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Abstract: Landslides frequently occur along the eastern margin of the Tibetan Plateau, which poses
a risk to the construction, maintenance, and transportation of the proposed Dujiangyan city to
Siguniang Mountain (DS) railway, China. Therefore, four advanced machine learning models,
namely, the Bayesian network (BN), decision table (DTable), radial basis function network (RBFN),
and stochastic gradient descent (SGD), are proposed in this study to delineate landslide susceptibility
zones. First, a landslide inventory map was randomly divided into 828 (75%) samples and 276 (25%)
samples for training and validation, respectively. Second, the One-R technique was utilized to analyze
the importance of 14 variables. Then, the prediction capability of the four models was validated and
compared in terms of different statistical indices (accuracy (ACC) and Cohen’s kappa coefficient
(k)) and the areas under the curve (AUC) in the receiver operating characteristic curve. The results
showed that the SGD model performed best (AUC = 0.897, ACC = 80.98%, and k = 0.62), followed
by the BN (AUC = 0.863, ACC = 78.80%, and k = 0.58), RBFN (AUC = 0.846, ACC = 77.36%, and
k = 0.55), and DTable (AUC = 0.843, ACC = 76.45%, and k = 0.53) models. The susceptibility maps
revealed that the DS railway segments from Puyang town to Dengsheng village are in high and very
high-susceptibility zones.

Keywords: landslide susceptibility; machine learning; stochastic gradient descent; railway corridor;
GIS; factor selection

1. Introduction

Landslide phenomena are the response of geomorphic evolution and are common
hazardous processes in mountain areas, which frequently cause substantial loss of life
and property, as well as considerable damage to the ecological environment around the
world [1]. Many scholars have confirmed that increasing landslide events are mainly
associated with climate changes, rapid snowmelt, earthquakes, rapid land-use changes, and
extensive human activities [2,3], which present considerable challenges to the engineering
construction of traffic arteries and water conservancy facilities [4]. With the rapid uplift of
the Tibetan Plateau, the internal and external dynamic geological processes are strongly
intertwined and transformed, shaping complex and special geological environmental
conditions and strong river dynamic processes along this plateau margin [5,6]. Under this
geological environmental condition, landslides are extremely well developed along the
eastern margin of the Tibetan Plateau (EMTP), causing significant socioeconomic losses
and casualties every year [7]. In addition, in the Longmenshan area of the EMTP, the
government department is planning to combine rail transit and mountain tourism by
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building a new railway with toothed rail standards from Dujiangyan city to Siguniang
Mountain (DS railway), which will contribute to tourism development and local economic
growth [8]. The DS railway is mainly built along the Yuzi River with alpine canyon
landforms. The railway crossing region is a special area with complicated geomorphology,
great disparity in altitude, a steep gorge, strongly incised river, active tectonic movement,
and variety of climates. Notably, landslides are an inevitable problem in the construction of
infrastructure, and they seriously restrict and affect the planning, construction, operation
and maintenance of DS railway projects. Therefore, to reduce and manage landslide-related
disasters, it is vital and worthwhile to create landslide susceptibility maps (LSMs) for
delineating landslide-prone zones as references in railway planning [9,10]. Landslide
mitigation is also an important step towards achieving the United Nations sustainable
development goals [11].

Landslide susceptibility is related to the possibility of landslide occurrence in a given
region based on the local environmental conditions [12]. Landslide susceptibility mapping,
which depends on topography, geology, geotechnical properties, climate, vegetation, and
anthropogenic factors, involves the spatial distribution and rating of the terrain units in
accordance with their tendency to generate slope instability. Since the mid-1970s, a signifi-
cant number of techniques have been employed to study landslide susceptibility [13,14].
These techniques can be categorized into knowledge-based, physically based, bivariate
and multivariate statistical, and machine learning (ML) models. Among these models,
ML models have gained substantial attention and have been increasingly applied in the
landslide susceptibility domain due to their high ability to handle complex and nonlinear
data [15]. As reported in previous studies, ML models are more accurate than conventional
methods. For example, Yilmaz [16] used frequency ratio (FR), logistic regression (LR), and
artificial neural networks (ANN) to compare landslide susceptibility, indicating that the
areas under the curve (AUC) value of 0.852 for ANN exceeded those values of the FR
and LR models. Goetz, et al. [17] presented a comparison of traditional statistical and ML
models applied for regional landslide susceptibility, demonstrating that random forest
and bootstrap aggregated classification trees had the overall best predictive performances
compared with LR, generalized additive models, and weights of evidence. Similarly,
Huang, et al. [18] discovered that the performances of ML models, including the multilayer
perceptron, backpropagation neural network, support vector machine (SVM), and C5.0
decision tree (DT), have better prediction accuracy than heuristic and general statistical
approaches in Shicheng County, China. In addition, other ML techniques, such as Bayesian
algorithms (naïve Bayes (NB) and Bayesian belief network), ANN algorithms (convolu-
tional neural network, recurrent neural network, self-organizing map), and DT algorithms
(classification and regression tree, alternating DT, and ID3 DT), are also widely applied to
predict landslide susceptibility [15,19–22].

Nevertheless, each ML model has proven to have its own sole merits and demerits.
The prediction capacity of the model depends on the available data, characteristics of the
research sites, and scale of the analysis. In addition, the data employed to build landslide
susceptibility models usually comprise abundant instances with dozens of attributes [23].
Therefore, using conventional ML methods (e.g., ANN and SVM) to train landslide suscepti-
bility models may take much time and occupy extensive random-access memory. Stochastic
gradient descent (SGD) usually selects a random sample to iteratively update the model
parameters, resulting in the learning being very fast and can be updated online. Thus, SGD
speeds up the convergence rate and shortens the training time. SGD has been successfully
applied to solve large-scale and sparse ML problems, which is often encountered in text
classification and natural language processing [24]. However, the SGD model has rarely
been utilized in landslide prediction. In previous landslide-related studies, we discovered
that only Bui, et al. [25] applied the SGD model to predict landslides, while Hong, et al. [26];
Nhu, et al. [27]; and Wang, et al. [28] employed the SGD algorithm to optimize deep learn-
ing models. Notably, the SGD model needs to be further explored. Therefore, in this study,
the SGD model was introduced to assess landslide susceptibility along the DS railway.
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Furthermore, to more fully reflect the comprehensive performance of the SGD model, the
Bayesian network (BN) and radial basis function network (RBFN) models, two famous
supervised learning algorithms, were taken as the reference models in this study. Many
scholars have demonstrated the excellent ability of the BN and RBFN models in predicting
regional landslide risk. For instance, Song, et al. [29] and Lee, et al. [30] applied the BN
model to analyze the spatial prediction of landslide susceptibility and achieved a high
probability of landslide detection. Pham, et al. [31] predicted landslide susceptibility in the
Van Chan district (Vietnam) by combining an RBFN with the random subspace, attribute
selected classifier, cascade generalization, and Dagging. The results indicate that the single
RBFN model (AUC = 0.799) outperformed all the ensemble models in the training dataset.
In addition, a decision table (DTable), another rarely utilized rule classification algorithm,
was also applied to generate LSMs for comparison. Pham, et al. [32] employed the DTable
model to predict the susceptibility of landslides and compared it with other state-of-the-art
ML models. However, in previous studies, there has been no comparative study of these
four advanced models.

