figure 2. Spatial distributions of the three land cover products: (a) FROM-GLC, (b) ESA, and (c) ESRI.
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Table 1. The main parameters of the three land cover products.

Name Resolution (m) Number of
Categories Time Method Overall

Accuracy (%) Producer Satellite

FROM-GLC 10 10 2017 Random forest 72.76 Tsinghua University Sentinel-2
ESA 10 11 2020 Deep learning model 74.40 European Space

Agency Sentinel-1/2

ESRI 10 10 2020 Deep learning model 85.96 Impact Observatory
for ESRI Sentinel-2

Table 2. The merged classification system and its correspondence with the original classification systems.

Merged Code FROM-GLC Code ESA Code ESRI

Cropland 10 Cropland 40 Cropland 5 Crops
Forest 20 Forest 10 Tree cover 2 Trees

Grassland 30 Grassland 30 Grassland 3 Grass

Shrubland 40 Shrubland 20 Shrubland 6 Scrub70 Tundra 100 Moss and Lichen

Wetland 50 Wetland 90 Herbaceous wetland 4 Flooded vegetation95 Mangroves
Water 60 Water 80 Permanent water bodies 1 Water

Built-up 80 Impervious surfaces 50 Built-up 7 Built-up area
Bare land 90 Bare land 60 Bare/sparse vegetation 8 Bare ground
Snow/Ice 100 Snow/Ice 70 Snow and Ice 9 Snow/Ice

3. Methods
3.1. Constituent Similarity Evaluation

For each land cover product, the area of each land cover type was summarized
individually, and the correlation calculation was carried out for the corresponding area
sequence of the land cover types between the different datasets in order to evaluate the
similarities of the land compositions of each land cover type among the products [44]. The
calculation formula is as follows:

Ri =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
∑n

i=1
(
Yi − Y

)2
(1)

where Ri is the area correlation coefficient; i is the land cover type; Xi is the total area (km2)
of type i in dataset X; Yi is the total area (km2) of type i in dataset Y; X is the average (km2)
of the total area of all of the types in dataset X; Y is the average (km2) of the total area of all
of the types in dataset Y; and n is the total number of land cover types.

3.2. Evaluation of Spatial Distributions

To intuitively express the consistency of the spatial distributions of the three land
cover products in this study, based on the spatial superposition of the three datasets, which
was conducted in ArcGIS, the calculation results were summarized into three situations:

1© completely inconsistent: the three datasets exhibit completely different land cover
categories within a given pixel; 2© basically consistent: there are only two types of land
cover in a corresponding given pixel for the three datasets; and 3© Completely consistent:
the three datasets have exactly the same land cover type in a given pixel [44]. Taking forests
as an example, a schematic diagram of the spatial overlay is shown in Figure 3.

3.3. Sample Accuracy Evaluation

The error matrix is a method that is commonly used in the accuracy evaluation of land
cover data [45,46]. This method mainly compares the category consistency of the reference
data and the data to be verified at a specific location, and then it establishes the error matrix
between them. The overall accuracy (OA), producer accuracy (PA), user accuracy (UA),
and kappa coefficients are calculated to express the accuracy of the data to be verified. The
calculation formulas of these indexes [47] are as follows:
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OA =
∑r

i=1 xii

n2 × 100% (2)

PA =
xii
x+i

× 100% (3)

UA =
xii
xi+

× 100% (4)

Kappa =
N·∑r

i=1 xii − ∑r
i=1(xi+·x+i)

N2 − ∑r
i=1(xi+·x+i)

(5)

where xii is the correctly classified number of pixels for land cover type i; n is the total
number of pixels; xi+ is the total number of pixels containing land cover type i in the data
to be verified; x+i is the total number of pixels containing land cover type i in the reference
data; r is the number of rows in the confusion matrix; and N is the total number of samples.

Figure 3. The map of the spatial overlay of the different land cover products. Legend: Land
cover type: 1—forest; 0—non-forest; Overlay results: 0—background; 1—completely inconsistent;
2—basically consistent; 3—completely consistent.

