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Abstract: Monitoring and preserving natural habitats has become an essential activity in many
countries today. As a native tree species in Korea, Paulownia coreana has periodically been surveyed
in national ecological surveys and was identified as an important target for conservation as well
as habitat monitoring and management. This study explores habitat suitability models (HSMs) for
Paulownia coreana in conjunction with national ecological survey data and various environmental
factors. Together with environmental variables, the national ecological survey data were run through
machine learning algorithms such as Artificial Neural Network and Decision Tree & Rules, which
were used to identify the impact of individual variables and create HSMs for Paulownia coreana,
respectively. Unlike other studies, which used remote sensing data to create HSMs, this study
employed periodical on-site survey data for enhanced validity. Moreover, localized environmental
resources such as topography, soil, and rainfall were taken into account to project habitat suitability.
Among the environment variables used, the study identified critical attributes that affect the habitat
conditions of Paulownia coreana. Therefore, the habitat suitability modelling methods employed in
this study could play key roles in planning, monitoring, and managing plants species in regional and
national levels. Furthermore, it could shed light on existing challenges and future research needs.

Keywords: typological habitats; habitat monitoring; habitat suitability models; machine learning;
Artificial Neural Network (ANN); Decision Tree & Rules

1. Introduction

Natural habitats are among the most essential ecological bases sustaining the existence
and survival of life. The survival of all forms of life is inextricably tied to the status of their
habitat. Species distribution modeling is considered an important aspect of various fields,
such as biology and ecology; therefore, great attention has been given to species distribution
research despite the complexity of the existing environments [1–6]. Such prediction of
habitat suitability is necessary for the planning and implementation of forest conservation
and management. In fact, habitat suitability models (HSMs) have already drawn great
attention for predicting plant environments in various scenarios as a result of climate change.
A number of HSMs have recently been created to envisage the environmental changes
caused by recent climate issues [7–9]. HSMs can help to comprehensively understand
potential habitats. The number and quality of predictive techniques have seen an increase
in recent years, with a direct effect on the accuracy of the model.

However, most HSMs are based on remote sensing data, which has led to major
validity and credibility issues. Therefore, implementing on-site survey data supplied by
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the Korea National Institute of Ecology could play a key role in increasing credibility of
habitat suitability modeling. Rather than the discrepancy of HSMs between remote sensing
data and actual species distribution, this study focused on identifying the hierarchy of
environmental variables that affect HSMs and creating HSMs for individual species to
protect and maintain a suitable ecological status.

As in most countries, a number of floral and faunal species have been listed by
the Ministry of Environment in Korea as unique and endangered, and with some kind
of environmental, biological, and social value [10]. Periodically, various governmental
agencies in South Korea carry out local, regional, and national surveys on flora and fauna.
In particular, the National Institute of Ecology has spent a large amount of resources to
perform extensive species surveying on a national scale to identify and analyze what
needs to be conserved in the environment. The survey method is simple for flora. For the
past decade, a large number of surveyors worked nationwide on the ground to identify
individual plant species [10]. As such, the collected information is solid evidence based
on site data, which are often used to create and maintain national ecological grading
maps. Unfortunately, it has not yet been used to perform habitat suitability modeling
for individual species, nor has it been used for habitat monitoring. Paulownia coreana is a
protected tree plant species unique to the Korean Peninsula. Therefore, the study focuses on
Paulownia coreana to identify environmental variables affecting its habitat and create HSMs.

The aim of the presented study is to develop these models for Paulownia coreana using
National Ecological Survey data. Moreover, the study also aims to assess environmen-
tal variables to identify the most affective elements of the species habitat. In order to
achieve these aims, the study employs machine learning algorithms of the Artificial Neural
Network (ANN) and Decision Tree & Rules. The former is for assessing the hierarchy
of environmental variables, while the latter is to develop habitat suitability models of
Paulownia coreana and other key tree species.