Thus, this paper aims to compare the prediction capability of four ML models, namely,
BN, DTable, RBFN, and SGD, in landslide susceptibility modeling along the DS railway.
The paper also aims to determine the most effective model among the four models by using
statistical indices and the receiver operating characteristic (ROC) curve. This study sub-
stantially contributes to the ongoing scientific debate on landslide susceptibility modeling
and guides the prediction and early warning of landslide disasters along this vital corridor.

2. Study Area and Materials
2.1. Study Area

The planned tourist DS railway is in western Sichuan Province, China (Figure 1a). The
railway starts in Dujiangyan city, passes through the Longchi National Forest Park and the
Wolong National Nature Reserve (a World Natural Heritage Giant Panda Habitat), and
ends in the National Scenic Area of Siguniang Mountain, Xiaojin County (Figure 1b,c). The
railway spans approximately 123 km, and the total study area is 1813.58 km2. In terms
of geomorphic units, the study area lies in the EMTP, which is the transition area from
the Sichuan Basin with an altitude of 600~700 m to the Tibetan Plateau with an altitude
of 3000~5600 m. The landform characteristics mainly consist of plains, hills, mountains,
valleys, and ice margins. The tectonic position of the study area is the active suture
zone of the Songpan-Ganze orogenic belt and Yangtze Plate [33]. The geological tectonic
movement is active, and the overall structural trace is distributed in a northeast-southwest
direction. The DS railway spans the Longmenshan fold-and-thrust belt, consisting of the
Pengxian-Guanxian faults (PGF), Beichuan-Yingxiu faults (BYF), and Maoxian-Wenchuan
faults (MWF), where the Ms 8.0 Wenchuan earthquake and Ms 7.0 Lushan earthquake
occurred. Geologically, sedimentary rocks (e.g., sandstone and limestone) are exposed from
Dujiangyan city to Yingxiu town. The volcanic rocks (e.g., diorite and granodiorite) crop out
from Yingxiu to Gengda towns. The metamorphic rocks (phyllite, metamorphic sandstone,
slate, altered basalt, and quartzite) are located from Gengda to Siguniang Mountain towns
along the railway route. The rock strata mainly comprise Mesoproterozoic to Cenozoic
strata, while Cambrian, Ordovician, Paleogene, and Neogene strata are absent in the study
area [8]. Hydrologically, the main rivers in the area are the Minjiang River and its tributary
Yuzi River, where the railway mainly runs along the Yuzi River. River incision into bedrock
occurs at a rate of 1.81 mm/year [34]. From Dujiangyan to Yingxiu in the eastern part
of the study area, the annual rainfall ranges from 920 mm to 1177 mm. From Gengda to
Dengsheng, the average annual precipitation is 888 mm/year. At Siguniang Mountain, the
annual rainfall ranges from 710 mm to 930 mm.
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Figure 1. Location of the study area. (a) General map of China; (b) Location of the study
area; (c) Landslide inventory map; (d) Topographic cross-section of D–D′ with different reliefs
of approximately 3040 m. PGF: Pengxian-Guanxian faults, BYF: Beichuan-Yingxiu faults, MWF:
Maoxian-Wenchuan faults.

In total, under the influence of earthquakes, faults, differential weathering, and erosion,
the rock mass is mostly fragmented and has poor integrity. These factors, combined with
human activities and extreme rainfall, cause the widespread occurrence of landslides in
this region.

2.2. Landslide Inventory

An accurate landslide inventory map is vital for predictions in landslide-prone ar-
eas and regional landslide prevention. In the present study, a landslide inventory map
was prepared based on historical landslide records and manual visual interpretation of
0.15 m resolution unmanned aerial vehicle (UAV) aerial photographs (Figure 1b), ~0.5 m
resolution World View-2 and Geoeye-1 satellite images, and 10 m resolution Sentinel-2A
satellite images. Extensive field reconnaissance supported by the China Railway Eryuan
Engineering Group Co., Ltd. was then conducted for verification (Figure 2). A total of 1104
landslide locations (Figure 1c), which consisted of slides and falls (Figure 2), were mapped
and identified [35]. The smallest and largest area dimensions of the landslides identified
are 2.28 × 102 and 3.11 × 106 m2, respectively. Approximately 1.00%, 19.75%, 55.62% and
23.64% of landslides are characterized as very large-sized (>1 km2), large-sized (0.1–1 km2),
medium-sized (0.01–0.1 km2), and small-sized landslides (<0.01 km2), respectively. For
landslide spatial analysis, all the landslide polygons were transformed into points and
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then randomly split into two subsets with 75% (828 landslides) and 25% (276 landslides)
for training and validation purposes, respectively. In addition, an equal number of non-
landslide points were randomly selected from the landslide-free areas and then divided
into a training dataset and a validation dataset with the same proportions.
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Figure 2. Photos showing landslides in the study region: (a) deep-seated rockslide triggered by the
Wenchuan earthquake; (b) shallow rockslide triggered by road construction; (c) rockfall induced by
joint cutting; and (d) rockfall caused by the Wenchuan earthquake.

