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Abstract: China’s growth plans include a carbon emission peak policy, which is a restriction that
indirectly impacts land use structure. In this study, we simulate different paths for achieving policy
objectives, and explore the linkages between those paths and land use change. The IPAT model was
used to simulate the carbon emissions generated from a natural development scenario, an ideal policy
scenario, and a retributive carbon emission scenario in China from 2020 to 2030. The simulation
results were incorporated into the CLUMondo model as a demand driver to simulate the land use
change in 2030. The results show that carbon emission peak policy can somewhat reduce carbon
emissions and increase building land in a regulated way. However, the policy may also lead to a
short-term surge in carbon emissions, a reactive expansion of arable land and building land. This
may reduce losses in economic development when carbon emissions are limited, but does not achieve
the integration of social, economic, and ecological goals. This study links the carbon emission peak
policy with land use change and provides a fresh perspective on the Chinese government’s carbon
reduction policy.

Keywords: carbon emissions; land use change; scenario analysis; environmental pressure model;
land use model

1. Introduction

The carbon peak policy was the first step China took following the Paris Climate
Summit in 2021. Will it have a positive effect on China’s land use pattern? To answer
this question, scholars have analyzed the path and mode of the carbon peak policy’s im-
pact on land use, exploring the impact of the carbon tax policy and energy utilization
patterns [1–4]. Recently, two other new research directions have emerged to explore this
question. First, studies have explored ways to accurately simulate the path towards realizing
the carbon peak policy [5–7]. Under the carbon peak policy, the government has focused
on reducing carbon emissions in alignment with its Sustainable Development Goals [8].
Energy utilization is dominated by enterprises, which is a major factor affecting carbon emis-
sions. However, enterprises work to maximize their interests, and tend to disregard carbon
target constraints on energy-intensive production [9–11]. Instead of pursuing sustainable
production to increase their income, they may work against carbon emissions reduction
targets [12–14]. These reactive carbon-related actions impact both carbon emissions and the
relationships involved in land use systems. Land resources are material carriers that are
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closely related to human survival and development; as such, land use is guided by any
carbon peak policy and determines actual carbon emissions.

Scholars often use predictive models to simulate land use, with the goal of improving
policy effectiveness [15]. Many studies have found that realizing the carbon peak policy
will impact land use changes [16–19]; however, the link between the policy and those
changes have not yet been identified. In addition, few studies have effectively included
policies in policy-related simulations. This highlights the need to study the different paths
to realizing the carbon peak, and to explore the impact of those paths on land use to prevent
carbon retrenching.

Achieving carbon peak targets calls for more efficient and environmentally friendly
land use, with constrained carbon emissions. However, few studies have combined the two.
Many previous studies have focused on carbon emission projections and land use type
simulations [8,9]. Land resources are a lifeblood for human beings, and must be closely
considered in the process of survival and development [20]. As such, they are strictly
subject to guidance and policy constraints. This highlights the need to explore how policy
incentives can be incorporated into land use change forecasting [21,22]. Previous studies
have tended to focus on Laos [23], and other small countries at relatively small research
scales; research has not yet been conducted on larger study scales.

This study responds to the problems described above. The IPAT model and CLU-
Mondo model have been widely used to predict carbon emissions and to simulate land use
change, respectively. The IPAT model accounts for the energy utilization pattern, which is
the most important factor influencing carbon emissions. The CLUMondo model accounts
for policy stimulus actions as a driver of demand, improving prediction accuracy. In this
study, IPAT and CLUMondo models were combined to simulate China’s carbon emissions
from 2020 to 2030 for three different scenarios, based on the possible implementation effect
of the policy under the carbon peak target. This paper reveals the potential relationship
between the carbon peak and land use change for decision-makers, which can lead to the
more effective implementation of the carbon peak policy in China.