It is important to have a sufficient number of accurate validation samples in land cover
mapping and its accuracy evaluation. In the validation of large-scale land cover datasets,
ground reference data are difficult to obtain. Therefore, a common global validation dataset,
especially one that is adequate, well described, compatible, and updated in real time, would
greatly facilitate the assessment of land cover data. Several studies have demonstrated the
potential of using third-party validation data in land cover evaluation [48,49]. For example,
Foody used two sources of volunteered data to illustrate the potential of using amateur or
neogeographical activity in map validation [50]. Therefore, in order to compare and evaluate the
accuracies of the three land cover products, three independent validation sample sets were used
in this study: (1) The Geo-Wiki samples from four separate campaigns [51] were obtained from
the Geo-Wiki (http://geo-wiki.org/, accessed on 15 January 2022) crowdsourcing platform,
including a total of 10 land cover types. The Geo-Wiki datasets described information on
human impacts, land cover disagreement, wilderness, and reference data. These data have been
made available to the scientific community for use as reference data for global satellite-derived
products, as well as for monitoring global terrestrial ecosystems in general. After processing
the Geo-Wiki global validation samples, 2522 validation samples covering the study area were
obtained (Figure 4a). (2) The Global Land Cover Validation Sample Set (GLCVSS) [52] follows a
random sampling strategy to ensure that all of the samples are evenly distributed across the
globe. The GLCVSS samples are based on the interpretation of Landsat Thematic Mapper (TM)
images, Enhanced Thematic Mapper Plus (ETM+) images, and the MODIS Enhanced Vegetation
Index (EVI) time series data and were supplemented by other high-resolution imagery from
Google Earth. This records the quality of the reference data and the confidence of the interpreter.
After processing the GLCVSS global samples, 670 validation samples covering the study area
were obtained (Figure 4b). (3) The validation samples were obtained via visual interpretation.
Google Earth is one of the main data sources for images used for accuracy evaluation due to its
accurate positioning, rich temporal phase, high resolution, easy access, and wide overlay of these
images [46,53]. In order to reduce the negative impact of positioning and interpretation errors

http://geo-wiki.org/
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on the sample quality, the following principles were followed when selecting and interpreting
samples: first, in order to reduce the effect of the positioning error, the sample point was selected
in the center of a homogeneous region. Second, in order to reduce the interpretation errors
caused by the temporal phase of the data, remote sensing images from 2017 to 2020, which were
consistent with the temporal phase of the data to be evaluated, were mainly used. Third, for
some of the more difficult to interpret samples, the interpretation was assisted by combining
references with other information, such as using the voluntary geo-information platform (Geo-
wiki) [54] to assist in the interpretation. Fourth, multiple independent interpretations were used,
and a sample was discarded when the interpretation results did not agree after negotiation.
Based on Google Earth images, Sentinel images, and the aforementioned two third-party
validation samples, 3447 validation samples covering the study area were finally obtained
through visual interpretation (Figure 4c). Figure 5 shows the number of samples of each type
for the three independent validation samples.

Figure 4. Cont.
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Figure 4. Spatial distributions of the three independent validation samples: (a) Geo-Wiki, (b) GLCVSS,
and (c) visual interpretation.

Figure 5. Number of samples of each type for the three independent validation samples.

4. Results
4.1. Comparative Analysis of Land Cover Composition

Figure 6 shows the results of the comparison of the area compositions of the three
land cover products. The experimental results show that the consistencies for the cropland,
forest, water bodies, and snow/ice areas of the three products were relatively high. The
consistencies for the grassland, built-up land, and bare land areas of the FROM-GLC and
ESA products were higher. The percentages of grassland, built-up land, and bare land for
the FROM-GLC product were 21.19%, 0.74%, and 61.85%, respectively. The percentages of
grassland, built-up land, and bare land for the ESA product were 26.07%, 0.52%, and 56.97%,
respectively. The shrubland and wetland areas of the three products were uniformly low,
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especially the shrubland, and the percentages of the shrubland in the study area were 0.13%
for the FROM-GLC, 2.96% for the ESA, and 45.32% for the ESRI.