2.3. Landslide-Related Variables

After compiling the landslide inventory map, it is necessary to select and create
landslide-related variables in the process of landslide susceptibility modeling [36]. Based
on some previous studies and the geological environment features of the study area, 14
variables related to geology, topography, hydrogeology, and the environment were adopted:
altitude, slope angle, slope aspect, curvature, lithology, distance from faults, distance
from rivers, stream power index (SPI), topographic wetness index (TWI), normalized
difference vegetation index (NDVI), land use, distance from roads, rainfall, and peak
ground acceleration (PGA). The details of the selected variables are presented in Table 1
and Figure 3.

An Advanced Land Observing Satellite (ALOS) digital elevation model (DEM) with
a resolution of 30 m (https://www.eorc.jaxa.jp/ALOS, accessed on 4 November 2021)
was adopted to derive the topographic and hydrological variables, such as altitude, slope
angle, slope aspect, curvature, distance from rivers, SPI, and TWI. In addition, geological
variables, such as lithology and fault information, were obtained from the geological
map at the 1:200,000 scale provided by the China Geological Survey and rectified from
the field survey. The lithology in the study area is grouped into 14 classes based on the
geological age, rock type, and geotechnical criteria (Figure 3e and Table 2). A land-use map
of 2020 with a 30-m spatial resolution was downloaded from the Global Geo-information
Public Product website (http://www.globallandcover.com, accessed on 8 November 2021).
Land-use types were partitioned to delineate seven types: farmland, forest, grass land,
wetland, water bodies, artificial surfaces, and permanent snow and ice. In QGIS software,
the NDVI was calculated using two Sentinel-2B images with a 10-m spatial resolution from
14 January 2021, and the orbit number of the images was 20150. Road information was
provided by the National Platform for Common Geospatial Information Services (https:
//www.tianditu.gov.cn, accessed on 7 November 2021). In the Geographic Information
System (GIS) environment, the distance from roads was prepared using the Euclidean
distance function along the roads (Figure 3l). A mean annual rainfall contour map was
generated using the kriging spatial interpolation method in the GIS environment based on
annual rainfall data (1981–2010) provided by the China Meteorological Administration. The
PGA for the 2008 Ms. 8.0 Wenchuan earthquake was employed in this work and extracted
from the United States Geological Survey (USGS).

https://www.eorc.jaxa.jp/ALOS
http://www.globallandcover.com
https://www.tianditu.gov.cn
https://www.tianditu.gov.cn
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Table 1. Landslide-related variables and their classes.

Variables Classes (j) Descriptions of
Variables

Classified
Method/Number

of Classes (m)

Resolution
(Scale)

Altitude/m

650–1000;
1000–1500;
1500–2000;
2000–2500;
2500–3000;
3000–3500;
3500–4000;
4000–5408

Potential energy,
vegetation, temperature,

rainfall, and human
activities always change
with altitude, resulting in

the development of
landslides within a

certain range of altitudes.

Equal interval/8 30 × 30 m

Slope angle/◦
0–10; 10–20; 20–30;

30–40; 40–50;
50–60; 60–80

Slope angle affects the
stress distribution,

thickness of loose solid
matter, vegetation

coverage, and surface
water runoff.

Equal interval/7 30 × 30 m

Slope aspect Flat; N; NE; E; SE;
S; SW; W; NW

Slope aspect affects the
vegetation cover, water

evaporation, and
weathering degree of the

hillslope.

Equal interval/9 30 × 30 m

Curvature

[(−28.22)–(−2.73)];
[(−2.73)–(−1.13)];

[(−1.13)–0.02];
[0.02–1.17];
[1.17–3.01];
[3.01–30.33]

Curvature affects the
internal stress of

hillslope and the runoff
of surface water.

Natural break/6 30 × 30 m

Lithology

Group 1; group 2;
group 3; group 4;
group 5; group 6;
group 7; group 8;

group 9; group 10;
group 11; group 12;
group 13; group 14

Lithology is the material
basis of landslide

disasters, which affects
the difficulty of hillslope

erosion. The group
details are shown in

Table 2.

Lithofacies/14 1:200,000

Distance from
faults/m

0–500; 500–1000;
1000–1500;
1500–2000;
2000–2500;
2500–3000;

3000–3500; >3500

Faults destroy the
integrity of rock masses

and provide channels for
groundwater flow.

Equal interval/8 1:200,000

Distance from
rivers/m

0–250; 250–500;
500–750; 750–1000;

1000–1250;
1250–1500;

1500–1750; >1750

The river can erode and
soften the hillslope toe,
thus reducing the shear
strength of the hillslope.

Equal interval/8 30 × 30 m

SPI
0–5; 5–10; 10–15;

15–20; 20–25;
25–30; 30–35; >35

SPI = As ∗ tan β can
describe the potential

erosion capacity of water
flow at a given location

in a watershed, where As
is the specific catchment
area (m2/m) and β is the

slope angle (◦).

Equal interval/8 30 × 30 m

TWI 1.94–4; 4–6; 6–8;
8–10; >10

TWI = Ln(As/tan β) is
an indicator of surface

soil moisture, which can
quantitatively evaluate
the runoff trend and the

location of runoff
convergence.

Equal interval/5 30 × 30 m
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Table 1. Cont.

Variables Classes (j) Descriptions of
Variables

Classified
Method/Number

of Classes (m)

Resolution
(Scale)

NDVI
(−0.95)–0; 0–0.2;
0.2–0.4; 0.4–0.6;
0.6–0.8; 0.8–1

NDVI has been widely
employed to measure the

degree of vegetation
development, which is

related to hillslope
runoff, infiltration, and

weathering [36].

Equal interval/6 10 × 10 m

Land use

Farmland; forest;
grass land;

wetland; water
bodies; artificial

surfaces;
permanent snow

and ice

Different land-use types
have different effects on

landslides, and
unreasonable land use

can aggravate landslides.

Land use unit/7 30 × 30 m

Distance from
roads/m

0–250; 250–500;
500–750; 750–1000;

1000–1250;
1250–1500;

1500–1750; >1750

Road construction
always influences

changing in hillslope
geometry, stress and

hydrology [37].

Equal interval/8 1:50,000

Rainfall/mm

717–770; 770–820;
820–870; 870–920;
920–970; 970–1020;

1020–1070;
1070–1117

Rainfall can erode the
hillslope surface, destroy

the surface integrity of
rock and soil masses, and
reduce the shear strength
of rock and soil masses.

