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Abstract: Accurate assessment of agricultural drought is useful for ecosystem services. This is a successive
work of our previous study that assessed agricultural drought using the soil water deficit index (SWDI)
based on ERA5-Land in the four southern provinces of China from 2017 to 2019. Firstly, in addition
to ERA5-Land, the suitability of CLDAS (China Land Data Assimilation System) soil moisture for
drought assessment was investigated. Then, the study was extended with more comprehensive
analysis and a much longer period (1981–2020). Based on three climate zones, in situ soil moisture
was used for evaluation of both reanalysis datasets and agricultural drought. It was found that
ERA5-Land_SWDI and CLDAS_SWDI have a good correlation with the in situ SWDI. ERA5-Land
and CLDAS demonstrate some differences in representing agricultural drought but have a similar
performance evaluated by in situ soil moisture. Droughts from 2001 to 2010 were more serious than
in the other three decades, and droughts have become longer and severer in some areas in the last
40 years. There was a good correlation between agricultural drought and meteorological drought.
Our work offers important insights for agricultural drought risk management in the four southern
provinces of China.

Keywords: agricultural drought; ERA5-Land; China Land Data Assimilation System; drought
characteristics; soil water deficit index

1. Introduction

Drought is the most complex and influential natural weather hazard event among
all natural disasters [1]. Due to the slow development and long duration of drought
events, they have a profound impact on agriculture, ecology, hydrology, and the social
economy. [2,3]. Like many other places in the world, frequent droughts have caused serious
crop production failure and severe social and economic losses [4] in the four southern
provinces of China (Yunnan, Guangxi, Guangdong, and Hainan), where about 223 million
people reside. For example, from 2009 to 2010, an extremely serious drought event occurred
in the southwest region (Yunnan, Guizhou, Chongqing, Tibet, and Sichuan), affecting
6,368,700 km2 of arable land and 5,010,100 km2 of crops. In this region, Yunnan was
the most severely affected area, with the largest affected and disaster-stricken area, and
8.89 million people and 4.86 million livestock had drinking water difficulties [5]. Recently,
from the autumn of 2020 to February 2022, the Dongjiang River Basin of Guangdong
witnessed a persistent drought which led to the most severe drought in the last 60 years,
and cities such as Shenzhen suffered a shortage of water supply even though this region is
considered to be abundant in rainfall (https://www.sohu.com/a/523481769_121119270)
(accessed on 20 March 2022).
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In order to assess the impact of drought on agricultural productivity and crop (plant)
growth, it is important to study agricultural drought. Agricultural drought occurs when
insufficient soil moisture begins to adversely affect crop growth and eventually reduce
crop yields [6]. A variety of agricultural drought indices have been developed to define
agricultural drought, such as the soil moisture deficit index [7], the normalized difference
vegetation index [8], soil wetness deficit index [9], vegetation condition index [10,11],
and soil water deficit index [12]. Among them, the soil water deficit index (SWDI) can
incorporate a higher biophysics meaning than other approaches by taking both soil moisture
and soil properties into account [12], as soil water holding capacity and soil texture vary
with locations [13]. Additionally, this index can also efficiently identify the primary features
of agricultural drought, such as the duration, severity, and frequency.

The most important parameter of the SWDI is soil moisture (SM), which plays an im-
portant role in vegetation productivity. When SM is sufficient, the short-term precipitation
shortages only have a slight impact on agriculture [14,15]. There are three major sources of
SM data, including in situ observation, remote sensing, and reanalysis data. Conventionally,
in situ observation data are from in situ networks, which are generally limited in temporal
and spatial coverage and even unavailable in some remote regions [16,17]. However, the
rapid development of remote sensing data and reanalysis data has the characteristics of a
large scale and long term. These data are very suitable for defining agricultural drought.

Currently, there are many studies that used in situ SM data to verify the accuracy of re-
mote sensing and reanalysis SM data [18,19]. These studies suggested that both products are
satisfactory in capturing the annual cycle of SM and its short-term changes. Nevertheless,
these studies also showed that reanalysis SM data have higher consistency and better accu-
racy than remote sensing data. Additionally, remote sensing data are limited to the surface
soil layer and may have low accuracy in urban areas and areas with dense vegetation. Based
on the better spatial coverage and longer time series, we used two reanalysis SM datasets
for drought assessment, including CLDAS (China Land Data Assimilation System) and
ERA5-Land, which have been proved to have high accuracy by previous studies. Through
evaluating 18 satellite and model-based SM products based on observations majorly from
Europe and the USA, Beck et al. (2021) suggested that ERA5-Land is one of the best, with
an average R of 0.72 with observations [20]. Han et al. showed that CLDAS SM is of a
higher accuracy than ERA and GLDAS (Global Land Data Assimilation System) evaluated
using in situ SM of the Qinghai–Tibet Plateau [21].