By calculating the area correlation coefficient between the three products, it was found
that the area correlation coefficient between the FROM-GLC and ESA products was the
highest (0.99), indicating that these two products had a relatively high similarity in terms
of the land cover types in the study area. The ESA and ESRI products had the next highest
similarity, with an area correlation coefficient of 0.47. The area correlation coefficient
between the FROM-GLC and ESRI was the lowest (0.45).

Figure 6. Comparison of the type compositions of the three land cover products.

4.2. Analysis of Spatial Distribution Differences
4.2.1. Consistency of Spatial Distribution

Figure 7 shows the consistency of the spatial distributions of the three products
obtained using the spatial superposition method. The results show that the completely
consistent areas of the three products were mainly distributed in the western part of the
study area, and fewer completely consistent areas were located in the central and eastern
parts of the study area. The land cover types in these areas were singular, mainly bare land
and forest. The completely consistent areas accounted for 46.26% of the total area of the
study area. The basically consistent areas of the three products were mainly distributed in
the northern part of the study area, and fewer completely consistent areas were located
in the eastern and southern parts of the study area. The land cover types in these areas
were more complex, and the land surface spatial heterogeneity was higher. The basically
consistent areas accounted for 42.77% of the total area of the study area. The completely
inconsistent areas of the three products were mainly distributed in the eastern and southern
parts of the study area, and fewer completely inconsistent areas were located in the northern
part of the study area. The land cover types in these areas were cross-distributed (e.g.,
cropland, forest, and grassland), and the spatial heterogeneity of the surface was high. The
completely inconsistent areas accounted for 10.97% of the total area of the study area.

4.2.2. Comparative Analysis Using Google Earth Images

Based on high-resolution Google Earth images, the different land cover types were
selected in the five provinces in the study area to verify the accuracy of the three land cover
products and to compare the consistency of the spatial distributions of the three products
(Figure 8). As can be seen from area a in Figure 8, the FROM-GLC and ESA products had a
high accuracy and spatial consistency. The spatial distributions of the cropland and bare
land for the two products were basically the same. The low accuracy of the ESRI product
was mainly due to the serious confusion between shrubland and bare land, which also
led to the low consistency of the ESRI product with the other two products. It can be seen
from area b in Figure 8 that the water bodies of the three products had a high accuracy and
consistency. The accuracy of the FROM-GLC and ESA products for the other land cover
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types was slightly lower, mainly due to the serious confusion between the cropland and
grassland. The accuracy for other land cover types for the ESRI product was low, mainly
due to the serious confusion between cropland and shrubland. It can be seen from area
c in Figure 8 that the FROM-GLC and ESA products had a higher accuracy for bare land,
but a lower accuracy for the other land cover types. The main reason for this is that the
FROM-GLC and ESA products classified part of the cropland as grassland. The accuracy of
the ESRI products was low, mainly due to the misclassification of bare land as shrubland. It
can be seen from area d in Figure 8 that the accuracy for cropland of the three products was
high, followed by that for built-up land, and the accuracies for the other land cover types
were low. This is mainly because it is difficult to accurately distinguish between bare land,
grassland, and shrubland. As can be seen from area e in Figure 8, the accuracy for cropland
of the three products was high, followed by forest and built-up land, and the accuracies
for the other land cover types were low. This is mainly because it is difficult to accurately
distinguish between forest, grassland, and shrubland.

Figure 7. Map showing the spatial consistency of the distributions of the three land cover products.

 

Figure 1. Map showing the geographical location and elevation of the study area. 
 

 

Figure 8. Cont.
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Figure 8. Visual comparison of three land cover products on a Google Earth image: (a) Xinjiang, Figure 8. Visual comparison of three land cover products on a Google Earth image: (a) Xinjiang,

(b) Gansu, (c) Qinghai, (d) Ningxia, and (e) Shanxi.

