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Abstract: Researches on agricultural land use would help the stakeholders to make better decisions
about agricultural resources. However, studies on agricultural land have been lacking. In this context,
Xiangxi was chosen as a typical region, and five indicators (Kernel Density, change importance,
etc.) and two models (gray forecasting model and GeoSoS-FLUS) were used, to explore the spatio-
temporal evolution trends and simulate the future scenarios of agricultural land use. The results
were as follows: (1) Xiangxi was dominated by agricultural land, and nearly 50% of total extent was
forestry land. Extent of agricultural land decreased by about 56.89 km2 or 3.74% from 2000 to 2018;
(2) The density of each agricultural land in the study area had considerable spatial heterogeneity, and
showed a main trend of shrinkage, especially in the south regions; (3) In 2030, the spatial pattern and
composition of agricultural land in Xiangxi will maintain the existing status, while both of the area
and proportion of agricultural land will decline, with a loss of 241.34 km2 or 2.85% decrease from
2000. Nevertheless, the study believed that the slight shrinkage of the agricultural land in Xiangxi
is in line with the objective law. At the same time, the study suggested to strengthen the scientific
management and rational utilization of agricultural land, with emphasis on arable land and fishery
land in the south, especially the administrative center.

Keywords: agricultural land; land use change; spatio-temporal evolution; future simulation; Xiangxi

1. Introduction

Agriculture can refer to general agriculture (i.e., planting, animal husbandry, forestry,
fishery, and others) and special agriculture (i.e., planting) [1]. This study uses the first
definition. Agricultural land is land used by humans to intervene in the growth and
development of organisms in the natural ecosystem to produce agricultural products [2]. It
has both natural and economic characteristics. It is the place of agricultural practices [3],
the main carrier of economic-social activities for rural population [4], and also the basic
guarantee for material production and civilization development [5,6]. According to the
differences between land types and products, it can be divided into arable land, forestry
land, rangeland, and fishery land.

Land use change has attracted increasing attention from scientists around the world.
Assessment technologies of land use change are RS and GIS, which have been applied to
Malaysia [7], Qom in Iran [8], the middle Hills of Nepal [9], Italy [10], and promoted the
effective utilization and rational allocation of land resources; the main simulation models
of land use include CA-Markov [11,12], FLUS [13,14], etc. FLUS model, which can realize
simulation and comparison according to the spatio-temporal dynamics of land use, is
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the most popular and widely used model. However, the studies on land use change are
carried out from land [15–17] or construction land [18–20], while studies on agricultural
land have been lacking. Land use change is the overall reflection of human activities, which
is conducive to the overall planning and management of land. Agricultural land is the
extension and expansion of land, but the overall macro investigations of land cannot guide
the local fine layout of agricultural land.

Agricultural land use change can not only alter the biophysical surface characteristics,
but also lead to changes of climate, ecosystem services, and biological diversity [6,7]. As
a result, researches on agricultural land use would help land managers, scientists, and
other stakeholders to make better decisions about agricultural resources, which is not
only conducive to improve the agricultural production capacity, ensure human health
and reproduction [8,9], but also maintain the health and sustainability of the agricultural
ecosystem [10,11]. As a result, there is a need for a comprehensive quantification and
systematic assessment for agricultural land.

A small number of studies were conducted from the perspective of arable land and
rangeland, while scientific literature on other types of agricultural land has been scarce.
Alijani et al. [21] conducted a field research in Mazandaran province of Iran where they
found that the most important factors in reducing the area of arable land were difficult
economic conditions and the growth of the tourist industry. The empirical case integrated
census and satellite data in Brazilian Amazonia [22] and indicated an overall expansion of
agricultural area between 1980 and 1995. Among them, arable land and artificial rangeland
increased, while natural rangeland decreased. With the changes in natural environment
and social economy, the area and proportion of different agricultural land show different
dynamic trends. Nevertheless, few studies have used spatial analysis technology and FLUS
model to explore dynamic characteristics and future scenarios of different agricultural land.
Furthermore, forestry land and fishery land, which are also important to humans, have
received little attention.

In view of this, a characteristic agricultural production area, named Xiangxi, located
in Hunan Province of central China, is chosen as a typical region to explore the spatio-
temporal evolution trends and simulate the future scenarios of agricultural land. The
specific objectives of this study are as follows:

1. The overall change pattern of agricultural land from 2000 to 2018 in Xiangxi is identi-
fied by spatial analysis methods.

2. The change characteristics of each agricultural land are detected using GIS techniques
in the study area during the same study period.

3. The future scenarios of agricultural land use in 2030 are simulated by gray forecasting
model and GeoSoS-FLUS model.

This research attempts to add the spatial information of agricultural land use change
and provide decision-making reference for land managers. First, forestry land and fishery
land are analyzed, and spatial analysis methods, gray forecasting model, and FLUS model
are used. These are novel and of academic interest, which can provide reference for other
scholars. Second, it may provide useful suggestions for the utilization and protection of
agricultural resources, and contribute to the high-quality development of agriculture.