The study is divided into five distinct sections. After the introduction, the literature
review illustrates current trends on HSMs with machine learning algorithms. It also
gives a clear indication on how HSMs are created with various algorithms along with
their respective pros and cons. Moreover, it also expands on the implication of using
remote sensing data for habitat suitability modeling. In the methodology section, the
study illustrates the environmental variables applied to the National Ecological Survey
data and employs two machine learning algorithms to identify environmental variables
affecting Paulownia coreana habitats and create its HSMs. In the discussion section, the
study argues for the impact of environmental variables and accuracy of habitat suitability
models. Finally, the study concludes with a short review on the high potential of HSMs
created from on-site survey data for monitoring and ecological policy planning.

2. Habitat Suitability Modeling with Machine Learning Algorithms: Literature Reviews

Recently, the growing efficiency of big data solutions and application of machine learn-
ing has received a huge amount of attention. With the proliferation of machine learning,
many studies have employed machine learning algorithms in the field of ecology [11,12].
Big data from a variety of sources such as weather stations, National Ecological Survey, and
public agencies can be used for habitat modeling. By synthesizing assorted big data, com-
plex habitat suitability modeling of various scales becomes possible. However, as discussed
later, only some machine learning algorithms are suited for plant species habitat prediction.

Within a broader context, machine learning algorithms have been utilized on ecological
data [11]. For instance, they have assisted in the prediction of mass mortality events in
the Mediterranean Sea [13]. However, a great number of studies have focused on remote
sensing data in the implementation of artificial intelligence [14]. For instance, it is possible
to predict plant species habitats through environmental variables derived from remote
sensing data and analyze how variables affect habitat prediction.

Raghukumar and Narayanan have also suggested the comparison of machine learning
algorithms for the detection of medicinal plants [12]. Automatic recognition of medicinal
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plants has been tested, where their features (shape, texture, and color) were extracted
from images of their leaves before being classified using machine learning classification
techniques such as K-Nearest Neighbors algorithm (KNN) and Support Vector Machines
(SVM). Another study [15] built relationships between field and remote sensing data with
Random Forest (RF). The field data included over 15,000 points of data from the assessment,
inventory, and monitoring of landscape monitoring framework programs throughout the
Western U.S.

This integration between the remote sensing and machine learning process has been
utilized often. For example, a study was carried out to predict vegetation classification us-
ing environmental data derived from various spatial scales, aerial images, and the classifier
RF in Britain [16]. Another research study performed similar modeling and mapping using
a bootstrap-aggregating machine learning ensemble with the RF classifier to derive a Euro-
pean forest formation suitability map [17]. The modeling used field data provided by the
European Environmental Agency, and forests in 10 categories were classified. The overall
accuracy of the model results was 76%, and the influence of environmental factors such
as isotherm and precipitations and map applicability were discussed. Zlinszky et al. [18]
used airborne laser scanning data for implementing habitat mapping with high resolution.

The marriage between machine learning and remote sensing is not uncommon in
the field of ecology. A new methodology was developed [19] using drones (remotely
piloted aircraft systems). It was characterized to analyze complex habitat environments
and structures with high conservation value. Implementing a machine learning technique
with another set of decision rules, the study carried out the discrimination of plant types.
Meanwhile, a study that performed object-based image analysis (OBIA) and machine
learning algorithm analysis was conducted [20]. The study classified the types of wetland
plants in the Ramsar wetland conservation area in China and applied six machine learning
algorithms to compare classification accuracy. The classification showed meaningful results,
but problems appearing in the pixels and resolution of the image were derived.

There are also a number of ecological models derived from machine learning [1–6]. RF
and Rotation Forest were employed for image classification using polarimetric and spatial
features [21,22]. In the comparison between those two, the Rotation Forest produced better
accuracy while RF calculated faster than Rotation Forest. Another study [23] demonstrated
the applicability of machine learning (ANNs, Classification Additionally, Regression Trees,
RFs, and SVMs) in habitat quality and its spatial diversity. The study developed the
habitat suitability models with the data of Oryzias latipes, water depth and flow velocity in
agricultural canals. Similar to the paper [23], habitats of a specific species were investigated
with machine learning algorithms. For instance, Pinus sylvestris in Iberian Peninsula were
examined in 2006 [24]. This research integrated several machine learning algorithms (Tree-
based Classification, Neural Networks, and RF) within the Geographic Information System
and predicted a habitat model. Hematological value references of Sicalis flaveola were also
tested using machine-learning-based classifiers [25].