4.3. Absolute Accuracy Evaluation

Table 3 presents the accuracy evaluation results for the three land cover products
based on the Geo-Wiki verification samples. The results show that the FROM-GLC product
had the highest OA and kappa values (53.81% and 0.37, respectively), followed by the ESA
product, with OA and kappa values of 49.21% and 0.32, respectively. The OA (35.90%) and
kappa (0.24) values of the ESRI product were the lowest among the three products. For
the accuracy for the nine surface types in the study area, the three products all had low
PA and UA values for shrubland and wetland, indicating that serious misclassification
and omission of these two types occurred. The FROM-GLC product had high PA and UA
values for cropland and bare land, a high PA value for forest, a high UA value for snow/ice,
and low PA and UA values for the other land cover types. The ESA product had high UA
values for cropland, bare land, and snow/ice, and low PA and UA values for the other
land cover types. For the ESRI product, the cropland and bare land had high UA values,
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the built-up land had a high PA value, and the other land cover types had low PA and
UA values.

Table 3. Accuracy evaluation results based on Geo-Wiki samples.

Geo-Wiki

1 2 3 4 5 6 7 8 9 OA (%) Kappa

FROM-GLC PA (%) 61.59 63.39 47.55 0.00 0.00 18.75 27.78 62.67 20.61 53.81 0.37UA (%) 75.79 47.33 24.31 0.00 0.00 30.00 5.75 72.60 79.41

ESA PA (%) 47.54 58.03 56.52 6.57 0.00 18.75 16.67 56.08 16.03 49.21 0.32UA (%) 84.23 57.27 21.03 12.33 0.00 27.27 15.00 71.10 84.00

ESRI PA (%) 49.18 57.59 12.50 58.39 0.00 25.00 66.67 34.40 12.98 35.90 0.24UA (%) 80.15 58.90 37.71 6.27 0.00 40.00 17.14 77.23 58.62

Note: 1—Cropland; 2—Forest; 3—Grassland; 4—Shrubland; 5—Wetland; 6—Water bodies; 7—Built-up land;
8—Bare land; 9—Snow/Ice.

Table 4 presents the accuracy evaluation results for the three land cover products
based on the GLCVSS validation samples. The results show that the FROM-GLC and ESA
products had higher OA values (73.45% and 71.64%, respectively). The ESRI product had
lower OA and kappa values (49.78% and 0.31, respectively). Regarding the precision of
each land cover type, for the FROM-GLC product, shrubland, wetland, and built-up land
had lower PA and UA values. For the ESA product, the PA and UA values of wetland and
water bodies were lower. For the ESRI product, the PA and UA values of water bodies
were lower.

Table 4. Accuracy evaluation results based on GLCVSS samples.

GLCVSS

1 2 3 4 5 6 7 8 9 OA (%) Kappa

FROM-GLC PA (%) 65.79 75.00 68.24 0.00 0.00 33.33 0.00 87.62 23.91 73.45 0.52UA (%) 58.14 66.67 41.14 0.00 0.00 25.00 0.00 86.59 100.00

ESA PA (%) 57.90 68.75 76.47 6.45 0.00 0.00 50.00 84.29 17.39 71.64 0.51UA (%) 68.75 91.67 39.63 8.00 0.00 0.00 66.67 87.62 100.00

ESRI PA (%) 73.68 68.75 21.18 80.65 25.00 0.00 50.00 53.81 17.39 49.78 0.31UA (%) 68.29 81.48 66.67 8.28 100.00 0.00 33.33 91.50 88.89

Note: 1—Cropland; 2—Forest; 3—Grassland; 4—Shrubland; 5—Wetland; 6—Water bodies; 7—Built-up land;
8—Bare land; 9—Snow/Ice.

Table 5 presents the accuracy evaluation results for the three land cover products
based on the visual interpretation validation samples. The results show that the OA values
of the three products were all greater than 60%, and the OA and kappa values of the FROM-
GLC product, 67.03% and 0.62, respectively, were the highest among the three datasets.
Regarding the precision for each type of land cover, for the FROM-GLC product, the PA
and UA values of shrubland and wetland were lower. For the ESA product, the PA and UA
values of shrubland were lower, the PA value of wetland was lower, and the UA value of
grassland was lower. For the ESRI product, the UA value of shrubland was lower.