Equal interval/8 30 × 30 m

PGA/g

0.24–0.44;
0.44–0.64;
0.64–0.84;
0.84–1.04;

1.04–1.24; 1.24–1.72

One of the main
indicators of an

earthquake, as well as a
direct trigger of seismic

landslides [38].

Equal interval/6 30 × 30 m

Table 2. Classification and description of the geological units in the study area.

Classification Code Lithology Geological Age Area/km2

Group 1 Q2, Q4
Alluvium and colluvial

sediments Quaternary 133.57

Group 2 K2g, K1j
Quartz sandstone,

siltstone, and sandy
mudstone

Cretaceous 1.31

Group 3 J3l, J2sn, J2s
Sandstone, siltstone,

sandy mudstone, and
calcareous conglomerate

Jurassic 15.00

Group 4 T3

Conglomerate,
feldspathic quartz

sandstone, siltstone with
shale and thin coal layer

Upper Triassic 120.23

Group 5 T1, T2, T3
Metasandstone, phyllite,

crystalline limestone Triassic 871.64

Group 6 P1
Dolomitic limestone,

argillaceous limestone Permian 14.38

Group 7 C
Limestone intercalated
with calcareous shale,

mudstone
Carboniferous 8.95

Group 8 C, T
Crystalline limestone,

altered basalt, and
phyllite

Carboniferous and
Triassic 192.52
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Table 2. Cont.

Classification Code Lithology Geological Age Area/km2

Group 9 D2, D3
Limestone, dolomite,
sandstone, and shale Devonian 5.07

Group 10 Dwg Phyllite with quartzite
and crystalline limestone Devonian 149.28

Group 11 Smx
Phyllite, quartzite,

crystalline limestone,
metamorphic siltstone

Silurian 98.66

Group 12 Za Andesite, rhyolite, tuff
lava, breccia agglomerate Sinian 11.68

Group 13 γo2
(4), γδ2

(3),
γδ2

(4), δo2
(3)

Plagioclase granite,
diorite, granodiorite, and

diabase
Proterozoic 189.24

Group 14 Pthn Gabbro, diorite and
quartz diorite Proterozoic 2.03

To avoid uncertainties associated with different spatial resolutions, all relevant vari-
ables were converted into raster format with a 30-m resolution using QGIS software, which
is conducive to achieving better results [39]. Among these 14 variables, lithology and land
use are categorical variables, whereas the other variables are continuous variables. Both
categorical and continuous variables can be used for four models. Studies have shown
that the use of all categorical variables can yield a more accurate predictive performance
than the use of partially continuous variables [40]. In addition, obtaining a standardized
variable map is a prerequisite for landslide analysis [41]. Therefore, in the present study,
continuous variables were reclassified into categorical variables based on different methods.
Based on many previous studies (e.g., [42]), curvature was classified using the natural
breaks method, which can form several classes based on the intrinsic features of a dataset
without any subjective thought [23]. The other continuous variables were classified using
the equal interval method following certain guidelines and suggestions applied in land-
slide assessments and to determine the class intervals and best arrangement of variable
values [31,43].
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3. Methodology

The modeling methodology proposed in this study consisted of five main steps
(Figure 4): (i) constructing the geospatial database using QGIS software, (ii) analyzing
the multicollinearity problem and predictive ability of variables using MATLAB and
Waikato Environment for Knowledge Analysis (WEKA) package (version 3.8.5) software,
(iii) building landslide susceptibility models using BN, DTable, RBFN and SGD algorithms
in WEKA software, (iv) validating and comparing the models using MATLAB software,
and (v) performing sufficiency analysis and producing LSMs in a GIS system.

3.1. Frequency Ratio (FR)

The FR is widely and efficiently applied in the field of landslide susceptibility anal-
ysis. Here, we performed the FR method to calculate the weight of each class according
to the probabilistic relationship between landslide-related variables and landslide occur-
rences [44]. If the FR value is greater than 1, the corresponding area has a higher probability
of landslide occurrence. In contrast, if the FR value is less than 1, the probability of land-
slide occurrence is low. The FR value of each class of variables can be calculated using the
following equation (e.g., Lee and Pradhan [45]):

FR =
Nj/∑m

j=1 Nj

Aj/∑m
j=1 Aj

(1)

where Nj is the number of landslide points within class j of the variable, Aj is the number
of grid cells for class j of the corresponding variable, and m is the total number of classes in
the corresponding variable, which is presented in Table 1.
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3.2. Feature Selection

The effectiveness of a landslide susceptibility assessment depends significantly on
the quality and quantity of the utilized data, especially the variables that affect landslide
occurrences in a given area [46]. In the present study, the variance inflation factor (VIF) and
one rule (One-R) technique were employed to analyze the multicollinearity problem and
predictive ability for the variables, respectively. Generally, a VIF of less than 5 indicates
that the variables are independent [47]. The One-R technique can estimate and rank
the importance of conditioning variables. For each variable, a rule is separately built
in the training dataset, and the simple rule with the smallest error metric is selected for
modeling [48]. Error metrics for each variable and each variable’s value are computed. The
variables are then ranked based on the quality of the corresponding rules indicated by the
average merit (AM) index [49]. Irrelevant or unimportant factors can be removed without
much damage to information through feature selection [50].

3.3. Landslide Susceptibility Model
3.3.1. Bayesian Network (BN)

The BN algorithm provides a systematic method for describing uncertainty interde-
pendencies among random variables based on graph theory and Bayes condition probabil-
ity [20], which has great potential for natural hazard assessment. BN generally consists of a
directed acyclic graph for the qualitative component and a set of Bayesian conditional prob-
abilities for the quantitative dataset, which are described in [51,52]. Landslide susceptibility
assessment can be regarded as a way to solve the multivariable joint probability distribution
function. The BN can use the chain rule and the conditional independence relationship
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between landslide variables to decompose the joint distribution into the products of several
less complex probability distributions [53], which can be expressed as follows:

P(X1, . . . , Xn) =
n

∏
i=1

P(Xi|π(Xi)) (2)

where P(X1, . . . , Xn) represents the joint distribution of n variables; π(Xi) is the parent
nodes of Xi; and P(Xi|π(Xi)) is the conditional probability distribution of Xi given π(Xi).