In terms of machine learning algorithms, the RF model has been used to classify
fine-scale coastal vegetation aerial data [26]. In this study, near infrared imagery and DEM
data were used to classify vegetation types, and a total of three scenarios were set to verify
the model of the RF algorithm. Together with RF, SVM was implemented [27] to identify
invasive plant species such as Solidago spp., Calamagrosties epigejos, and Rubus spp. from
aerial images.

Machine learning is also commonly used for classifying plant species. Using SVM,
Shobana and Perumal [28] structured and built an astute framework of machine vision that
would advance plant development in restricted water conditions. Sukumaran et al. also
presented [29] a model for phylogenies with evolution and diversification progression. In
another study [30] carried out in 2019, plant diseases were recognized using Convolutional
Neural Networks, predicting them by comparing the characteristics and changes of leaves.
Meanwhile, a study [31] classified four artificial mangrove species using Decision Trees,
SVM, and RF. The study was conducted using two classification systems (pixel-based; object-
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based), and both methods resulted in meaningful classification results. Zohmann et al. [32]
also successfully modelled habitat suitability applying the object-based classification for
alpine rock ptarmigan (Lagoups muta Helvetica).

Meanwhile, this study aimed to predict the habitats of forest species, using the ANN
and Decision Tree & Rules algorithms in order to identify environmental attributes affected
to their ecological conditions. Within this framework, the study obtained on-site survey
data from the National Ecological Survey. It is claimed [33] that remote sensing data have
their own drawbacks of spatial, spectral, and radiometric limits on resolutions. However,
implementing with field survey information can improve overall credibility and validity of
the habitat models by interpolating or extrapolating individual locations. Such importance
of survey data on credibility comes from fields. As it implicates on-site survey data for
plant species in the duration of the last decade extensively, this study can open a new
avenue to create, analyze, and evaluate HSMs along with the accumulation of periodic
on-site survey data.

3. Methodology
3.1. Study Area

The study area comprises the South Korean Peninsula, including Jeju Island in the
south. Spatial data were obtained from the Ordnance Survey of Korea, which covered the
entire nation for a total area of 100,210 square km.

3.2. National Ecology Survey

Since 1986, the Ministry of Environment in Korea has periodically carried out national
ecological surveys in the South Korean Peninsula. This survey was commissioned via
statutory legislation and has been amended since the commencement. Every five years,
flora and fauna are spatially identified by on-site surveyors, while any environmental
issues including invasive species are identified and raised.

The study only uses data from the 3rd (2006–2013: eight years) and 4th (2014–2018:
five years) National Ecological Survey since only these have been digitized in the database.
Since 2006, the survey has utilized 1:25,000 terrain maps which are further divided into
824 cells. Each cell is split into nine grids which are assigned to the surveyors to work on
(Figure 1).

3.3. Environmental Variables

A large number of environmental variables can influence the natural habitat. All the
available variables that can affect habitat modeling on different scales were collected from
various sources including Ministry of Environment and Forestry Commissions in Korea.
Then, it was narrowed down to the nine variables most likely to affect plant habitats based
on previous research and literature review. These are categorically topographic and climatic
environmental variables as shown in Table 1 below.

Furthermore, the main datasets were obtained from the National Ecological Survey,
which includes the locations of individual tree species. Because this study is mainly
focused on tree species, the prediction included both climatic and topographic variables.
Hence, a total of nine environmental variables were considered for modeling (Table 1). The
topographic variables were derived from the National Forest Location Soil Maps, which
are published by Forestry Commissions at a 1:25,000 scale, and include information such
as forest management, maintenance, and evaluation. The annual rainfall attributes were
mainly interpolated by means of trend surfaces and National Forest Location Soil Maps.
Moreover, annual rainfall volume was extracted from Korea’s Met Office, which is divided
into 62 locations nationally. Then, the annual rainfall data were merged with tree locations
using QGIS program (version 3.14) and adjusted accordingly.
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Figure 1. Areas in the 3rd National Ecological Survey. The surveyed elements include landform,
vegetation, mammals, birds, amphibians, reptiles, insects, and fish (extracted from National Institute
of Ecology’s guideline 2019).