However, few studies have assessed agricultural drought using SM reanalysis data for
the four southern provinces of China. We reviewed studies that investigated droughts in
the four southern provinces of China in our previous study [22] and found that reanalysis
SM products had not been used for agricultural drought assessment. In our previous
study [22], we assessed agricultural drought using the SWDI based on ERA5-Land in the
four southern provinces of China from 2017 to 2019, which used a similar methodology
to that of Zhu et al. [23]. The above study had some interesting findings such as the
finding that the subsurface SM is more suitable for drought monitoring, but it still has
some limitations. First, limited data were used in the assessment, i.e., only three years
of ERA5-Land and one year of in situ data, while much more data including CLDAS are
available for comparisons and a longer-term assessment. Second, the relationship between
agricultural drought and meteorological drought was not investigated thoroughly. Third,
the previous study focused on the SWDI itself but lacked a long-term trend and drought
characteristics such as drought duration.

To fill the above research gaps, the objective of this study was to evaluate the suit-
ability of ERA5-Land and CLDAS to assess agricultural drought and then investigate the
characteristics of agricultural drought in the four southern provinces of China (Guangdong,
Guangxi, Yunnan, and Hainan). We extended our previous study in the following as-
pects. First, we added CLDAS SM in addition to ERA5-Land SM to compare their suit-
ability for drought assessment. Second, in the evaluation of reanalysis data, we used
in situ observations from 2013 to 2017 instead of only one year of observations, as in
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Zhang et al. [22]. Third, we extended the study period to 2013–2017 for CLDAS and
1981–2020 for ERA5-Land. Fourth, potential evapotranspiration (PET) in the atmospheric
water deficit index (AWD) was replaced by total evaporation (ET) to compare and analyze
the relationship between agricultural drought and meteorological drought. Last but not
least, we investigated multiple drought characteristics (including drought number, severity,
duration, and interval) based on the SWDI and the long-term trends of the SWDI and
drought characteristics.

The remaining content of this paper is as follows. The second section introduces the
study area, data, methods, and evaluation indices. In the third section, evaluation and com-
parison of ERA5-Land and CLDAS are provided using in situ SM from 2013 to 2017, and
then the results and discussion are presented on agricultural drought based on ERA5-Land
in the four southern provinces of China during a 40-year period (1981–2020). The last
section is the conclusion.

2. Materials and Methods
2.1. Study Area

The four southern provinces of China (Guangdong, Guangxi, Yunnan, and Hainan)
lie between 18–29◦ N and 92–117◦ E, covering most of the area of the Pearl River Basin.
The total land area is about 846,825 km2. Furthermore, Hong Kong and Macao are in this
area, but they have not been analyzed separately due to their small area. Owing to the
East Asian Monsoon, this region is more variable in precipitation than other regions in
China [24]. The average annual precipitation is 1500–2300 mm, and the monthly average
temperature is 6–25 °C. It is worth noting that the growing season is the whole year in
almost all areas of this region, due to the temperature almost always being above 0 ◦C. This
region is a typical tropic and subtropic area with a high population density and produces
about 7% of China’s crops (https://data.stats.gov.cn/) (accessed on 20 March 2022).

The study area can be divided into a tropical, monsoon climate zone; tropical, savan-
nah climate zone; temperate, no dry season climate zone; temperate, dry winter climate
zone; and cold, dry winter climate zone, according to the Köppen climate classification
(http://koeppen-geiger.vu-wien.ac.at/shifts.htm) (accessed on 20 March 2022), as shown
in Figure 1 [25]. In this study, we conducted analysis based on three main climate zones,
including the tropical climate zone (merging the tropical, monsoon climate zone and the
tropical, savannah climate zone), the temperate, no dry season climate zone, and the tem-
perate, dry winter climate zone. The cold, dry winter climate zone in northwestern Yunnan
was ignored due to its small area.
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the distribution of in situ stations.

2.2. Data
2.2.1. In Situ Data

The in situ SM data were obtained from the China Meteorological Information Center
(CMA; http://data.cma.cn/) (accessed on 20 March 2022) for the period of 2013–2017, which

https://data.stats.gov.cn/
http://koeppen-geiger.vu-wien.ac.at/shifts.htm
http://data.cma.cn/
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have depths of 10 cm and 20 cm. Quality control was carried out as done in Zhang et al. [22].
After quality control, there were a total of 76 stations left, as shown in Figure 1.

2.2.2. CLDAS Data

CLDAS is the second version of the China Meteorological Data Land Surface Data
Assimilation System released by the National Meteorological Information Center, which
uses the ensemble prediction of three land models [26]. We used CLDAS SM covering the
period of 2013–2017 with a spatial resolution of 0.0625◦ by 0.0625◦. For the convenience of
comparison with ERA5-Land, we converted these data to a 0.1◦ by 0.1◦ spatial resolution
using the bilinear interpolation method. The layers of 0–10 cm and 10–40 cm were chosen
for our research.