3.3.2. Decision Table (DTable)

A DTable is a scheme-specific learning algorithm that uses a table structure to refine
the description of complex logic. The algorithm is usually performed using a default rule
mapping to the majority class [32]. It has two parts: (i) a schema containing a set of features
in the table and (ii) a body composed of labeled instances from the space defined by the
features in the schema [54]. In this study, the best-first search was used to obtain good
attribute combinations.

3.3.3. Radial Basis Function Network (RBFN)

An RBFN is a type of receptive-field neural network for function approximation [55].
The RBFN has a feedforward structure that comprises three layers (input layer, hidden
layer, and output layer) (Figure 4). The input layer connects the inputs from the dataset,
which includes 14 landslide-related variables. The output layer predicts a landslide or
non-landslide. The hidden layer contains a specialized radial basis function that serves
as an activation function, which is usually represented by the Gaussian function. More
detailed introductions about the RBFN are provided in [31,56]. The RBFN is beneficial
as it can easily solve the high-dimensional space nonlinearity problem through a set of
linear combinations of radial basis functions and has the ability to be quickly trained [57].
Therefore, it has been successfully applied to solve many complex problems related to the
environment, such as flood and landslide susceptibility modeling [55].

3.3.4. Stochastic Gradient Descent (SGD)

The SGD is one of the most popular ML algorithms for model optimization; it is
generally applicable to support discriminative learning of linear classifiers under convex
loss functions, such as neural networks, SVMs, and LR [58]. SGD is an improved algorithm
that is based on gradient descent. This algorithm is regarded as a stochastic approximation
of the gradient descent optimization as it uses an approximation gradient instead of an
actual gradient by randomly subsampling the whole training dataset [59]. The algorithm is
popular because of its high efficiency and easy implementation for datasets with redundant
samples. However, SGD is rarely applied in landslide susceptibility analyses, which need
to be widely explored. In this study, LR is used as a loss function in modeling.

3.4. Model Evaluation and Comparison

To evaluate the performance of the four models, a set of statistical indices, including
the positive predictive rate (PPR), negative predictive rate (NPR), sensitivity, specificity,
accuracy (ACC), F-measure (F1), and Cohen’s kappa (k) coefficient, were utilized for the
training and validation datasets. These methods are broadly adopted to define the perfor-
mance of the spatial models and are explained in detail in [31]. The higher the statistical
indices are, the better the model performance is, which is a perfect model with a value of
1 [19]. They can be calculated using the following formulas [18,25,50]:

PPR =
TP

TP + FP
(3)

NPR =
TN

TN + FN
(4)
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Sensitivity =
TP

TP + FN
(5)

Specificity =
TN

FP + TN
(6)

ACC =
TP + TN

TP + FP + TN + PN
(7)

F1 =
2× Sensitivity× PPR

Sensitivity + PPR
(8)

k =
ACC− ACCexp

1− ACCexp
(9)

ACCexp =
(TP + FN)(TP + FP) + (FP + TN)(TN + FN)

(TP + TN + FP + FN)2 (10)

where TP (true positive) and TN (true negative) are the numbers of pixels that are correctly
classified as landslides. FP (false positive) and FN (false negative) are the numbers of pixels
that are incorrectly classified. ACCexp is the expected accuracy.

Apart from the statistical indices, the ROC curve that plots “sensitivity” as the y-
axis against “1-specificity” as the x-axis and the corresponding AUCs were employed for
evaluation [25]. The AUC value ranges from 0.5 to 1.0, and a higher value indicates better
model performance. The predictive capability given the AUC value could be quantified as
follows: excellent (0.9–1), very good (0.8–0.9), good (0.7–0.8), average (0.6–0.7), and poor
(0.5–0.6) [42].

4. Results and Analysis
4.1. FR Analysis
4.1.1. Topographic Variables

The mathematical calculation of the FR value for all variables is presented in Figure 5.
For the altitude, the subclasses of 1000–1500 m, 1500–2000 m, 2000–2500 m, and 2500–3000
have FR values > 1, meaning landslides are prone to occur in these zones. In this study, the
areas with an altitude < 3000 m are mainly distributed in the piedmont basin and on both
banks of the river. In these areas, most agricultural activities and engineering constructions
may affect the stability of hillslopes. However, the FR value in the range of 650–1000 m
is less than 1 as most of these areas are located around Dujiangyan city with a plain area
of the Sichuan Basin where landslides do not occur. For the slope angle, the subclasses of
40–50◦, 50–60◦, and 60–80◦ possess FR values larger than 1, indicating that steep terrain
is conducive to the occurrence of landslides. Generally, the FR value basically shows an
increasing trend with an increase in the slope angle. In the field survey, we discovered
that many rockfalls occurred in steep rock slopes on both sides of the river valley. For
the slope aspect, hillslopes with dip directions of southeast (FR = 1.47), south (FR = 1.41),
and northwest (FR = 1.12) exhibit a higher probability of causing landslides. In the case of
curvature, the class (−28.22)–(−2.73) has the highest FR values (FR = 2.30), followed by the
class (−2.73)–(−1.13) (FR = 1.72), indicating that hillslopes with concave shapes usually
have a higher probability of landslide occurrence.
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4.1.2. Geological Variables

For lithology, six classes with FR values > 1 can be observed, involving group 4
(FR = 1.86), group 6 (FR = 2.63), group 7 (FR = 5.87), group 9 (FR = 4.54), group 12
(FR = 11.11), and group 13 (FR = 3.13). All these lithological units are sedimentary and
magmatic rocks, which are distributed from Dujiangyan city to Gengda town. For the
distance from faults, intervals of 0–500 m have the highest FR value (FR = 2.40), indicating
that landslides are prone to occur in these areas. Three main active faults, namely, PGF, BYF,
and MWF, cross the study area, where the Wenchuan Ms 8.0 earthquake is related to BYF.

4.1.3. Hydrological Variables

Overall, FR values have a negative correlation with the distance from rivers. Con-
cretely, classes of 0–250 m and 250–500 m have the highest FR values of 1.96 and 1.32,
respectively. Regarding the SPI, except for the classes of 0–5 and >35, which have FR values
<1, the other classes display a positive influence on landslide occurrence. Classes 5–10 are
the most prone to hillslope failure, with FR = 1.75. For the TWI, the relationship between
the five classes and landslide occurrence shows a distinction among classes. Classes 4–6
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are the most prone to sliding (FR = 1.20), whereas the other classes are relatively unlikely
to slide.