Table 1. Environmental variables implemented.

Environmental Variables Grade Value Description

Topographic

Soil Drainage Type 1–4 Poor, Normal, Good, Very Good

Land Slope 001, 015, 020, 025, 030, 999 Below 15 degrees (Mild), 15–20, 20–25 (Steep),
25–30, More than 30 degrees, etc.

Soil Accumulation 1–3 Residual (static soil), Creep, Colluvial Soil

Altitude 01–20 Less than 100 m, 100–1900 m, More than 1900 m

Soil Depth 10–30 Less than 30 cm, 30–60 cm, 61 cm or more

Erosion 1–3 None, Slight, Heavy

Climatic

Wind Exposure 1–3 Exposed, Normal, Protected

Annual Rainfall mm

Weathering Effloresces Degree 01–03 Upper, Medium, Lower

3.4. On-Site Surveyed Species Locations

The presence of Paulownia coreana was taken from the 3rd and 4th phases of the
National Ecological Survey. As the survey records contain ordinance locations of the
species, environmental variables were embedded into ordinance survey maps within QGIS.
Together with Paulownia coreana, other tree species such as Robinia pseudoacacia, Quercus
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variabilis, and Pinus densiflora were used for identifying and evaluating the impact of
environmental variables on the tree distribution.

3.5. The Modeling Process

A modeling framework was established as shown in Figure 2. Firstly, based on the
processed data above, the machine learning algorithm appropriate for the habitat suitability
models was selected, and two predictive models were chosen: ANN and Decision Tree
& Rules. The software used for analysis was R 1.74 and the necessary packages were
downloaded accordingly.
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Figure 2. Modeling process.

The ANN models are effective for classification, prediction, and pattern recognition,
forming networks according to input information in solving problems and modeling
their relationships. Therefore, in this study, the ANN model was applied to derive the
relationship between the nine variables affecting the habitat of Paulownia coreana. For
executing a neural networks predictor, neuralnet package version 1.44.2 is installed in
this study.

For the ANN analysis, numerical and factor data need to be comparable; therefore,
in order to have them in the same scale, the normalize or standardize function was imple-
mented. This process puts numerical and factor data of individual variables into a 0–1 scale.
The function in the R is as below [34]:

> normalize <- function(x) {
return((x − min(x))/(max(x) − min(x)))

}

The data were also partitioned into two main groups, training and testing. The
prediction models were derived from training data processing; thereafter, the test datasets
were evaluated through the predicted model to assess the model performances and their
validity. In the case of ANN analysis, the training group contains 75% of the samples, and
the testing group has 25% of the samples. However, in order to make valid models, the
samples need to be randomly sorted. The training data samples were used to implement
the ANN and the testing dataset was used to assess how valid the model is at identifying
the effect of environmental variables on each other.

The Decision Tree & Rules models analyze the relationship between input informa-
tion and results using tree structure. Within this study, a Decision Tree & Rules algo-
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rithm was implemented to comprehensively analyze the variables affecting the habitat
of Paulownia coreana and other tree species. For the Decision Tree & Rules process, the
categorical values shown in Table 1 were applied as actual numerical values for more
detailed results. Various algorithms have been utilized in performing the Decision Tree &
Rules; this study used the C5.0 algorithm version 0.1.4.

As well as the ANN analysis, for the Decision Tree & Rules modeling process, the data
were split into two groups. The training sample group was used to formulate Decision
Tree models and the testing sample group to assess Decision Tree model performance. For
the training group, 80% of all samples was selected, and the remaining 20% was used for
the testing group. Additionally, the model boosted 10 trials for the performances. In this
study, after performing each of the ANN and Decision Tree & Rules models, the results
were compared and analyzed.