2.2.3. ERA5-Land Data

ERA5-Land is the land component of the fifth generation of European Reanalysis
(ERA5) [27]. The spatial resolution of this dataset is 0.1◦ by 0.1◦. In this research, we chose
the precipitation, potential evaporation, total evaporation, and second layer (7–28 cm) SM
from ERA5-Land for the period of 1981–2020. The units of precipitation, potential evapo-
ration, and total evaporation are mm. The second layer (7–28cm) SM was used because
this layer is more suitable for reflecting the characteristics of agricultural drought [22] and
can better indicate the available water storage for plant growth than surface (0–7cm) SM,
which is highly affected by anomalous temperature or precipitation events [28].

For the convenience of comparison and analysis, the in situ observations, CLDAS SM,
and ERA5-Land SM were converted into the units of m3/m3 and the temporal resolution
of one day. At the same time, we processed the depth of in situ and CLDAS SM to make it
consistent with the depth of ERA5-Land (i.e., 7–28 cm). This process was carried out using
a linear weighting as follows:

smin situ = 1/4 × smin situ10 + 3/4 × smin situ20 (1)

smcldas = 1/7 × smcldas10 + 6/7 × smcldas40 (2)

where Smin situ and Smcldas are the in situ and CLDAS SM for 7–28cm, respectively;
Smin situ10 and Smin situ20 are the in situ SM at 10 cm and 20 cm, respectively; and Smcldas10
and Smcldas40 are the CLDAS SM for the layers of 0–10 cm and 10–40 cm, respectively. For
Equation (1), as the distance between Smin situ10 and Smin situ20 is 10 cm, and the distance
between Smin situ10 and the middle point of the second layer of ERA5-Land with a depth of
17.5 cm is 7.5 cm, the weights of Smin situ10 and Smin situ20 were set to 2.5/10 and 7.5/10,
respectively. For Equation (2), as the first layer of CLDAS takes up 3 cm out of the 21 cm
of the second layer of ERA5-Land, and the second layer of CLDAS takes up 18 cm, the
weights of Smcldas10 and Smin situ20 were set to 3/21 and 18/21, respectively.

2.3. Methods

First, the in situ SM data were used to analyze and evaluate CLDAS and ERA5-Land
from 2013 to 2017. After the evaluation, agricultural drought assessed by CLDAS and
ERA5-Land SM was compared. Then, ERA5-Land SM was used to analyze the long-term
agricultural drought characteristics and their tendency in the four southern provinces from
1981 to 2020. Finally, the atmospheric water deficit index (AWD) was used to analyze the
relationship between agricultural drought and meteorological drought.

2.3.1. Soil Water Deficit Index (SWDI)

The SWDI was used to characterize agricultural drought [12]. This index can be
calculated as follows:

SWDI = (θ − θFC)/ θAWC × 10 (3)

θAWC = θFC − θWP (4)
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where θ is the SM content, and θFC, θwp, and θawc represent the field capacity, wilting point,
and available water capacity in each dataset, respectively. In this research, the 95th SM and
5th SM of the time series were used to denote θFC and θwp [29]. It should be noted that
we used data for as long as possible (i.e., 1981–2020 for ERA5-Land) to calculate θFC and
θwp to guarantee that they will not be affected by short-term variation, rather than data
of the evaluation and comparison period only (2013–2017). A negative value of the SWDI
indicates that the SM content is less than the field capacity, and when the SWDI value drops
below 0, the initial water pressure at the beginning of the drought will be witnessed [30].
There are five categories of drought: no drought (>0), mild (0~−2), moderate (−2~−5),
severe (−5~−10), and extreme (<−10) [29].

2.3.2. Atmospheric Water Deficit Index (AWD)

The AWD was used as the index of meteorological drought to investigate its rela-
tionship with agriculture drought. The AWD, reflecting the drought condition related
to meteorological parameters, is the difference between precipitation (P) and potential
evapotranspiration (PET) [31]. It is calculated as follows:

AWD = Pi − PETi (5)

where P and PET represent precipitation and potential evapotranspiration, respectively. In
our study, these two parameters were taken from ERA5-Land, both with the unit of mm.
When the value of the AWD is lower than 0, it indicates drought, and when it is lower than
−50 mm, it indicates extreme drought [12].

2.3.3. Drought Characterization and Trend Detection

A drought event starts when the SWDI falls below a threshold of 0, and it ends when
the SWDI returns to positive [12]. In our study, we focused on severe and extreme droughts
(i.e., SWDI < −5) for at least 30 days. Once a drought event has been determined, the
drought number, severity, duration, and interval can be obtained. Drought number refers
to the number of drought events. Drought severity is defined as the averaged SWDI during
one drought event. Drought duration is the length of days that a drought event lasts.
Drought interval is the number of days between adjacent drought events.

The nonparametric Mann–Kendall (M–K) approach is widely used for trend detection
in geophysical time series data [32,33]. In this study, we used it to reflect the long-term
trend for the SWDI for all periods and for the drought duration and severity of each year.
This approach uses the M–K z-score to calculate the significance level using a p value with
respect to the Gaussian distribution. A detailed description of the M–K test can be found
in Le et al. [34] and Tosunoglu et al. [35]. Regarding the z-score, −1.96 < z-score < −1.64
and 1.64 < z-score < 1.96 represent a weak trend, while z-score < −1.96 or > 1.96 rep-
resents a significant trend [36]. In our research, only the significant trend was counted
(p value < 0.05).