4.1.4. Environmental Variables

With respect to the NDVI, the maximum FR value (FR = 1.69) belongs to the class of
0.4–0.6, followed by the class of 0.6–0.8 (FR = 1.39), suggesting susceptibility to landslides.
Concerning land use, most landslides occurred in the forest area (FR = 1.38), followed by
farmland (FR = 0.88) and grass land (FR = 0.08). For the distance from roads, the correlation
with the occurrence of landslides decreases with an increase in distance from roads. FR
values > 1 in the classes with distances in the ranges of 0−250 m, 250−500 m, 500−750 m,
750−1000 m, 1000−1250 m, 1250−1500 m, and 1500−1750 m indicate that within a certain
range (<1750 m), road construction has a positive impact on the occurrence of landslides. In
terms of rainfall, the probability of landslides increases with an increase in rainfall, reaching
a maximum in the class of 920−970 mm (FR = 5.91) and then decreasing. This result is
mainly because rainfall is concentrated in the piedmont basin, where landslides rarely
occur. Judging from the PGA results, the FR values gradually increase as the PGA values
rise. The PGA class of 1.24–1.72 g occupied the highest value for FR (2.93). Within a certain
range, the positive effects of PGA on slope stabilities gradually increase with an increase
in PGA.

4.2. Feature Selection Analysis

The VIF and AM index of 14 variables were calculated with the training dataset, and
the results are shown in Figure 6. All VIF values are less than 5, which indicates that
no variables have significant multicollinearity (Figure 6a). Moreover, altitude, distance
from roads, and PGA, with AM values of 75.42, 72.89, and 72.71, respectively, are the most
important variables and have the highest predictive capabilities for landslide modeling
(Figure 6b). From the feature selection results, we determined that all fourteen variables had
significance in landslide incidence (AM > 0); thus, all variables were utilized for landslide
susceptibility modeling in this study.
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4.3. Application of the Models

LSMs were produced for the four models using the 14 variables, and the results are
presented in Figure 7. More precisely, the landslide susceptibility index (LSI) for each pixel
of the study area was calculated using the trained models in WEKA software. These LSI
values were then demarcated into five classes by means of the equal interval classification
method in the GIS environment, correspondingly, very low (0–0.2), low (0.2–0.4), moderate
(0.4–0.6), high (0.6–0.8), and very high (0.8–1). Note that, the most prevailing natural breaks
method was not selected to divide landslide susceptibility classes in this study, as the
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ranges and distributions of LSI values produced by various models usually vary. There is
no comparability among the LSMs obtained by the natural breaks method, which is a defect
that cannot be disregarded [23]. Therefore, for correct comparison of the LSMs generated
by the BN, DTable, RBFN, and SGD models, an equal interval of 0.2 was used to identify
landslide susceptibility levels. For more clarification, the area and landslide proportions in
each landslide susceptibility class are shown in Figure 8.
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In this case, the results show that the LSI values derived from the BN model range
from 0 to 1 (Figure 7a). We found that the very low landslide susceptibility class covered
the largest areas of the whole study area (67.45%), followed by the very high (16.18%), low
(5.88%), high (5.69%), and moderate (4.81%) classes (Figure 8a). For the DTable model, the
LSI values are between 0.02 and 0.94 (Figure 7b). The area classified as very low was the
largest (49.05%), followed by low (18.94%), high (11.70%), moderate (11.58%), and very
high (8.73%) (Figure 8a). Regarding the RBFN model, the LSI values range from 0.08 to
0.87 (Figure 7c). According to Figure 8a, the very low class has the largest coverage area
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(68.03%), followed by the very high (16.98%), low (5.73%), high (5.70%), and moderate
(3.55%) classes. In the case of the SGD model, the LSI values range from 0 to 1 (Figure 7d).
Here, 65.79% of the study area has very low landslide susceptibility, while the differences
in area percentages among very high (11.92%), low (8.75%), high (7.15%), and moderate
(6.41%) levels are relatively slight (Figure 8a). Notably, 49.05−68.03% of the whole domain
belongs to very low susceptibility zones produced by the four models, which are mainly
located in high mountains above 3500 m, the water bodies/reservoir, and the piedmont
plain. However, the very high and high susceptibility zones are mainly distributed near
rivers, roads, steep slopes, and magmatic rock-covered areas in the study area.

In Figure 8b, 86.32%, 76.09%, 84.06%, and 86.50% of all landslides fall in the high- and
very high-susceptibility zones produced by the BN, DTable, RBFN, and GSD models, re-
spectively. However, for the very low and low susceptibility classes, the BN, DTable, RBFN,
and GSD models involve 9.33%, 11.59%, 12.77%, and 7.43% landslide points, respectively.
As a result, compared with the BN, DTable, and RBFN models, the map obtained by SGD
may show more precision.

In addition, the FR of landslide occurrence in different landslide susceptibility classes
was calculated to evaluate the reliability of these maps (Figure 9). The results show that the
greatest percentage of landslide occurrence belongs to the very high-susceptibility class,
followed by the high, moderate, low, and very low classes. This finding demonstrates that
the applied models can effectively determine different landslide susceptibility classes in
the study area [60]. Based on the FR value in the very high-susceptibility level, the highest
value of 5.937 is obtained for the SGD model, which indicates that the map generated by
the SGD model is better than that of other models (BN, DTable, and RBFN).
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LSMs of the 1 km buffer zone along the proposed DS railway were extracted to exhibit
the possible impact of landslides within a specific range along the railway (Figure 10). The
buffer zone with an area of 245.87 km2 involved 468 landslides, accounting for 42.39% of all
landslides. According to the area proportion of landslide susceptibility classes within the
buffer zone (Figure 11a), we found that 47.11−58.32% of buffer zones are located in zones
with high- and very high-susceptibility to landslides, while the very low zone only occupies
24.45−31.35% of the buffer zone. Obviously, the high- and very high-susceptibility zones
mainly spread along the railway from Puyang town to Desheng village.
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Based on the landslide inventory map in the buffer regions, the largest landslide points
(92.52%) match the high and very high classes identified by the SGD model, followed by the
RBFN, BN, and DTable models (Figure 11b). However, approximately 8.97% of landslides
are distributed in low and very low landslide susceptibility zones calculated by the DTable
model, which is larger than that of the RBFN (7.70%), BN (5.34%), and SGD models (3.42%).
Therefore, the SGD model is more accurate than the BN, RBFN, and DTable models.