Under the peak carbon target, China’s goal is to achieve a peak in carbon emissions by
2030. This could limit the economic behavior of companies. This highlights the need to
develop approaches that maximize economic benefits, while also achieving national goals.
The important impact of carbon emissions on social development highlights the importance
of predicting carbon emissions from different research perspectives. For example, Tengfei
Huo and Linbo Xu studied residential buildings, using Monte Carlo simulation and scenario
analysis to conclude that China may achieve a carbon peak in 2042 [24]. That study applied
a hierarchical spatial autoregressive model, revealing an inverted U-shaped relationship
between land urbanization and carbon dioxide emissions [25]. When the grey rolling model
was used for prediction, the model results were relatively accurate, but the model did not
consider energy structure factors that significantly affect carbon emissions [26,27]. IPAT-E
and PLS-SEM models have also been used to identify the driving factors of carbon dioxide
emissions in China [28]. The energy consumption caused by China’s economic growth and
technological progress has also been calculated, using the IPAT model and its extension [29].
The results have shown that China’s rapid economic growth still depends largely on
energy consumption [30–32]. Previous studies have generated different results, because
of differences in model selection and interval prediction. Limiting carbon emissions leads
to adjustments in energy structure, which lead to changes in land use type and land use
intensity. This study proposes that carbon emissions should be predicted based on energy
flow and consumption. These drivers are important references in setting the scenarios for
this study that assess the carbon peak policy.

The carbon peak policy affects land use change, which determines carbon emissions.
The binding target of low-carbon development somewhat inhibits economic activities [33],
and restricts the overdevelopment of land. However, different land use types have different
carbon emission coefficients and different carbon sink capacities [34]. These coefficients are
affected by land use intensity. Building land has the highest carbon emission coefficient,
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meaning that the building land produces the largest carbon dioxide emission per unit
area [35,36]. The main function of woodland, water, and grassland is to store carbon emis-
sions. However, the carbon storage capacity of terrestrial ecosystems can be damaged due
to the extensive occupation of ecological land by expanded production [37–39]. Whether or
not the carbon peak policy can lead to reasonable land use changes, while also achieving
the goal of environmentally sustainable development, is a key research question.

Due to the complexity and uncertainty of land use, prediction models can help improve
the accuracy of policy simulations [15]. Key land use research methods include cellular
automata models, CLUE-S and regression analysis, and the CLUMondo land use type
simulation model. Cellular automata models largely depend on empirical knowledge from
experts and may not be objective [40]. The CLUE-S model is used to establish a regression
analysis between land use type and driving factors, but the quantitative relationship does
not describe the intensity distribution of land use [41,42]. CLUMondo is a relatively new
model for simulating land use type, and can adjust the land use type according to the
intensity of land use through constrained demand conditions [43]. Compared with other
models, it has the advantage of being able to incorporate policy stimulus into the model [44].
The parameter setting is simple, with relatively accurate results. Using the CLUMondo
model, this paper simulates different policy effects according to different scenarios, bringing
the simulated results close to reality.

Existing studies have noted that the energy mix and energy efficiency are important
factors affecting carbon emissions [13,14,45]. However, most previous studies on the carbon
peak policy have focused on predicting when the results of the policy will be realized [15].
However, limitations in carbon emissions created by the carbon peak policy may lead
to different peak results. Research is needed to link the implementation of the carbon
peak policy with land use change, based on the correlation between carbon emissions and
changes in land use. Therefore, this study identifies the potential relationship between
carbon peak policy and land use change. From the perspective of driving factors of carbon
emissions, the paper simulates the future land use situation under a natural development
approach, an ideal policy implementation approach, and an enterprise-driven reactive
approach, providing a new perspective that contrasts with the existing research. This paper
explores the optimal solution of land use structure to result in a win–win path of economic
development and reduced carbon emissions.

2. Materials and Methods
2.1. Study Area and Data Processing

The study area is the People’s Republic of China. China is located in eastern Asia
and occupies much of the west coast of the Pacific Ocean, geographically located at
73◦33′~135◦05′ east longitude and 3◦51′~53◦33′ north latitude. In 2021, the Chinese gov-
ernment proposed a “peak carbon” target, pledging that carbon dioxide emissions would
peak in 2030 and gradually decline thereafter (https://www.gov.cn/, accessed on 18 June
2021). During the 14th Five-year Plan period, China’s economy and society developed
rapidly, leading to the rapid expansion of urban areas. The built-up area increased from
40,058 square kilometers in 2010 by 60,721 square kilometers in 2020 [46,47]. In a develop-
ing country, limiting carbon emissions curbs urban land expansion and decreases energy
use [48]. Given the challenge of balancing economic development and the development of
an ecological civilization, the Chinese government continues to explore reasonable ways to
achieve the carbon peak policy.