2.3.4. Evaluation Indices

In this study, CLDAS and ERA5-Land were assessed against in situ SM using com-
mon statistical performance metrics, including root mean square error (RMSE), bias, and
Pearson’s correlation coefficient (R). The number of samples is due to the available obser-
vations at each station. RMSE describes the sample standard deviation of the differences
between the reanalysis data and in situ data. Bias measures the error between the reanalysis
data and the in situ data. R measures the extent of the interdependence of two datasets.
The three indices are defined as follows:

RMSE =
√

∑n
i=1(Yi − Xi)

2/n (6)

bias =
n

∑
i=1

(Yi − Xi) / n (7)
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R = ∑n
i=1

(
Xi − X

)(
Yi − Y

)
/(
√

∑n
i=1(Xi − X)

√
∑n

i=1 (Yi − Y)) (8)

where n is the sample size, Xi is the in situ dataset, Yi is the CLDAS or ERA5-Land dataset,
and X and Y are the mean values of these three datasets, respectively.

3. Results and Discussion
3.1. Evaluation of CLDAS and ERA5-Land Soil Moisture
3.1.1. Statistical Characteristics of Soil Moisture

Table 1 provides the statistical characteristics of the SM of the three datasets from
2013 to 2017. It can be seen that the means of the in situ SM in the three climate zones were
between 0.26 and 0.32 m3/m3, and those of ERA5-Land and CLDAS were 0.36–0.40 m3/m3

and 0.32–0.34 m3/m3, respectively. Overall, both reanalysis datasets had a wet bias, es-
pecially ERA5-Land. Both ERA5-Land and CLDAS had a larger wet bias (about 0.1 and
0.06 m3/m3, respectively) in the tropical climate zone than the other two climate zones
(about 0.08 and 0.02 m3/m3, respectively). The wet bias of both datasets according to the
median was even larger. However, this wet bias can be reduced to a certain extent by
calculating the SWDI through Formulas (1) and (2), as founded by Zhang et al. [22].

Table 1. Statistical characteristics of the in situ, CLDAS, and ERA5-Land SM (m3/m3) of different
climate zones.

Climate Zone Data Mean Min Max Median Standard
Deviation

Number of
Observations (Grids)

tropical
In situ 0.2666 0.0501 0.641 0.268 0.058 15

ERA5-Land 0.3628 0.0592 0.517 0.371 0.066 245
CLDAS 0.3254 0.1613 0.552 0.326 0.034 245

temperate, no
dry season

In situ 0.3222 0.0588 0.614 0.319 0.041 34
ERA5-Land 0.4067 0.0784 0.520 0.418 0.050 2957

CLDAS 0.3435 0.2158 0.585 0.343 0.029 2957

temperate,
dry winter

In situ 0.3039 0.084 0.5317 0.299 0.049 28
ERA5-Land 0.3850 0.086 0.5185 0.397 0.061 4145

CLDAS 0.3269 0.198 0.5955 0.332 0.034 4145

For the minimum, both ERA5-Land and CLDAS had larger values than the in situ
SM, especially CLDAS, which indicates that these two datasets may ignore some extreme
droughts, but ERA5-Land is relatively better than CLDAS. For the standard deviation, the
order is CLDAS < in situ < ERA5-Land, which indicates that ERA5-Land overestimated
the annual variation while CLDAS underestimated it. The temperate, no dry season
climate zone’s standard deviations were smaller than those of the other two climate zones,
indicating that the variation in SM in this zone is smaller. This might be related to the
high seasonal variation in precipitation associated with an intensified hydrological cycle in
tropical and temperate, dry winter climate zones [37].

3.1.2. Spatial Pattern of Soil Moisture

Figure S1 shows the spatial distribution of the average SM of the three datasets
from 2013 to 2017. It can be seen from Figure S1a that the in situ SM ranged around
0.15–0.45 m3/m3. The lowest SM appeared in the central area of Yunnan and Hainan.
For ERA5-Land and CLDAS, the ranges were about 0.25–0.5 m3/m3 and 0.25–0.4 m3/m3,
respectively. Although their ranges were different, these two datasets had a similar spa-
tial distribution, that is, relatively low SM was found in the northwest of Yunnan, the
southwest of Guangxi, central Guangdong, and the southwest of Hainan (Figure S1b,c).
However, ERA5-Land had a larger spatial variation and a wetter SM than CLDAS in almost
all the areas.
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3.1.3. Evaluation of CLDAS and ERA5-Land Soil Moisture