4.4. Performance and Comparison of Models

The performance of the applied models was assessed and compared using statistical
indices (Table 3). For the performance of the landslide training dataset, the SGD model
had the highest performance accuracy compared to the BN, RBFN, and DTable models,
with higher values of PPR (83.85%), NPR (90.69%), sensitivity (91.55%), specificity (82.37%),
ACC (86.96%), F1 (0.88) and k (0.74).
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Table 3. Statistical index results of different models.

Parameters
Training Dataset Validation Dataset

SGD BN RBFN DTable SGD BN RBFN DTable

True positive 758 751 726 688 232 231 219 216
True negative 682 679 664 668 215 204 208 206
False positive 146 149 164 160 61 72 68 70
False negative 70 77 102 140 44 45 57 60

PPR/% 83.85 83.44 81.57 81.13 79.18 76.24 76.31 75.52
NPR/% 90.69 89.81 86.68 82.67 83.01 81.93 78.49 77.44

Sensitivity/% 91.55 90.70 87.68 83.09 84.06 83.70 79.35 78.26
Specificity/% 82.37 82.00 80.19 80.67 77.90 73.91 75.36 74.64

ACC/% 86.96 86.35 83.94 81.88 80.98 78.80 77.36 76.45
F1 0.88 0.87 0.85 0.82 0.82 0.80 0.78 0.77
k 0.74 0.73 0.68 0.64 0.62 0.58 0.55 0.53

Very similar results can be obtained for the testing prediction accuracy using the
landslide validation dataset. The statistical indices demonstrate that the SGD model
(PPR = 79.18%, NPR = 83.01%, sensitivity = 84.06%, specificity = 77.90%, ACC = 80.98%,
F1 = 0.82, and k = 0.62) performed best, followed by BN (PPR = 76.24%, NPR = 81.93%,
sensitivity = 83.70%, specificity = 73.91%, ACC = 78.80%, F1 = 0.80, and k = 0.58), RBFN
(PPR = 76.31%, NPR = 78.49%, sensitivity = 79.35%, specificity = 75.36%, ACC = 77.36%,
F1 = 0.78, and k = 0.55), and DTable (PPR = 75.52%, NPR = 77.44%, sensitivity = 78.26%,
specificity = 74.64%, ACC = 76.45%, F1 = 0.77, and k = 0.53).

The overall performance of the landslide models using the AUC of the ROC curve
based on both the training and validation datasets is illustrated in Figure 12. For the training
dataset, it can be observed that the SGD (AUC = 0.940) and BN (AUC = 0.938) models
presented excellent performance (AUC > 0.9), while RBFN (AUC = 0.894) and DTable (AUC
= 0.888) achieved very good performance (AUC = 0.8–0.9) in this study. As a result, the SGD
model outperformed the BN, RBFN, and DTable models. With the validation dataset, the
results confirmed that the four prediction models presented very good performances (AUC
> 0.8). The SGD achieved the highest performance with an AUC value of 0.897, followed
by the BN (AUC = 0.863), RBFN (AUC = 0.846), and DTable (AUC = 0.843) models.
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5. Discussion

In mountain areas, climate change, land-use changes, and engineering construction
increases may exacerbate the risk of landslides. However, the prediction and assessment of
landslides are still lacking for specific linear engineering in the southwest mountainous
areas of China. Therefore, in the present study, we implement a detailed comparison to
evaluate the performances of four advanced ML models (BN, DTable, RBFN, and SGD) in
identifying landslide-prone areas along the DS railway.
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Before training these models, this study used multicollinearity analysis and the One-R
technique to select reasonable variables. The results obtained by the multiple collinearity
analysis indicated that the 14 variables were independent. Moreover, the AM values of
all the variables are larger than 0, which can reveal the main geo-environmental features
and landslide triggering mechanism in this region. Specifically, the impact of altitude
on landslides is much higher than that of other variables in this region (AM = 75.42).
This observation is consistent with several previous studies [42,61]. Human activities are
intensive within a certain elevation range. More high-susceptibility areas are located in the
range of 1000–3000 m, which is also consistent with our statistics on the actual altitude at
which landslides are more prone to occur. In addition, distance from roads is an important
variable affecting the probability of landslides (AM = 72.89). In mountainous areas, the
road can destroy the original balance of the slope, resulting in slope instability (Figure 2b).
Combined with the LSMs analysis, the high and very high landslide-prone areas are mainly
clustered near the roads. Therefore, in the process of railway construction, we should
avoid slope cutting and strengthen the support of existing slope cutting. PGA, another
extrinsic variable, also has a significant effect on the occurrence of landslides (AM = 72.71).
According to the FR analysis, the greater the PGA is, the greater the possibility of landslides
in the study area. It was observed that most landslides occurred in Yingxiu and Longchi
towns, with PGAs greater than 1.24 g. These analyses indicate that the occurrence of
landslides is closely related to the surrounding geo-environmental conditions.

Based on the statistical indices and AUC, the SGD model performed best with corre-
sponding assessment metrics of AUC = 0.940, ACC = 86.96%, F1 = 0.88 and k = 0.74 for the
training dataset and AUC = 0.897, ACC = 80.98%, F1 = 0.82 and k = 0.62 for the validation
dataset. The reason is related to the applicability and reliability of this algorithm in pro-
cessing large-scale landslide data. This algorithm can recover good solutions to minimize
training errors and generalize well in complex and nonconvex models [62]. This algorithm
has the advantages of simplicity, low computational cost, fast convergence, and reliable
effect [63,64]. Several scholars have already exploited the SGD model to address large-scale
problems and obtain accurate findings [65,66]. However, the BN, DTable, and RBFN models
also performed better, as the AUC value was greater than 0.8 on both the training and vali-
dation datasets. The advantage of the BN is that it can handle missing data even with small
sample sizes [29]. The DTable is easy to understand and can accurately classify instances in
discrete spaces [54]. The RBFN has the properties of unique global approximation, linear
relationship of output weights in the network structure, good classification ability, and
fast training speed [67]. Furthermore, there is minimal discrepancy between the prediction
ability of the training dataset and that of the validation dataset, which demonstrates that
the four algorithms do not have an overfitting problem [39]. Therefore, all four models can
achieve good outcomes and can be used to obtain highly reliable and practical LSMs along
the DS railway.