4. Results

This study mainly develops two models and scenarios with machine learning al-
gorithms. The two machine learning algorithms, ANN and Decision Tree methods are
implemented for plant HSMs. The comparison between two methods and models is shown
in Table 2 below.

Table 2. Comparison of the machine learning algorithms.

Machine Learning Types Algorithms

Artificial Neural Network
(ANN) neuralnet Identification of environmental variables

affecting Paulownia coreana habitats

Decision Tree C5.0
Habitat suitability models of

Paulownia coreana, Quercus variabilis,
Pinus densiflora, Robinia pseudoacacia

For the ANN analysis, 301 locations of Paulownia coreana were used from the National
Ecological Survey. Therefore, the 301 rows of a data frame were created together with envi-
ronmental variables indicated above, such as annual rainfall. Among the environmental
variables implemented, Altitude and Slope are critical attributes affecting the habitat of
Paulownia coreana; therefore, these are set up as output nodes. As illustrated in Figure 3
below, Altitude is used as an output node and is run through the multi-layer feedforward
perception with a single node first.

Species_model <- neuralnet(Altitude ~ Drainage + AnnualRainfall + Slope + SoilAccumulation + ErosionLevel +
WindExposure + WeatheringLevel + SoilDepth, data = species_train)

This network has one input for the nine variables. With a hidden node, an output node
predicts altitude-focused habitats. It also shows individual weights for each connection.
The numeric constants show biased value as in a linear equation. The negative signs within
the network indicate inverse proportional relationships rather than literally negative effects.
The number of training steps and an error measure are given at the bottom of the figure. A
lower number indicates better projecting performance.

The multi-layer forward network with a single node to Altitude (Figure 3) indicates
that Slope is the strongest element affecting Paulownia coreana’s habitats with Altitude (7.19).
This is followed by other environmental variables such as Soil Depth (3.26), Drainage (2.21),
Soil Accumulation (−2.12), Wind Exposure (1.84), Erosion Level (−0.91), Annual Rainfall
(0.41), and Weathering Level (0.33) in descending order of effect.

The network topology diagram provides the ANN’s black box feature but does not in-
dicate much about the model’s future performance; however, the single-layered perception
model (Figure 3) is performing well showing only a hidden node, the study increased the
number of hidden nodes to five in order to improve the model’s performance. As a result,
the study illustrates much improved models in Figure 4 as below.
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In this result, while the number of training steps increased from 667 to 4828, the
error decreased much from 4.80 to 3.19. This made the model significantly more complex;
generally, more complex models take more weights into account. The Slope variable is also
analyzed in the same process as Altitude. In Figure 5, as well as in the case of Altitude,
Slope and the rest of the nine variables were used, with a hidden node and an output
calculating the slope-focused habitats.
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The multi-layer forward network with a single node to Slope (Upper, Figure 5) in-
dicates that Altitude is the strongest element affecting Paulownia coreana habitats with
Slope (5.53). Other environmental variables such as Soil Depth (−1.87), Drainage (1.16),
Weathering Level (−1.01), Soil Accumulation (0.78), Annual Rainfall (0.54), Erosion Level
(−0.23), and Wind Exposure (−0.12) follow in descending order of their effects (Table 1).

In our comparison of a single node and five hidden nodes, while the number of
training steps increased from 333 to 4410, the reported error decreased from 1.89 to 1.36.
Similar to the altitude analysis, this result explains that more complicated models provide
better performance outcomes owing to the optional weights added to complicated models.

Based on the cross-analysis of environmental variables between Altitude and Slope,
we thus conclude that Altitude and Slope are the main attributes affecting the habitat
suitability modeling of Paulownia coreana.

While the environmental variables were assessed in conjunction with ANN algo-
rithms, Decision Tree algorithms were implemented to create HSMs. For the Decision Tree
modeling, additional tree species were introduced in order to carry out comparisons of
habitat suitability. Moreover, as well as the ANN process, the Decision Tree models with
the additional species enables us to identify the environmental variables which signifi-
cantly affect the habitat suitability. Therefore, additional tree species of Robinia pseudoacacia,
Quercus variabilis, and Pinus densiflora were selected. Decision Tree algorithms are com-
monly implemented in the ecology field since they produce accurate and statistical out-
comes. The HSMs for individual tree species will be created based on environmental
variables; when all available information surveyed is included, more accurate HSMs for
particular species habitats can be created. This study developed a simple HSM especially
implementing C5.0 DT packages.