In order to verify the accuracy of ERA5-Land and CLDAS, the evaluation indicators
(i.e., RMSE, R, and bias) using the in situ soil moisture from 2013 to 2017 in the four southern
provinces and three climate zones are shown in Figure S2. This figure shows that the RMSE
and bias of ERA5-Land were relatively larger than those of CLDAS. From the perspective
of bias, both datasets have a wet bias for the ranges of 0.05–0.15 m3/m3 and 0–0.05 m3/m3.
Consistent with our previous study [22], this error can be reduced to a certain extent when
calculating the SWDI index (Figure 2). At the same time, the correlation coefficient between
these two datasets and the in situ data was between 0.6 and 0.8, indicating that the two
datasets can sufficiently reflect the changes in soil moisture in the four southern provinces.
Our results for ERA5-Land show a similar correlation to that of Wu et al. [38] (i.e., a mean
R of 0.64 in southern humid areas) and Kim et al. [39] (i.e., a mean R of about 0.7 for the
global area). Among the three climate zones, the temperate, dry winter climate zone had a
lower average RMSE and a higher average R than the other two zones. As ERA5-Land and
CLDAS may differ in quality over time, there may be some limitations when evaluating
these datasets using in situ data from 2013 to 2017 only.
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3.2. Evaluation of CLDAS_SWDI, ERA5-Land_SWDI, and Agricultural Drought Characteristics

To verify the accuracy of ERA5-Land_SWDI and CLDAS_SWDI in the four southern
provinces of China, we evaluated them with the in situ data from 2013 to 2017. In addition,
we also compared their spatial pattern and temporal variation with the in situ SWDI.

3.2.1. Spatial and Temporal Pattern of SWDI

Figure 2 shows the spatial distribution of the average SWDI based on the in situ,
ERA5-Land, and CLDAS data during 2013–2017. ERA5-Land had a similar range of the
SWDI to the in situ data (−3~−7), while CLDAS had a lower SWDI in most places (mostly
below −4). It can be seen from Figure 2b that ERA5-Land_SWDI coincides well with in
situ. The degree of aridity was relatively low in the temperate, no dry season climate zone,
while it was relatively high in the northwest of Yunnan in the temperate, dry winter climate
zone. Similar to ERA5-Land, CLDAS also identified the northwest of Yunnan as a relatively
arid region. However, in contrast to ERA5-Land, CLDAS had low SWDI values in the
temperate, no dry season climate zone, and it identified Hainan and the coastal areas of
Guangxi and Guangdong as relatively arid regions, too. This was likely an overestimation
of drought according to a previous study [40].

Figure 3 shows the SWDI time series of the three datasets in the three climatic zones.
The SWDI in all climate zones ranged from approximately −10 to 0, and this was rarely
surpassed. In the tropical climate zone, severe and extreme droughts (SWDI < −5) usually
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happened between January and May (continuous drought). In the temperate, no dry season
climate zone, the drought duration was shorter than that in the other two climate zones,
and serious drought events usually happened in the spring and winter, though a drought
was witnessed in the October of 2017. In the temperate, dry winter climate zone, severe and
extreme droughts usually happened between December and June (continuous drought),
which was the longest period among the three climate zones. In addition, there was a
slight increasing trend of the SWDI in this region. In general, both reanalysis datasets can
capture major variation in the SWDI compared with the in situ SWDI, though they may
underestimate or overestimate in some periods. The best consistency with the in situ SWDI
was observed in the temperate, dry winter climate zone. In the other two climate zones,
overestimations of the SWDI were observed for ERA5-Land, while underestimations were
observed for CLDAS in some periods.
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Figure 3. Time series of SWDI from in situ (solid red line), ERA5-Land (solid green line), and CLDAS
(solid blue line) data in three climate zones: (a) tropical climate zone, (b) temperate, no dry season
climate zone, and (c) temperate, dry winter climate zone.

3.2.2. Evaluation of CLDAS_SWDI and ERA5-Land_SWDI

Figure 4 summarizes the RMSE, R, and bias of ERA5-Land and CLDAS in the four
southern provinces and three climatic zones. For the whole study area, both datasets had a
similar RMSE and R, which is different from the evaluation of SM. Therefore, we emphasize
that the performance of the SWDI is not necessarily in accordance with that of soil moisture.
The RMSE mostly ranged from 2 to 3.5, while the correlation coefficient mostly ranged
between 0.6 and 0.8. Regarding the bias, ERA5-Land had a positive bias, indicating that
droughts were relatively weak, while CLDAS had a negative bias, indicating that droughts
were relatively serious. Among the three climate zones, the temperate, dry winter climate
zone had the best performance according to the three metrics. In addition, ERA5-Land had
a slightly better performance than CLDAS in the temperate, dry winter climate zone, while
the opposite trend occurred in the tropical climate zone.