The data used for this study included: carbon emissions demand data, built-up area
demand data, land use type data, data on driving factors (listed below), and the land use
service coefficient data for different land types. Carbon emissions from 2010 to 2020 data
were collected from CLIMATE WATCH (https://www.climatewatchdata.org/, accessed
on 18 June 2021). Factors related to the carbon peak policy included population, affluence,
technology progress forecasts for 2020~2030 for the three studied scenarios, and carbon
emissions data. Data for the specific study area were collected from the department of

https://www.gov.cn/
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housing and urban-rural development of the People’s Republic of China (http://www.
mohurd.gov.cn/index.html, accessed on 18 June 2021). The trend extrapolation method
was used to generate the data simulating the built-up area from 2020 to 2030. Data of
land use status in 2010 and 2015 were collected from the Data Center for Resources and
Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn/, accessed
on 18 June 2021). Based on the National Plan for Main Functional Zones, areas restricted
to development were designated as restricted layers to protect the ecological security of
vulnerable areas.

The four types of driving factors studied included climate, topography, accessibility,
and socioeconomic development. Seven variables were selected to study the relationship
between land types and independent variables (driving factors). Climate-related data
included temperature and precipitation data from the Chinese Academy of Sciences Data
Center for Resources and Environmental Sciences (http://www.resdc.cn/, accessed on
18 June 2021). Topographic data included elevation and slope. The elevation data came
from the Data Center for Resources and Environmental Sciences, Chinese Academy of
Sciences (http://www.resdc.cn/, accessed on 18 June 2021), and the slope was obtained
using the slope analysis tool in ArcGIS. Accessibility data included the distance from
the city, obtained through GIS cost distance analysis. Socioeconomic development data
included population and GROSS national product (GNP), with data coming from the
Chinese Academy of Sciences Data Center for Resources and Environmental Sciences
(http://www.resdc.cn/, accessed on 18 June 2021). The data above were aggregated to a
resolution of 2000 m in ArcGIS and projected using Albers technology.

Land use parameters were determined using the Classification Table of Land Use
Status (GB/T21010-2007), land feature characteristics, data availability for the study area,
and the intensity of land use management. Based on data availability, land use types were
divided into six types: cultivated land, forest land, grassland, building land, water area,
and unused land. The land use service coefficient refers to the services per unit area of land
on the map [49]. The carbon emission coefficient was estimated from the carbon emissions
generated by energy consumption. Other land types provide few services to the built-up
areas; as such, this study set the land use service coefficient of building land as 1. In other
words, 1 ha of building land produces 1 ha of built-up area. Table 1 shows the carbon
emission coefficients of the six land use types.

Table 1. Carbon emission coefficient of each land use type.

Land Use Types Carbon Emission Coefficient (tC/ha) Data Sources

Cultivated land 0.0422 Lai L (2010)
Woods (Forest land) −0.0578 Lai L (2010)

Grassland −0.0021 Fang et al. (2007)
Building (Construction) land 4.2970 Duan et al. (2008)

Water areas −0.0252 Fang et al. (2007)
Unused land −0.0005 Lai L (2010)

A positive number indicates that the land use type produces carbon dioxide. A negative number indicates that
the land use type absorbs carbon dioxide.

2.2. Methods
2.2.1. Scenario Definitions

China’s carbon peak policy is designed to build a green, low-carbon, circular economic
system, and to vigorously promote the transformation and upgrading of the economic
structure, energy structure, and industrial structure. The carbon peak policy is intended
to implement a “1 + N” policy system, where “1” refers to the positions of the CPC
(Communist Party of China) Central Committee and the State Council with respect to
achieving peak carbon neutrality, and the key content of “N” is to implement plans in key
fields and industries, such as energy, steel, and non-ferrous metals (https://www.ndrc.gov.
cn/?code=&state=123, accessed on 18 June 2021). Achieving the carbon peak is expected to

http://www.mohurd.gov.cn/index.html
http://www.mohurd.gov.cn/index.html
http://www.resdc.cn/
http://www.resdc.cn/
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impact the social energy structure, energy efficiency, and regional land use patterns, due
to changes in land use patterns and land use intensity. Therefore, this study applied the
energy utilization structure as the intermediate medium. Based on the actual land use
situation and development process in China, three land use scenarios were used to study
the impact of the carbon peak policy on land use change.

Scenario 1 (natural development scenario, NDS): China has only established an initial
carbon peak target, and the implementation effect needs to be evaluated. As such, the
first scenario assumes that the impact of this policy target is small and China will con-
tinue to develop according to the original development status, with annual increases in
carbon emissions.

Scenario 2 (ideal policy scenario, IPS): This scenario assumes that the carbon emissions
in the study area are controlled under the influence of the carbon peak policy target; the
growth of building land is moderately controlled; and the growth rate of building land
area is slower compared to natural development scenario.