The choice of the study area boundary is very important for landslide susceptibility
assessment, and multiple relevant boundaries such as administrative boundaries, line buffer
zones, and watershed boundaries have been applied [43,61,68]. Among these boundaries,
line buffer zones were widely utilized to divide the research area for linear engineering.
However, there is no uniform standard for the boundary range of linear engineering.
Few studies address the maximum limit range of disaster impact on both sides of line
engineering [68]. This study’s object is the landslide susceptibility assessment along the DS
railway. The landforms crossed by the DS railway, including the piedmont basin, mountains,
and alpine-gorge, are quite complex. Therefore, we applied a combination of line buffer
zones and watershed boundaries to determine the study area. In the piedmont basin,
landslides rarely occurred, so we use a buffer zone of approximately 5 km as the research
boundary. Many landslides occurred from Puyang to Yingxiu, and the research boundaries
were divided according to the distribution of historical landslides and the possible influence
range of landslides. In the alpine-gorge area from Yingxiu to Siguniang mountain towns,
some high landslides have a large influence scope. Therefore, we delineated the study
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area boundary according to the watershed boundaries, which is a fairly stable method for
railway construction. We also focused on the susceptibility of landslides in the 1 km buffer
zone along the DS railway (Figure 10), as the landslide susceptibility near the railway is the
most noteworthy area in engineering research, which can provide a basis for railway route
selection, and necessary intervention measures can be taken in advance. In addition, a 1
km buffer zone is extracted for analysis to compare the performance of the four models at a
specific scale. The results of the landslide proportion within a 1 km buffer zone along the
DS railway also show that the SGD model is the most accurate, followed by the BN, RBFN,
and DTable models (Figure 11).

From the LSMs produced by the four models, 8.73−16.98% of the whole domain is
very prone to landslides, which are mainly distributed near rivers and roads. The areas
with very low landslide susceptibility are mainly located in high mountains above 3500
m and piedmont plains. Overall, the DS railway from Puyang town to Dengsheng village
traverses areas with high and very high susceptibility to landslides. Significantly, there
are also some differences in the spatial distribution of each class for the four models. For
instance, Siguniang Mountain town is in a very high-susceptibility area based on the LSMs
obtained by the BN and SGD models, but the DTable and RBFN models reveal that the
town is in a moderate or very low susceptibility area (Figure 7). According to the spatial
location of landslides in Siguniang Mountain town (Figure 7), the BN and SGD models
are more accurate. Based on the LSMs, railways will be threatened by landslides in the
process of construction and operation. At present, the proposed railway from Puyang
town to Dengsheng village is suggested to traverse mountain tunnels, and local sections
outside the mountain can be connected by roads or bridges. For some tunnel entrances
and exits located in high-risk areas, we suggest strengthening the detailed investigation
on tunnel hillslopes. If necessary, the position of the tunnel entrance can be changed, or
effective engineering support measures can be taken. For low susceptibility zones, potential
geohazards still need to be investigated and monitored. In addition, the investigation of
high-hidden landslide hazards and the stability analysis of high-steep slopes or cut slopes
around the railway line are the focus of future research.

However, certain uncertainty and limitations should be noted. Landslide-related
variables have diverse sources, and the spatial resolution of the variables (e.g., DEM,
lithology, distance from faults, and NDVI) was not always consistent (Table 1), which is a
major shortcoming of this study. Choosing a spatial resolution that is appropriate for all
datasets is still a challenge. Among the 14 variables, both topographic and hydrological
variables were extracted from a DEM with a spatial resolution of 30 m. Notably, lithology
and faults were obtained by vectoring the 1:200,000 geological map, which has been applied
in many studies of landslide susceptibility [23]. The position accuracy, attribute accuracy,
and joint accuracy of these data meet the technical regulations and requirements and can
provide enough spatial information. For the simplicity of data processing, we resampled all
the thematic layers at a 30 m resolution. Due to the constraints of data, accurately defining
the uncertainty induced by inconsistent spatial resolution is difficult [21]. However, we
believe that our results are valuable for landslide susceptibility mapping. In addition,
the obtained LSMs are not stationary and will change over time, as dynamic factors
(such as rainfall, land use, distance from roads, and NDVI) will change the condition
of landslide probability. Reichenbach, et al. [2] observed that landslide susceptibility
changed in response to land-use changes from 1954 to 2009. Therefore, the validity period
of susceptibility assessment is the direction of further research. Decision-makers should
strengthen the monitoring of dynamic variables to reduce disasters.

6. Conclusions

Here, four advanced ML methods (BN, DTable, RBFN, and SGD) were selected to
map landslide probabilities along the DS railway. The major findings of this study can be
summarized as follows:
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(1) Multicollinearity analysis was performed for 14 variables, and the One-R technique
was used to estimate factor importance ranking. The 14 selected variables had no multi-
collinearity problems, and altitude, distance from roads, and PGA were more important to
landslides in the study area.

(2) The precision of the models used in this research was validated using the AUC of
ROC curves and statistical indices. The results show that all four ML models can reasonably
and accurately predict landslide susceptibility. However, the SGD model achieved the
highest prediction accuracy with the highest ACC value (80.98%), F1 value (0.82), k (0.62),
and AUC value (0.897), followed by the BN (ACC = 78.80%, F1 = 0.80, k = 0.58, and AUC =
0.863), RBFN (ACC = 77.36%, F1 = 0.78, k = 0.55, and AUC = 0.846), and DTable (ACC =
76.45%, F1 = 0.77, k = 0.53, and AUC = 0.843) models.

(3) The produced susceptibility maps showed that more than one-fifth of the study area
has high to very high susceptibility to landslides, which mainly spread along the railway
from Puyang town to Desheng village. Therefore, in the project planning, construction, and
operation stages, it is necessary to strengthen the investigation, monitoring, and prevention
of landslide hazards in the above areas. The information obtained from LSMs could help
planners develop warning systems and mitigation measures during the construction of the
DS railway. Notably, the findings of the present study may also be beneficial to landslide
risk mitigation and land-use planning of other line engineering construction projects in
similar environmental settings.
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