Land 2022, 11, 502 9 of 16

Land 2022, 11, x FOR PEER REVIEW 9 of 16 
 

3.2.2. Evaluation of CLDAS_SWDI and ERA5-Land_SWDI 

Figure 4 summarizes the RMSE, R, and bias of ERA5-Land and CLDAS in the four 

southern provinces and three climatic zones. For the whole study area, both datasets had 

a similar RMSE and R, which is different from the evaluation of SM. Therefore, we em-

phasize that the performance of the SWDI is not necessarily in accordance with that of soil 

moisture. The RMSE mostly ranged from 2 to 3.5, while the correlation coefficient mostly 

ranged between 0.6 and 0.8. Regarding the bias, ERA5-Land had a positive bias, indicating 

that droughts were relatively weak, while CLDAS had a negative bias, indicating that 

droughts were relatively serious. Among the three climate zones, the temperate, dry win-

ter climate zone had the best performance according to the three metrics. In addition, 

ERA5-Land had a slightly better performance than CLDAS in the temperate, dry winter 

climate zone, while the opposite trend occurred in the tropical climate zone.  

 

Figure 4. RMSE (a), R (b), and Bias (c) of the SWDI between the ERA5-Land and in situ data and 

between the CLDAS and in situ data in the whole study area and the three climate zones. RMSE is 

root mean squared error, R is correlation coefficient, and Bias is bias. 

3.2.3. Comparison of CLDAS_SWDI and ERA5-Land_SWDI  

Figure S3a shows the difference between the average SWDI of ERA5-Land and 

CLDAS from 2013 to 2017. The difference varied with locations and was not very large 

(mainly from −1 to 2.5). Except for the negative value in central and eastern Yunnan, pos-

itive values were witnessed in other places. In particular, relatively higher values of ERA5-

Land_SWDI were observed in the temperate, no dry season climate zone. Figure S3b 

shows the distribution of the daily SWDI correlation coefficient between the two datasets. 

In most regions, the R value was greater than 0.7, and it was even greater than 0.85 in 

western Yunnan, the coastal areas of Guangdong, and most parts of Hainan. This suggests 

that these two datasets can consistently show the variations in agricultural drought in the 

four southern provinces. However, the R value appeared to be below 0.5 in north-central 

Guangxi, and caution should be exercised when interpreting the results of this area.  

  

Figure 4. RMSE (a), R (b), and Bias (c) of the SWDI between the ERA5-Land and in situ data and
between the CLDAS and in situ data in the whole study area and the three climate zones. RMSE is
root mean squared error, R is correlation coefficient, and Bias is bias.

3.2.3. Comparison of CLDAS_SWDI and ERA5-Land_SWDI

Figure S3a shows the difference between the average SWDI of ERA5-Land and CLDAS
from 2013 to 2017. The difference varied with locations and was not very large (mainly from
−1 to 2.5). Except for the negative value in central and eastern Yunnan, positive values were
witnessed in other places. In particular, relatively higher values of ERA5-Land_SWDI were
observed in the temperate, no dry season climate zone. Figure S3b shows the distribution
of the daily SWDI correlation coefficient between the two datasets. In most regions, the
R value was greater than 0.7, and it was even greater than 0.85 in western Yunnan, the
coastal areas of Guangdong, and most parts of Hainan. This suggests that these two
datasets can consistently show the variations in agricultural drought in the four southern
provinces. However, the R value appeared to be below 0.5 in north-central Guangxi, and
caution should be exercised when interpreting the results of this area.

3.2.4. Comparison of CLDAS and ERA5-Land SWDIs and Drought Characteristics

Figure 5 shows the performance of ERA5-Land and CLDAS in reflecting drought char-
acteristics based on the SWDI, taking the in situ SM from 2013 to 2017 as the benchmark data.
It can be seen from Figure 5a that in all three climate zones, ERA5-Land_SWDI was larger
than in situ_SWDI at most stations (a wet deviation), while CLDAS_SWDI was smaller
than in situ_SWDI (a dry deviation). For the number of droughts (Figure 5b), ERA5-Land
had a better performance than CLDAS as CLDAS overestimated at most stations. For
drought duration (Figure 5c), both reanalysis datasets had a similar performance as most
stations are around the 1:1 line. For drought interval (Figure 5d), both reanalysis datasets
also had a similar performance, with some exceptions at several sites where ERA5-Land
had a much larger bias. Finally, in terms of drought severity (Figure 5e), both reanalysis
datasets overestimated at most sites.
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Figure 5. Comparison of ERA5-Land minus in situ and CLDAS minus in situ regarding the average
SWDI (a), number (b), duration (c), interval (d), and severity (e) at each site (yellow points are sites in
the tropical climate zone; green points are sites in the temperate, no dry season climate zone; and red
points are sites in the temperate, dry winter climate zone) from 2013 to 2017.

Through the above analysis, we can understand that ERA5-Land and CLDAS were
consistent in representing the time variation in the SWDI in most regions (Figure S3), but
ERA5-Land had higher values than CLDAS in most areas, especially in the temperate, no
dry season climate zone. Moreover, they had a similar performance in representing agricul-
tural drought characteristics (Figure 5), though some differences existed and ERA5-Land
was better than CLDAS in terms of drought number. Due to data availability, we used
ERA5-Land for the following long-term analysis of agricultural drought in the four southern
provinces of China.