Scenario 3 (Reactive carbon emission scenario, RCS): The central government has
placed importance on realizing the carbon peak target. However, local governments often
pursue economic benefits, and consider other forms of performance in realizing the carbon
peak target. To align this research closer to reality, the third scenario assumes that under
the circumstance of limited development, enterprises delay practices that would decrease
carbon emissions to after 2030; before 2030, ecological land is rapidly converted into urban
land or another building land, leading to large-scale carbon emissions.

2.2.2. Carbon Emission Forecast

Using the IPAT model, this paper predicted the carbon emissions of different scenarios
in the context of the carbon peak policy from 2010 to 2020 [22]. The IPAT model, also
known as the environmental pressure model, is used to quantitatively represent the impact
of human activities on the environment. The model decomposes the impact of human
activities on the environment into the product of three driving factors: population size
(P), affluence (A), and technological progress (T) (I = P × A × T). P is often affected
by citizens’ conception of fertility and is difficult to control using policies. A is usually
represented by per capita gross domestic product (GDP). T is usually represented by carbon
dioxide (CO2) emission per unit GDP. Based on realistic conditions in China and data
availability, this paper further decomposes the classical IPAT model. The development
trend of A and T is often regulated by the state and can be predicted using relevant policies
(http://www.gov.cn/, accessed on 18 June 2021). Therefore, based on the original IPAT
model, this study introduced a new variable, and the influence of the population factor
on the model was removed by subdivision. The total amount of CO2 was generated by
multiplying the expected population of future years by the per capita amount of CO2.

The decomposition optimization process of the IPAT optimization extended model is
as follows. The first level of factoring is as follows:

C = P× G
P
× C

G
(1)

The first level factoring is as follows:

C = P× G
P
× E

G
× C

E
(2)

The optimized model is as follows:

C = P× G
P
× E

G
× C

E
× 1− 0.95r (3)

P represents China’s total population (persons); G represents the gross domestic
product (CNY); E represents annual total energy consumption (a ton of standard coal); C

http://www.gov.cn/
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represents annual carbon dioxide emissions (ton); and R represents the rate of remuneration
to workers. There is a strong and stable correlation between industrial–technological
progress and changes in the renumeration of industrial workers. Therefore, the rate of
industrial–technological progress is represented as being 0.95 times the industrial labor rate.

In the natural development scenario (NDS), the carbon peak policy has less impact
on carbon emissions. The energy intensity of GDP is calculated using the total energy
consumption and GDP from 2011 to 2020.

C/E = 2.46 (4)

In other words, 1 unit of mass-energy produces approximately 2.46 times the mass of
CO2. The logarithmic processing value of per capita wage (CNY) from 2011 to 2020 was
linearly fitted to obtain the curve:

y = 0.0407x− 77.4184 (5)

The variation coefficient r of the laborers’ rate of return is 0.0407; the value of technological
progress is 0.0388; and the influence coefficient of technological factors is 96.12% (1–0.95 R). The
promotion of modern science and technology generally lasts 5 years, and 2020 serves as the
base year. According to the CPC Central Committee’s Proposal on the Formulation of the 14th
Five-Year Plan for National Economic and Social Development and the Long-term Goals for
2035, China’s GDP in 2035 is assumed to be CNY 20,319,724 billion. The NDS assumes uniform
GDP growth from 2022 to 2035. Assuming that the total energy consumption is 6 billion tons
of standard coal in 2030, the energy intensity of GDP is predicted to be 3.67954 × 10−5 (tons
of standard coal/yuan). According to planning targets, China’s energy consumption per unit
of GDP in 2025 is expected to be 13.5% lower compared to 2020, resulting in a GDP energy
intensity of 4.23992 × 10−5 (a ton of standard coal/CNY) in 2025.

In the reactive carbon emission scenario (RCS), enterprises maximize profits, do not
invest in industrial structure and emission reductions, and implement industrial activities
and decisions that increase industrial income without limits. Based on the continuous track-
ing calculation and prediction of the industrialization level index, China’s industrialization
level entered the later stage of industrialization after 2011. China was in the middle stage
of industrial development from the 1990s to 2014, and entered the later stage of industrial
development from 2016 to 2020. In the later stage of industrial development, the energy
intensity of GDP increases at a uniform rate, with a maximum value of 5.94447 × 10−5

(a ton of standard coal/CNY); the value rises to a maximum level and then declines at the
same rate.