The dataset used includes 2497 examples on nine topographic and climatic environ-
mental variables (Table 1) previously identified from four species (Paulownia coreana, Robinia
pseudoacacia, Quercus variabilis, Pinus densiflora). A class variable indicates which species
are which out of the four species. The ANN process R 1.74 was employed for the Decision
Tree procedure.

In addition to the ANN process conducted previously, the study randomized the
data sample order to increase the validity of Decision Tree algorithms. Within the four
different plant species in the datasets, the species needed to be shuffled well for better
performance outcomes.

We implemented the C5.0 DT algorithm and the basic model, species_model was
created. The species_model reveals 267 (tree size), which this means that the tree has
267 decisions. This resulted in the following (Algorithm 1):

Algorithm 1 Result of C5.0 DT algorithm

C5.0 [Release 2.07 GPL Edition] Tue Nov 16 17:20:35 2021
Class specified by attribute ‘outcome’
Read 2000 cases (10 attributes) from undefined.data
Decision Tree:
Slope <= 21:
:...ErosionLevel > 1:
: :...SoilAccumulation > 1: Pinus densiflora (3/1)
: : SoilAccumulation <= 1:
: : :...AnnualRainfall > 1506:
: : :...SoilDepth <= 10: Quercus variabilis (2/1)
: : : SoilDepth > 10: Pinus densiflora (16/6)
: : AnnualRainfall <= 1506:
: : :...WeatheringLevel <= 2: Pinus densiflora (3/1)
: : WeatheringLevel > 2:
: : :...SoilDepth <= 20: Robinia pseudoacacia (9/4)
: : SoilDepth > 20: Pinus densiflora (2/1)
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In the results above, the first three lines can be interpreted as follows: when the Slope
is no more than 21 deg, Erosion Level is none, and Soil Accumulation is more than 1 (static),
the species is likely Pinus densiflora (3/1). However, when Slope is no more than 21 deg,
Erosion Level is none, and Soil Accumulation is no more than 1 (creep and colluvial),
species are likely dependent on Annual Rainfall volume. This continues as this Decision
Tree model is 267 decisions deep. After the tree, the species_model output indicates a
confusion matrix with cross tabulation of the model’s performance data as shown below
(Table 3).

Table 3. Confusion matrix of the species model.

Decision Tree
Size Errors
267 744 (37.2%) <<
(a) (b) (c) (d)
100 87 28 21 (a): class Paulownia coreana

8 609 75 57 (b): class Pinus densiflora
11 186 308 38 (c): class Quercus variabilis
22 151 60 239 (d): class Robinia pseudoacacia

Within the model results, 744 sample instances out of 2000 were classified rightly,
which indicates a 37.2% error rate. Then, the results also illustrate the weight of environ-
mental variables taken into account as per Table 4 below.

Table 4. Attribute usage of Decision Tree algorithm.

Percentage Environmental Variables

1 100.00 Slope

2 96.05 Altitude

3 82.50 Weathering Level

4 73.75 Annual Rainfall

5 72.30 Drainage

6 62.70 Soil Accumulation

7 62.35 Soil Depth

8 57.55 Erosion Level

9 51.75 Wind Exposure

In order to implement these Decision Tree results to the test data, the study used the
predict() script in R and the results are shown in Table 5 below.

Within the 497 testing species samples, the output model only rightly calculated
Paulownia coreana (10), Pinus densiflora (88), Quercus variabilis (35), and Robinia pseudoacacia
(25), indicating 49.7% accuracy and 50.3% error rate. The performance is not good enough
for training outcomes; however, this result is not surprising under the circumstances
wherein environmental variables often overlap without clear distinctive features. Hence, the
study found that the error rate of environmental models is often too high for evaluating the
suitability of habitats. Through the C5.0 DT algorithm, the study boosted the performance
by combining further trial parameters, with the 10 trials added here.