3.3. Agricultural Drought in the Four Southern Provinces from 1981 to 2020

In this section, we used the SWDI and drought characteristics, including drought
number, severity, duration, and interval, to analyze the spatial distribution of agricultural
drought in the four southern provinces, and we used the M–K test method to observe the
trend of changes in the past 40 years.

3.3.1. Spatial Pattern of Average SWDI and Tendency of SWDI

Wang et al. and Ding et al. reported that the East Asian Summer Monsoon system has a
decade variation [41,42]. Therefore, in the following analysis, we took this into account and
analyzed the agricultural drought for every ten years, i.e., 1981–1990, 1991–2000, 2001–2010,
and 2011–2020 (Figure 6). Figure 6a shows that the SWDI was relatively larger in most parts
of the temperate, no dry season climate zone. However, the SWDI was relatively smaller in
most areas of Yunnan and coastal areas of Hainan, Guangxi, and Guangdong, indicating
a drier situation for the period of 1981–2020. The three decades of 1981–1990 (Figure 6b),
1991–2000 (Figure 6c), and 2011–2020 (Figure 6e) had similar spatial distributions to the
40-year pattern, although there were some differences in numerical values. For the period
2001–2010 (Figure 6d), the SWDI of the temperate, no dry season climate zone was smaller
than that of other years, indicating that the droughts were relatively severe. In addition,
we can acknowledge from Figure 6f that there is a clear downward trend, indicating that
the degree of drought is getting increasingly serious in western Yunnan and the junction of
Yunnan and Guangxi. We should pay attention to the agricultural drought in this area.
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3.3.2. Spatial Pattern of Agricultural Drought Characteristics

The distribution and proportion of drought number, drought interval, drought duration,
and drought event severity based on the SWDI classification are shown in Figures S4–S7.
From the 40-year-long time series, it can be concluded that drought number, drought
interval, and drought duration have consistency in their spatial distributions, since they
are related according to their definition. During this 40-year period, the spatial distribution
pattern of different drought characteristics is relatively stable in different decades. In these
decades, small drought numbers, large drought intervals, and short drought durations
appeared in most parts of Guangxi and northern Guangdong, while large drought numbers,
small drought intervals, and long drought durations occurred in the northwest to central
parts of Yunnan and coastal areas. A high drought severity was recorded in northern
Guangxi mostly, while a low drought severity was recorded in southwest Guangxi during
1981–1990 and 2011–2020. One interesting finding is that the temperate, no dry season
climate zone witnessed more short droughts with a high severity than other areas.

Except for 2001–2010, the other decades’ distributions of the four agricultural drought
characteristics were quite similar to the 40-year distribution. During 2001 to 2010, the
drought characteristics reflect more serious droughts than other decades in most areas
of Guangxi, i.e., higher drought numbers, shorter drought intervals, longer durations,
and higher severities. These distributions correspond to the proportion histogram in
Figures S4f, S5f, S6f, and S7f. For example, for drought events, the minimum number is
5–8, and the maximum number of drought events is 15–20 in 1981–1990, 1991–2000, and
2011–2020, but during 2001–2010, the minimum value is obviously higher than the other
three decades in Guangxi. This corresponds to the histogram in Figure S4f, and whether in
the range of number >5, number >10, or number >15, the proportions from 2001 to 2010
were relatively large.

3.3.3. Tendency of the Agricultural Drought Characteristics

To further explore the changes in agricultural drought during the 40 years from
1981 to 2020, the trends of drought duration and drought severity were computed using the
Mann–Kendall (M–K) nonparametric analysis algorithm (Figure 7). This method showed
that the drought duration became longer, while the drought severity had a downward
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trend, which means that both drought characteristics have become more serious in the
past 40 years. At the same time, the areas of drought duration with significant changes
were located in most parts of Yunnan, a small part of Guangxi, and the southern part
of Guangdong, while the areas of drought severity with significant changes were much
smaller, including northwest and east Yunnan, and northeast Guangxi. It should be noted
that in some areas of Guangdong, the drought severity became less serious.
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Values larger than 1.96 or smaller than −1.96 pass the 0.05 significance test level, while values larger
than 1.64 or smaller than −1.64 pass the 0.1 significance test level.