The ideal policy scenario (IPS) assumes that the carbon emissions in the study area
are controlled under the influence of the carbon peak policy goal. As such, the growth in
building land is moderately controlled. Therefore, the growth rate of building land area
is slower compared to the natural development scenario, and the annual growth rate of
carbon emissions decreases at the same rate. Based on the above analysis, the quadratic
single-valued function of carbon emission f(x) on year X is as follows:

f (x) = −7.8178(x− 2020)2 + 156.356(x− 2020) + 11856.4 (6)

2.2.3. Land Use Change Prediction

In this paper, the CLUMondo model was used to simulate the land use changes in
China from 2020 to 2030 under the three scenarios introduced above (NDS, IPS and RCS).
CLUMondo is software that simulates land use change [50]. Parameters in the requirements
module can drive competition among different land use types [51]. When the land use type
is sufficient to meet the demand setting, then the current land use mode is considered to
be the target [52]. In this paper, carbon emissions are calculated according to the three
scenarios associated with the carbon peak policy. Carbon emissions are brought into the
model as a constraint to adjust land use. According to the land use service coefficient of
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different land use types, the target land use pattern satisfying carbon emission and the
built-up area was calculated. Other model parameters include the regression coefficient,
transition resistance, transition matrix, constraint layer, and situational requirements.

Land use changes result from the interaction of different driving factors. Based on data
availability and representativeness, seven factors were selected for the regression against
the six land use types. The relationship between land use type and independent variable
was obtained, and the spatial position of the land use type was determined. Conversion
resistance represents the degree of difficulty in converting one land type into another:
1 indicates that the land use type is extremely difficult to be transformed into other land
use types; and 0 indicates that the land use type is extremely easy to be transformed into
other land use types. The transfer matrix specifies which land use types can be converted to
each other; otherwise, the conversion between land use types is prohibited. The restriction
layer represents the area under which development is restricted under the policy, with
0 indicating that the land use type can be changed and−0.9998 indicating that the restriction
cannot change. Repeated debugging of the model yielded a set of parameters which made
the simulated land use data in 2015 highly close to the real land use situation in 2015. The
Kappa coefficient was 0.85, so this group of parameters was selected as the parameters for
the formal simulation.

The two requirements selected in this paper are carbon emissions and built-up area.
In the context of the carbon peak policy, carbon emissions may peak in 2030 as stipulated
by the policy; emissions may increase at the original rate; or enterprises may react to the
policy with more carbon dioxide emissions to maximize profits. The outcomes of these
three scenarios were predicted using the IPAT model. Then, according to the data of the
built-up area from 2010 to 2020, the built-up area from 2020 to 2030 was predicted. The
above two variables were used as the demand to drive land use changes, leading to the
calculation of the target land use types.

3. Results
3.1. Carbon Emission Projections

The optimized IPAT model formula was used to predict and test the carbon emissions
from 2011 to 2020. The carbon emission prediction results for the NDS, IPS, and RCS from
2021 to 2030 are shown in Table 2 and Figure 1. The calculation results indicate a 2% error
between 2011–2020 carbon emissions calculated using the IPAT optimization and expansion
model, and the national carbon emissions data in the national database. The model is
highly accurate and is believed to effectively predict outcomes in 2020–2030.

Table 2. Carbon emissions under different scenarios 2020–2030. (Unit: 10,000 tons).

YEAR NDS IPS RCS

2020 1,225,638 1,185,640 1,225,638
2021 1,275,673 1,200,493 1,351,896
2022 1,284,722 1,213,784 1,442,836
2023 1,293,836 1,225,510 1,539,893
2024 1,303,014 1,235,673 1,643,479
2025 1,312,334 1,244,273 1,754,033
2026 1,321,643 1,251,309 1,872,024
2027 1,331,018 1,256,781 1,963,599
2028 1,340,460 1,260,690 1,977,528
2029 1,349,969 1,263,036 1,991,556
2030 1,364,076 1,263,818 2,005,684
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In the NDS, carbon emissions are expected to continue to grow at the original growth
rate, and China’s carbon emissions are expected to reach 13.64076 million tons in 2030. This
reflects an average annual growth rate of 0.7%. In the NDS, carbon emissions continue to
grow steadily and do not peak in 2030. This indicates that, in the absence of policy imple-
mentation, carbon emissions will rise steadily at a certain rate to meet the needs of social
development. Therefore, controlling carbon emissions growth requires mandatory mea-
sures from the government. In the IPS, enterprises reasonably adjust their energy structures
under the policy stimulus, and the annual growth rate of carbon dioxide emissions steadily
declines. In the concerted effort, emissions peak in 2030 and stopped rising thereafter. Com-
pared with the NDS, carbon emissions in the IPS under policy regulation decrease by 8%,
indicating that the carbon peak policy has an impact. In the RCS, China’s carbon emissions
in 2030 are expected to reach 2.005684 million tons, 1.47 times that of the NDS. Per capita
carbon emissions increase annually, reaching more than 10 tons in 2022. Emissions then
increase rapidly in 2021–2027, and slow in 2028–2030, reaching 13.83 tons in 2030. Given
the changes in industrial structure, enterprises tend to use higher energy consumption per
unit GDP with respect to the energy structure, resulting in energy intensity having a large
impact on carbon emissions in 2021–2027. As technology advances, however, the impact
of energy intensity is expected to diminish. People are expected to gradually find more
effective ways to use energy and achieve peak carbon targets. If the RCS appears in real
life, carbon emissions may significantly exceed those predicted for the NDS, highlighting
the need to guard against reactive carbon emission scenarios.