> species_boost10 <- C5.0(species_train[−10], species_train$Species, trials = 10)

The prediction performance was not improved even after the boost, as shown by the
49.7% accuracy. Only attribute usage revealed any changes as shown in Table 6 below,
which indicates overall improvement in the usage of environmental variables.
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Table 5. Cross tables of predicted and actual species.

Predicted Species

Actual Species Paulownia coreana Pinus densiflora Quercus variabilis Robinia pseudoacacia Row Total

Paulownia coreana 10
0.020

27
0.054

15
0.030

13
0.026 65

Pinus densiflora 15
0.030

88
0.177

51
0.103

26
0.052 180

Quercus variabilis 16
0.032

56
0.113

35
0.070

28
0.056 135

Robinia pseudoacacia 5
0.010

61
0.123

26
0.052

25
0.050 117

Column Total 46 232 127 92 497

Table 6. Attribute usage after the boost.

Percentage Environmental Variables

1 100.00 Slope

2 100.00 Altitude

3 93.45 Weathering Level

4 92.70 Drainage

5 88.45 Annual Rainfall

6 79.80 Wind Exposure

7 79.25 Soil Depth

8 74.75 Soil Accumulation

9 63.45 Erosion Level

5. Discussion

This study introduced a framework for handling environmental variables and creating
HSMs with machine learning algorithms. The procedures are based on on-site surveys and
this approach has opened substantial possibilities for future dealings with the National
Ecological Survey, creating HSMs and enabling future species predictions, which has
real applicability in protecting and managing forests. This approach can be particularly
implemented to model plants proliferated owing to recent climate issues. Moreover, it forms
a new methodology relating to the various scenarios represented in the literature review,
particularly for the incorporation of the ANN and Decision Tree algorithm in the assessment
of environmental variables. The results obtained from the Decision Tree method used to
predict habitat suitability were not very promising, showing the lowest accuracy among
the various machine learning algorithms used in this study. However, the authors had
already predicted that environmental variables such as Annual Rainfall, Slope, and Altitude
would not play distinctive roles in creating HSMs. As tree species, they would show minor
differences in the conditions of habitats. We, however, successfully identified the individual
environmental variables affecting the habitats. We implemented nine variables of Slope,
Altitude, Weathering Level, Drainage, Annual Rainfall, Wind Exposure, Soil Depth, Soil
Accumulation, and Erosion Level as initial attributes. We managed to successfully identify
the Slope and Altitude as the most influential environmental variables for HSMs.

As claimed previously, the study employed two types of machine learning algorithms
to identify environmental variables and build HSMs. The first of these are the ANNs,
which have been gradually implemented for plant distribution modeling. However, the
main weakness of ANN is that it is a black box approach whose process and results are
difficult to explain. Furthermore, a lot of variables must be considered, such as the number
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of hidden layers and neurons, weight decay, learning parameters, and primary connections
between the node weights. Hence, high predictive accuracy can only be achieved through
the avoidance of overfitting effects in the process.

The study’s ANN demonstrated robust relationships among pre-selected environmen-
tal variables affecting plant habitats. The nine environmental variables of topographic and
climatic attributes (Table 1) were carefully selected based on general plant research and
literature reviews. The ANN results based on the National Ecological Survey suggests
that Slope and Altitude are the most critical variables for the habitats of Paulownia coreana.
The remaining six environmental variables related to the habitats, in order of decreasing
influence, are: Annual Rainfall, Drainage, Soil Accumulation, Soil Depth, Erosion Level,
and Wind Exposure. Furthermore, the Decision Tree algorithm also showed similar results
in identifying critical environmental attributes affecting tree habitats (Paulownia coreana,
Pinus densiflora, Quercus variabilis, and Robinia pseudoacacia). The HSMs in this study using
Decision Tree algorithms indicated that the most critical variables within the tree habitats
were Slope and Altitude, followed by Weathering Level, Drainage, Annual Rainfall, Wind
Exposure, Soil Depth, Soil Accumulation, and Erosion Levels, in order of influence. There-
fore, this study was able to successfully identify the most critical environmental predictors
to form habitat suitability ecologically.