3.3.4. Comparison between ERA5-Land_SWDI and AWD

Meteorological drought is the basic cause of agricultural drought, and agricultural
drought is the long-term response of meteorological drought. There are many meteo-
rological droughts that cause agricultural drought. Niu et al. found that ENSO or the
Indian Ocean Dipole was the main reason for the occurrence of extreme drought events in
the Pearl River Basin [43]. This section uses the Pearson correlation between the AWD and
SWDI to find the relationship between meteorological drought and agricultural drought.
The AWDp is derived from the difference between daily precipitation and daily poten-
tial evapotranspiration. This index was chosen because, due to global climate warming,
the high evaporation caused by the rising temperature leads to dry soil, but continuous
rainfall often supplements SM and alleviates soil dryness. Precipitation and potential
evapotranspiration are the main factors affecting the SM content. It can be seen from
Figure 8a that, except for the positive correlation between the AWDp and SWDI indices
in Yunnan Province, other regions show a negative correlation, with a correlation coeffi-
cient below 0 mostly. The reason for the negative correlation may be because potential
evaporation in ERA5-Land is computed by carrying out a second call to the surface energy
balance routine with the vegetation variables set to “crops/mixed farming” and assum-
ing no stress from SM. Therefore, we used the total evapotranspiration in ERA5-Land to
replace the potential evapotranspiration (represented by AWDt), and the result is shown
in Figure 8b. Almost all areas reached above 0.45, and the western part of Yunnan and
the coastal areas of Guangdong also reached above 0.6. The results show that when using
total evapotranspiration instead of potential evapotranspiration, agricultural drought and
meteorological drought had a better temporal correlation, indicating that it is necessary to
use the SWDI to capture agricultural drought as meteorological drought calculated with po-
tential evapotranspiration demonstrated a significant difference. It should be noted that the
time lag between meteorological drought and soil moisture drought may have some effect
on the daily drought correlation analysis. However, we found that the 1 to 7 day-lagged
correlation between the AWD and SWDI did not have a significant change in our case
(not shown).
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Figure 8. The distribution of the Pearson correlation of the AWDp (precipitation–potential evapora-
tion) and the SWDI (a) and the AWDt (precipitation–total evaporation) and the SWDI (b) in the four
southern provinces of China.

4. Conclusions

In this study, using in situ data as a benchmark, we first evaluated and compared
ERA5-Land and CLDAS SM from 2013 to 2017. Then, the subsurface SM was used to
calculate the agricultural drought index (SWDI) for both reanalysis datasets, and they
were also evaluated and compared for agricultural drought assessment. After this, we
used ERA5-Land to analyze agricultural drought in the four southern provinces from
1981 to 2020. Finally, we used the AWD index to analyze the relationship between agricul-
tural drought and meteorological drought. The main conclusions are as follows:

(1) ERA5-Land and CLDAS overestimated SM in each climate zone. However, ERA5-
Land_SWDI had a wet bias, while CLDAS_SWDI had a dry bias. ERA5-Land and
CLDAS had a similar performance in representing agricultural drought characteristics,
though some differences existed and ERA5-Land was better than CLDAS in terms of
drought numbers. However, CLDAS has limited data availability, and ERA5-Land is
recommended for long-term studies.

(2) During the period 1981–2020, the SWDI was relatively larger in most areas of the
temperate, no dry season climate zone, while the SWDI was relatively small in most
areas of Yunnan and coastal areas, indicating that the degree of drought was relatively
severe. The number, interval, and duration of drought events had a relatively similar
spatial distribution in the different decades during the past 40 years. In addition,
droughts from 2001 to 2010 were more serious than those from the other three decades.

(3) The drought duration showed a significant upward trend in Yunnan, parts of Guangxi,
and parts of the southern coast of Guangdong. At the same time, the drought severity
showed an upward trend in areas of northwest and east Yunnan, and northeast Guangxi.

(4) By using total evapotranspiration instead of potential evapotranspiration, a higher
correlation between agricultural drought and meteorological drought was witnessed,
which indicates that it is necessary to use the SWDI to capture agricultural drought.

Studying the past agricultural drought conditions in the four southern provinces of
China is conducive to predicting future drought conditions and preparing in advance
to reduce the impact and disasters caused by agricultural drought. We will conduct
further research from the following aspects: (1) use of bias correction methods to correct
the deviation between the in situ data and our selected dataset; (2) comparison of other
methods to obtain the soil moisture field water holding capacity and wilting point; (3) use
of a variety of drought indices to analyze agricultural drought conditions; (4) use of other
criteria to divide the zones of the four southern provinces, such as vegetation distribution,
and altitude; (5) forecast of the future agricultural drought conditions and risks.
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correlation coefficient (b) between ERA5-Land and CLDAS. All values of SWDI for the periods from
2013 to 2017; Figure S4: The distribution of drought event number for 1981–1990 (a), 1991–2000 (b),
2001–2010 (c), 2011–2020 (d) and 1981–2020 (e) according to SWDI and the proportion of drought
number in each decade (f). Note that Figure S4e has a different legend from others; Figure S5: The
distribution of drought event interval for 1981–1990 (a), 1991–2000 (b), 2001–2010 (c), 2011–2020 (d)
and 1981–2020 (e) according to SWDI and the proportion of drought interval in each period (f);
Figure S6: The distribution of drought event duration for 1981–1990 (a), 1991–2000 (b), 2001–2010 (c),
2011–2020 (d) and 1981–2020 (e) according to SWDI and the proportion of drought duration in each
period (f); Figure S7: The distribution of drought event severity for 1981–1990 (a), 1991–2000 (b),
2001–2010 (c), 2011–2020 (d) and 1981–2020 (e) according to SWDI and the proportion of drought
severity in each period (f).
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