3.2. Simulation Results of Land Use Change

Figure 2 shows the state of land use in 2010 and the predicted changes in land use
under the NDS, IPS, and RCS in 2030. In 2010, there were significant amounts of unused
land in Northwest China and the Qinghai–Tibet Plateau. This is mainly due to the rugged
terrain and large areas designated for environmental protection, which are not suitable
for industrial and agricultural development. In terms of quantity, the area covered by
water is expected to remain unchanged between 2015 and 2030. Compared with 2010, the
total woodland and grassland areas are expected to be approximately 22% and 7% less,
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respectively. The area of arable land increases significantly in all three scenarios. The area
of building land also increases, with an average growth of 10%.

Figure 2. CLUMondo simulation of land use change.

The IPS assumes that politics works in an ideal way, leading to a slowing in the increase
of land used for construction. The area of arable land continues to increase at an average
rate of 2.67% per year. The IPS is more intensive than NDS, and the associated degree
of land contiguity significantly improves. This closely relates to the regional division of
China’s main functional areas. At the same time, the forest area in the IPS increases in South
China, effectively protecting the ecological environment. In the RCS, there is an increase in
the degree of land fragmentation, and building land use increases significantly. This shows
that in the context of the carbon peak policy, many enterprises adjust their strategic policies
to improve self-generated economic benefits, by using land to a greater extent and across a
wider range. In the coastal areas of southeast China and the North China Plain, there is
clear growth in building land, with building land mainly distributed in the eastern and
western regions of China. By reactively delaying carbon emissions after 2030 to achieve
maximize profits, enterprises may adversely affect China’s policy implementation efforts.
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3.3. Land Use Change under Different Scenarios

The built-up area and carbon emission quantity requirements are not the same in the
three scenarios. As such, different land use changes occur. In the three scenarios, cultivated
land and building land experience an upward trend, while forest land and grassland show
a downward trend. It is difficult to change water areas, so that land use is not projected to
significantly change (Table 3).

Table 3. Changes in the areas of different land types under NDS, IPS, and RCS (Unit: hm2).

Land Use Type NDS IPS RCS

Cultivated land 711,981 723,599 706,976
Woods (Forestland) 499,288 501,317 493,552

Grassland 748,264 754,666 738,621
Building (Construction) land 112,055 91,036 138,363

Water areas 80,702 80,702 80,697
Unused land 361,087 562,057 355,178

Under the NDS, the cultivated land in the North China Plain and the eastern coastal
areas rapidly increase, with a large area of unused land in the Qinghai–Tibet Plateau
converted into forest land and grassland. From 2010 to 2030, the area of arable land rises
by 50.92%, while the area of building land increases by 12.36%. This is mainly due to the
conversion of unused land, forest land, and grassland. Economic and societal development
increase the development of land. In the IPS, the land use experiences more complete
use. Woodland and grassland are mainly converted into arable land and building land;
however, the speed of change is slower compared to the NDS. This is because the steady
implementation of policies makes land use types change at a relatively stable speed.