Table 5. Accuracy evaluation results based on the visual interpretation samples.

Visual interpretation

1 2 3 4 5 6 7 8 9 OA (%) Kappa

FROM-GLC PA (%) 74.53 88.45 79.23 1.72 4.44 70.10 62.09 79.43 40.54 67.03 0.62UA (%) 83.93 85.10 25.31 20.00 28.57 98.79 89.73 39.89 99.06

ESA PA (%) 74.66 63.73 85.02 5.17 13.33 74.96 77.63 61.29 31.66 66.60 0.61UA (%) 96.33 88.19 23.78 3.00 75.00 99.62 97.60 31.41 100.00

ESRI PA (%) 68.52 57.60 33.33 77.59 34.07 76.11 98.66 26.13 39.77 64.16 0.59UA (%) 95.87 91.14 46.94 4.81 95.83 99.25 88.81 35.53 99.04

Note: 1—Cropland; 2—Forest; 3—Grassland; 4—Shrubland; 5—Wetland; 6—Water bodies; 7—Built-up land;
8—Bare land; 9—Snow/Ice.

To conclude, the accuracy evaluation results for the three validation samples all
demonstrate that the FROM-GLC product had the highest OA value, followed by the ESA
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product, and the ESRI product had the lowest OA value. Regarding the accuracies for the
nine land cover types, for all three products, the accuracies for shrubland and wetland
were lower, indicating that the misclassification and omission of these two land cover types
were more serious and their accuracies need to be improved further.

5. Discussion
5.1. Analysis of the Influence of Typical Land Cover Type Differences on Research in Drought Regions

Water is the lifeblood of ecosystems in drought regions, and improving the ecosystems
and ecological construction are the primary problems to be solved in development and con-
struction in western China [55]. Therefore, the distribution, development, and utilization of
water resources in northwestern China are of great strategic significance to the formation
of a new pattern of regional development. In this study, it was found that the FROM-GLC,
ESA, and ESRI products had a high consistency for water bodies, with area percentages
of 1.02%, 1.08%, and 1.10%, respectively. The three products had better abilities to depict
the boundary contours of water bodies (Figure 9). The UA values of the FROM-GLC, ESA,
and ESRI were 98.79%, 99.62%, and 99.25%, respectively, based on the accuracy evaluation
of the visual interpretation verification samples. Therefore, the FROM-GLC, ESA, and
ESRI products can provide supporting data for water-related research in drought regions.
For example, for water resource carrying capacity evaluations in drought areas, the area
covered by water bodies is an important factor in model calculations—if the extraction of
the water body area is not accurate, this will affect the water resource yield and total water
resources calculations in the water resource carrying capacity model, and thus it will affect
the calculation of water resource carrying capacity [55].

Figure 9. Visual comparison of water for the three land cover products on a Google Earth image (the
blue area is water).

Cropland is the core resource for agricultural production and is a strategic resource
related to food production. Its situation is related to the security of global food production
and the stability of the social economy [56]. Continuous population growth leads to rapid
growth of the demand for food consumption, and the contradiction between the demand
for cropland resources and its own scarcity and finiteness is increasing. In particular, in
northwestern China, where the utilization of cropland resources is more serious, this issue
has received widespread attention from all sectors of society [57]. The ecological functions
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in the drought region in northwestern China are extremely important in China and globally.
The expression ability of the boundary contour of the cropland resources for the three land
cover products is good (Figure 10). In this study, the UA values of the FROM-GLC, ESA,
and ESRI products were found to be 83.93%, 96.33%, and 95.87%, respectively, based on
the accuracy evaluation using the visual interpretation verification samples. Therefore,
the three products can provide auxiliary data for related research on cropland resources.
For example, the statistical data for the cropland areas are a key factor in the evaluation
of cropland productivity in drought regions. If the accuracy of the cropland cover data is
low, the calculation of the multiple cropping indexes and yield per unit area of the sown
cropland area in the cropland productivity model will be affected, and, thus, the final
evaluation results will be affected.