The second algorithm type used in the study to create habitat suitability models
were Decision Tree algorithms. Here, the model was created with a tree size (267), i.e.,
containing 267 decisions. The number in parentheses shows the number of samples
satisfying and dissatisfying the classification. After the tree structure, the model generated
a confusion matrix with cross tabulation (Table 3). This shows incorrect classification
in the training datasets. The output error annotates the correct classification; however,
it showed a 37.2% error rate, with 744 out of 2000 instances wrongly classified. Out of
the 497 test species records, the model only correctly predicted Paulownia coreana (10),
Pinus densiflora (88), Quercus variabilis (35), and Robinia pseudoacacia (25), indicating about
49.7% accuracy, i.e., 50.3% error rate. Compared to the training dataset, this is not a very
good performance; however, it is not unexpected. Since environmental variables cannot
be definite, such attributes for plants do not have distinctive value. In particular, the
climatic and topographic attributes in the study are generally suggestive of overall ranges
rather than dichotomic values. Hence, the model’s performance could be quite low in
evaluating the suitability of habitats. The study further included 10 boosted trials but the
prediction performance was still not improved, showing only 49.7% accuracy. Therefore, in
future research, diversification of plant species and environmental variables is required to
increase accuracy.

Habitat suitability modeling is affected by a number of environmental variables such
as plants’ colonization and fragmentation. Therefore, there have been several attempts
to model plant habitats. These predictions have gained attention because climate change
could affect species distributions. Recently, there have been a great number of challenges
to create models for habitat suitability; however, no model has been able to integrate the
environmental factors that influence plant habitats so far. Most attempts are only based
on remote sensing information. Therefore, the results of this study should be read in light
of these unavoidable constraints. Accommodating for these weaknesses, the modeling
methods established in our paper could open new possibilities for modeling with on-site
survey data rather than remote sensing with greater validity, as well as the analysis of
potential plant species at the various scales within various climatic and topographic areas.
The modeling methods are essential for planners to make decisions, manage resources, and
conserve forests. It is fundamental to study shift patterns of plants habitats within the era
of climate crisis.

Moreover, the HSMs for plants would aid in removing any uncertainties regarding
certain species managements. Future models will need to consider additional information
such as ecological and physical data. Furthermore, different tendencies can be revealed
depending on the scales; therefore, it is critical to combine research at various scales and
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attributes, and in diverse areas. Even though the entire Korean Peninsula was covered in
this study, the habitats assessed here may illustrate highly specific tendencies owing to
their individual geographic characters.

6. Conclusions

The study aimed to explore habitat suitability models and environmental variables
related to Paulownia coreana in conjunction with the National Ecological Survey. Together
with carefully selected environmental attributes, the National Ecological Survey informa-
tion was fed into machine learning algorithms such as the ANN and Decision Tree & Rules.
While the ANN algorithm was applied to identify the impact of individual variables, the
Decision Tree algorithm was used to create habitat suitability models for Paulownia coreana
and other relevant tree species. The study utilized periodic on-site survey information
which enhanced the credibility of the habitat suitability models overall. Moreover, local-
ized environmental resources such as topographic and climatic attributes were taken into
account to predict habitat suitability.

One limitation of the habitat suitability modeling is the fact that environmental vari-
ables for plants are not distinctive. The climatic and topographic attributes mentioned in
the paper suggest overall ranges rather than dichotomic values.

Despite the fact that the habitat suitability modeling framework presented here pro-
vided sub-optimal results, the novelty of this work is that machine learning algorithms
(particularly ANN and Decision Tree) were implemented for the identification of envi-
ronmental variables and habitat suitability modeling using on-site survey information.
Moreover, it would be an effective means for monitoring, planning, and managing not only
individual species but entire forests at the regional and national levels. Furthermore, it can
also shed light on existing challenges and future research needs.
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