When considering the rational economic man of the enterprise, to more accurately re-
flect the actual situation, the RCS adjusts the energy utilization mode and energy utilization
rate, compared to the IPS. In the RCS, the area of building land increases by 17.94%, 10.03%,
and 5.58%, respectively, compared with IPS and NDS. That may be because companies
push their industries to minimize losses from carbon curbs. Unused land also decreases
significantly in this scenario, by 35.28%. The decrease in forest land and grassland area
shows that China tends to not consider the ecological civilization when developing its
economy. Most unused land, grassland, and forest land are converted into farmland and
building land, which does not support improvements in the ecological environment. At
the same time, it is important to improve the efficiency of land use, because of the problem
of soil erosion and degraded land quality across a large area of China. This improvement
would protect the utilization of land resources and improve the utilization efficiency of
developed land.

In the NDS, the changing area of forest land and grassland is smaller compared to RCS,
but the cultivated land area increases more quickly compared to RCS. This is closely related
to people’s awareness of cultivated land protection. For building land area, the controls
with NDS are effective compared with IPS; there are clear controls on the utilization of
unused land. This shows that the carbon peak policy can play a role in carbon emission
and ecological protection. However, because enterprises are expected to maximize their
interests, carbon emissions may rise in the short term.

Land use changes under the three scenarios are shown in the Figure 3. The percentage
represented by the bars reflects the proportion of a particular land type to the total area
(marked on the left of the y-axis). The lines in the figure represent the proportion of the
land use type across the national land area.
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4. Discussion
4.1. Main Contributions

The carbon peak policy leads to adjustments in the strategic decisions made by gov-
ernment and enterprises. It also indirectly causes the change of land use intensity in time
and space. Working towards the carbon peak can help coordinate the relationship between
carbon emissions and economic development; however, it is important to consider the
reactive actions that may be taken with respect to carbon emissions.

This paper makes four main contributions to the field.
First, previous studies on the carbon peak policy have mainly focused on predicting

carbon emissions, using mathematical methods to predict the future peak. Few studies
have considered different scenarios associated with achieving that carbon peak [53–55].
Further, few studies have considered the role of reactive emissions. This study considered
three scenarios—the natural development scenario, ideal policy scenario, and reactive
carbon emission scenario—to predict the possible outcomes of future carbon emissions
more fully. Consistent with previous studies, this study found that carbon peak policies
can effectively control carbon emissions, leading to significantly lower carbon emissions
compared to natural development scenarios. Furthermore, our study found that reactive
carbon increase is highly likely to occur. Because of economic benefits, enterprises may
develop high-energy consumption industries and high-pollution industries before the
carbon emissions peak target, to reduce the losses caused by increased carbon emission
limits in a later period. The carbon peak policy leads to adjustments in carbon emissions,
but it can also lead to changes in the strategic behavior of enterprises and governments.
Exploring the relationship between the carbon peak policy and carbon emissions under
different scenarios helps more comprehensively describe the impact of policies.

Second, past studies on land use change and carbon emissions have mainly focused on
the changes in carbon emissions caused by land use. Some studies have explored changes
in carbon sinks and other factors by simulating past land use changes [56–58]. Other
studies have focused on urban expansion and population projections to explore future land
use changes [59,60]. Both kinds of research provide references for future policymaking.
However, to evaluate the future policy implementation effect more accurately. Therefore,
this paper incorporated the carbon emissions and built-up areas into the CLUMondo model
as part of the demand module. The carbon emission coefficient was quantified as the ability
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of all kinds of land to generate carbon emissions, allowing for the simulation of land use
changes under different scenarios. This enabled the realization of both ecological and
economic goals, forming a more complete simulation of the policy implementation effect.

Third, in terms of method, we used the CLUMondo model to simulate land use
changes under the three scenarios, which accurately simulates land use changes according
to the demand of different land use types. This paper considered four driving factors:
climate, topography, accessibility, and social and economic development. A restriction layer
was set to limit the conversion of some regions, making the model more realistic. This
model was also applied to simulate the relationship between land development rights and
land use change, by setting demand variables [20,61]. At the same time, different carbon
emission coefficients of different land types were selected to distinguish the differences in
the carbon emission capacity of different land types [62].

Fourth, this study considered a larger research area compared to previous research.
Previous studies have mainly focused on analyzing land use changes in a certain region,
with few analyses at the country level [62]. The exception has been studies focusing on
small countries, such as Laos. This is because it is difficult to sort different kinds of land
use data at a large scale, and there are problems with coordinate system transformation
and pixel scopes that do not completely overlap. Generating a more perfect data set was
the catalyst for obtaining the desired result of CLUMondo.

4.2. Study Limitations

While fully considering the possible impact of different parameters, such as the carbon
emissions coefficient, this paper does have some limitations.