Figure 10. Visual comparison of cropland for the three land cover products on a Google Earth image
(the red area is cropland).

In northwestern China, the geological environment is complex and precipitation is
scarce. Most of the areas are desert (Gobi), underlying sparse vegetation, and climate change
has been very drastic [58]. In northwestern China, vegetation changes have had significant
effects on surface temperature, precipitation, and surface energy, and even on the intensity
of the east Asian summer monsoon [59]. In addition, the impact of vegetation changes on
hydrological processes plays a very important role in the growth and maintenance of the
vegetation itself, especially in northwestern China, where water resources are relatively
scarce and the ecological environment is relatively fragile. Therefore, it is important to
monitor the spatial distribution of (and changes in) the vegetation in northwestern China
for a long time. In this study, the accuracies for the vegetation types of the FROM-GLC,
ESA, and ESRI land cover products covering northwestern China were found to be low, and
there were large differences between the products, especially for grassland, shrubland, and
wetland. Therefore, in order to provide data support for studies on the impact of vegetation
changes on regional climates, regional surface hydrological variables (e.g., precipitation),
and regional soil and water loss monitoring, the accuracy for the vegetation types of the
three land cover products should be improved.

5.2. Discussion of Inconsistent Factors

The dataset development rules (such as classification system and classification method),
established by different production organizations, can lead to differences between prod-
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ucts, posing great challenges to the strict comparison of maps and the collaborative use of
different maps [60].

The differences in some of the subordinate definitions of the land cover types in
the classification systems are one of the factors contributing to the low spatial consistency
between the FROM-GLC, ESA, and ESRI products. The global scale land cover classification
system is mainly used for global classification and considers the characteristics of the
global land cover information, which inevitably affects its analysis and application in local
areas [44].

In this study, it was found that the main reason for the low consistency between the
FROM-GLC, ESA, and ESRI products was that the three products had great differences in
their discrimination between grassland, shrubland, and bare land (Figure 11), and especially
between grassland and shrubland. However, sparse vegetation, shrubland, and other
vegetation types have high semantic similarities. Therefore, for the extraction of several
vegetation types, the unified vegetation coverage and tree height factor values should be
clearly stated when establishing the classification system to reduce the uncertainty caused
by the classification system.

(b)Gansu, (c) Qinghai, (d) Ningxia, and (e) Shanxi. 

    

    

 
Figure 11. Comparison of the extraction results of the three land cover products in typical regions. Figure 11. Comparison of the extraction results of the three land cover products in typical regions.

The different methods and strategies adopted by institutions that produce land cover
products also affected the comparative analysis of the three products. Although the FROM-
GLC, ESA, and ESRI products all use Sentinel-1/2 as their data source to extract the surface
cover types, the three products have low extraction accuracies and great differences in
vegetation types, such as grassland, shrubland, and bare land. One of the reasons for
this phenomenon is that vegetation types are characterized by strong seasonality, and
they change rapidly. It is also clearly pointed out in the ESRI product that the confusion
between grassland and shrubland is relatively intuitive. One of the reasons for this is that
it is difficult to determine the transition between the two types in 10 m resolution remote
sensing images. Therefore, the accuracies for grassland, shrubland, and other vegetation
types need to be improved further [39]. When classifying the Sentinel-2 images acquired in
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2017, the FROM-GLC product assumes that the change in the global land cover types from
2015 to 2017 did not exceed 5% [38]. However, training samples from 2015 were directly
used for the classification, which may introduce errors into the extraction of vegetation
types with rapid changes, especially in local areas. Previous studies [52,61] have shown
that the random forest classifier adopted by the FROM-GLC product has the advantages
of strong robustness and high precision in the processing of high-dimensional data [62].
In addition, due to the influence of clouds and cloud shadows, the preprocessing (such
as median component) of the images input at different times may affect the phenological
information about the vegetation. For example, the ESA product eliminates the influence
of clouds, cloud shadows, and cirrus clouds from the Sentinel-2 data using the Scene
Classification Layer (SCL) of the L2A product. Then, 10 day median synthesis is conducted
based on band time series data to remove other types of noise. Therefore, how the input
data are preprocessed has a certain impact in areas with strongly seasonal land cover
types. In addition, the results for the FROM-GLC, ESA, and ESRI products all indicate that
wetland is the most difficult land cover type to automatically identify because in global
regions, most crops are grown around rivers, which makes the transition between crops and
wetlands very small and difficult to distinguish in remote sensing images. In summary, in
addition to the input of common features (such as elevation, slope, and aspect), other time
series features (such as annual vegetation health measurement data) [63] are introduced
to assist in distinguishing between grassland, shrubland, bare land, and other vegetation
types in order to improve the overall classification accuracy.