First, data were acquired for different land use types, based on the classification of
land use status by the Chinese Academy of Sciences. This resulted in six types of land use.
However, the study did not distinguish the quality of different land use types. Second, the
carbon emission prediction model could be further modified through secondary classifi-
cation, and by a more comprehensive consideration of the different driving factors. This
should be explored in future research. Third, when simulating land use changes, the CLU-
Mondo parameters remain somewhat subjective. Future studies should consider the impact
of increased policy planning and combine CLUMondo with other models. In addition,
econometric approaches (difference in difference [63] and synthetic control method [64]) and
time-varying qualitative comparative analysis [65] to uncover causal complexity deserve
further attempts.

5. Conclusions and Policy Recommendations
5.1. Conclusions

Land use changes are mainly manifested in changes in its quantity and distribution.
Land use is likely to change under the dual influence of macro-level policies and micro-
level individual behaviors. Simulating the implementation effect of policy objectives and
considering the potential impacts created by policy can more realistically simulate land
use changes, providing a reference for policy implementation. Therefore, based on the
policy goal of “Peak Carbon 2030” and binding targets in economic development and social
planning, this paper linked land use change with carbon emissions. The CLUMondo model
was used to simulate the land use change under different scenarios in China in 2030. There
are three main research conclusions.

First, reactive approaches to carbon emission scenarios may adversely affect carbon
emissions and land use change. The carbon peak policy may limit future energy utilization.
Under the assumption of the rational “economic man,” enterprises may mitigate the
potential loss of future economic benefits by developing industries with high energy
consumption. This would generate higher carbon emissions in 2030 compared to the NDS.
We simulated the land use area and land use intensity according to the carbon emissions,
and the construction and development area would be expected to significantly increase.
Establishing high carbon emission points may improve the land use intensity. Changing the
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land use in a short time may not encourage the realization of ecological and environmental
goals from a resource utilization perspective.

Second, the reactive carbon emission scenario and the ideal policy scenario result
in the carbon peak policy having different policy implementation effects. If the carbon
peak policy were to be successfully implemented, it could greatly reduce China’s carbon
emissions, control the speed of urban development, and protect ecological civilization. In
that scenario, total carbon emissions in 2030 would be lower than natural growth. However,
in the process of policy implementation, enterprises may exhibit reactive carbon emission
behavior. It is important to extrapolate different carbon emission scenarios based on social
development factors and the energy utilization patterns of enterprises, and explore ways to
avoid reactive carbon emissions from a driving factors perspective.

Third, the ideal policy scenario shows that implementing the carbon peak policy has
practical significance. In addition to reducing carbon emissions, it may promote effective
land resource allocations. This would achieve economic development while protecting
ecological goals. At the same time, the substantial reduction of carbon emissions reflects
China’s responsibilities and important role in global carbon reduction.

5.2. Policy Recommendations

A carbon peak policy is expected to change land use intensity, impacting China’s
spatial planning. The research results point to three policy recommendations.

First, it is important to improve the energy mix and the way energy is used. China
has a large amount of unused land and other exploitable resource reserves. This enables
enterprises to achieve economic development; however, this development comes at the
cost of ecological construction. Controlling the energy utilization of enterprises can reduce
the negative externalities that enterprises impose on society, while obtaining economic
benefits. This involves maintaining the balanced and stable growth of carbon emissions
through political means. In addition, unlimited development and utilization of resources
bring limited value-added benefits. Improving the ways in which enterprises use energy
supports the sustainable development of those enterprises and society, and may guard
against reactive emission behavior.

Second, land use and other environmental indicators should be included in policy
implementation targets. The normal implementation of a carbon peak policy can reduce
carbon dioxide emissions. However, without reconsidering total carbon emission limits, it
may be difficult to avoid ecological damage caused by rapid urbanization in China. Setting
different carbon emission targets for different regions would enable different land types to
be developed based on local conditions. In addition, establishing the carbon peak policy
does not mean that peak carbon emissions can increase without limit. The environmental
carrying capacity of a region should drive development and construction, and sustainable
development should be conducted within a controlled planning scope.

Third, it is important to strictly implement a policy of peak carbon emissions and
include indicators such as carbon intensity in territorial and spatial planning. Carbon
emissions are closely related to land use patterns. As such, spatial planning based on the
carbon emission intensity of specific land use types can play a role in optimizing land
resource allocations. Carbon emission limits can be an important consideration when facing
limited land area and land intensity. When carbon emissions are included as an element
of land use spatial planning in policy, they can have a real binding effect on development
and planning.
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