The quantity and quality of the validation samples will also cause errors in the evalua-
tion results. The collection of the validation samples requires significant effort to obtain
the latest sample sets. The Geo-Wiki and GLCVSS third-party verification samples used in
this study were limited in number (Figure 4), and the possible uncertainties of the samples
themselves were not taken into account in this study, which introduced certain errors in
the evaluation results. Therefore, future studies can investigate this problem based on
Foody’s [49] method to increase the applicability of the validation samples in order to
be applicable to the evaluation of multiple map datasets. Therefore, the importance of
updating the sample sets should be recognized [64]. The results of this study suggest that
the accuracy of published global or regional validation samples should be comprehensively
checked after a certain period [15]. In addition, the collected validation samples based on
remote sensing images used in this study may produce 5–10% interpretation errors [52],
which will also affect the final evaluation results.

5.3. Suggestions for Land Cover Mapping

The complexity of land cover types and data production methods and strategies affect
the consistency of different land cover products. In order to meet the needs of dataset
construction in the future, the following suggestions are put forward: 1© In the future, land
cover mapping should focus on areas with high spatial heterogeneity to further improve
the overall classification accuracy. In addition, the subsequent mapping should combine
some auxiliary data, such as topographic features and regional vegetation phenotypes,
which should reduce the serious vegetation confusion (forest, shrubland, and grassland)
caused by their similar spectral features. 2© The institutions that produce the land cover
products should publicly publish their detailed data production processes and dataset
characteristics so that data users can locally optimize and reclassify the original datasets
based on temporal distribution characteristics and research needs. 3© Synthetic Aperture
Radar (SAR) remote sensing images are very sensitive to the bottom water in vegetation,
and when the ground surface is covered by water, the SAR backscattering signal increases
significantly [65]. Therefore, SAR data can be introduced into land cover mapping to
improve the mapping accuracy of wetlands. 4© Global land cover products are produced
on a large scale, leading to great challenges in extracting small patches of construction
land. Previous studies have shown that night light data can be used to effectively extract
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construction land [66]. Therefore, night light data should be introduced when producing
global-scale land cover products in the future.

6. Conclusions

In order to provide a reference for research on the impact of land cover changes
on global change and ecological environmental systems in drought regions, accuracy
evaluation and comparative analysis of three existing high-resolution land cover products
were carried out in this study. The results revealed that (1) the OA of the FROM-GLC
product was the highest (53.81–73.45%), followed by the ESA product (49.21–71.64%),
and the OA of the ESRI product was the lowest (35.90% and 64.16%). (2) The spatial
consistency analysis of the three products revealed that the proportion of completely
consistent areas was low (46.26%), and these areas were mainly distributed in areas with
low surface heterogeneity and relatively singular land cover types. The main reason for
the low consistency between the three products was the discrimination difference of some
vegetation types, such as grassland, shrubland, and bare land. (3) The FROM-GLC, ESA,
and ESRI products can be used as auxiliary data for water and cropland resource research
in drought regions. Overall, the accuracies of the three global land cover products in
northwestern China were low. In the future, the accuracies of some vegetation types (e.g.,
grassland, shrubland, and bare land) need to be improved in order to provide data support
for the monitoring of regional climate change and soil erosion caused by vegetation changes.
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