2. Data and Methods
2.1. Study Area

Xiangxi (full name: Xiangxi tujia and miao Autonomous Prefecture) [23] lies in central
China, northwest of Hunan Province (Figure 1). It covers an area of 15,462 km2 and
is located at 109◦10′ E–110◦22′ E and 27◦44′ N–29◦38′ N. The region comprises eight
administrative units and the administrative center is Jishou. The area has a subtropical
monsoon climate, with a mean average annual temperature of about 16~18 ◦C and an
average annual precipitation of about 1500 mm.
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As a traditional area with a relatively backward economy, agriculture is the leading sec-
tor in Xiangxi; it is a typical mountainous region, and agricultural production has obvious
particularity and heterogeneity. In 2014, the “Regional Layout Plan for Special Agricultural
Products (2013–2020)” was issued, Xiangxi was planned as a special production area of
traditional medicine and animal husbandry. In 2018, “Strategic Plan for the Revitalization of
Rural Areas in Hunan Province (2018–2022)” was promulgated and Xiangxi was selected as
the characteristic agricultural industrial belt. In this context, the agricultural characteristic
industry has developed rapidly. At the same time, Xiangxi is in the key period of new rural
construction and agricultural modernization. Nevertheless, the structure of land use in
Xiangxi has undergone significant changes and construction land has expanded sharply.
As a result, the problem of agricultural land protection has become very serious, and the
contradiction between land supply and land demand is becoming increasingly prominent.

Therefore, the distribution pattern and dynamic evolution of agricultural land in
Xiangxi are different from other regions. It represents a typical research case, which can
provide scientific references for the optimal allocation of land use and the development of
agricultural modernization in similar areas.

2.2. Datasets and Their Preprocessing

The datasets used are natural environmental data (DEM, temperature, precipitation,
land use, rivers, etc.) and socio-economic data (administrative divisions, population density,
railways, highways, urban centers, etc.). The 30 m resolution DEM data is obtained from the
website of the United States Geology Survey (http://earthexplorer.usgs.gov/). (accessed on
5 April 2020).The slope and aspect characteristics are extracted through the spatial analysis
tool of ArcMap10.2(It was invented by American Environment Systems Research Institute,
and download from this website: http://www.esri.com), (accessed on 5 April 2020); the
datasets of temperature, precipitation, rivers, railways, highways, and urban centers are
downloaded through the software of Bigemap2021 (It was invented by Chengdu bigtu
data processing corporation, and download from this website: http://www.bigemap.com),
(accessed on 5 April 2020), and analyzed by the tool of European distance; the 30 m

http://earthexplorer.usgs.gov/
http://www.esri.com
http://www.bigemap.com
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resolution land use database are gathered from the Resources and Environmental Sciences
Data Center of the Chinese Academy of Sciences (http://www.resdc.cn/), (accessed on
5 April 2020), and reclassified by ArcMap10.2; the administrative boundaries are collected
from the National Earth System Science Data Sharing Platform (http://www.geodata.cn/),
(accessed on 5 April 2020), and extracted according to the attributes; population data is
taken from the statistical yearbook in Xiangxi.

Both vector data and grid data are used in our research. Firstly, vector data is converted
into grid data through the conversion tool of ArcMap10.2. Secondly, the coordinate system
of grid data is set as Krasovsky 1940 Albers. Finally, grid data is resampled to a uniform
accuracy (30 m).

2.3. Research Methods
2.3.1. Agricultural Land Classification System Is Constructed

There are 6 first-class land types and 18 s-class land types in the study area. According
to relevant research results [24–28], agricultural land is subdivided into four categories
(arable land, forestry land, rangeland, and fishery land), and its classification system is
constructed (Table 1). Based on the classification system, the land use data are reclassified.

Table 1. Agricultural land classification system.

Class Code and Name Description Basis for Classification

agricultural land

1—arable land paddy field; dry land paddy field and dry land are the main farming sites
and belong to arable land

2—forestry land timber forest; economic forest; etc. timber forest, economic forests, etc., are the main
land for forestry production

3—rangeland high, medium, low coverage grassland grassland is divided into high, medium, and low
coverage grassland, which is the main grazing place

4—fishery land reservoirs and ponds reservoirs and ponds are the main fishery place in
mountainous areas

2.3.2. Agricultural Land Use Change Is Assessed

Five indicators (Kernel Density, change importance, change area, change rate, and
dynamic) are selected to reflect evolution trend of agricultural land in the study area.
Among them, Kernel Density Estimation (KDE) cannot be affected by the resolution and
location of data, which is used to achieve high-accuracy density measurement and has been
applied in many fields [29–32]. The bandwidth is defined as the calculation range, and
the spatial distribution of the elements is estimated based on the density of the observed
objects in the area. The closer the element is to the center point, the greater the weight, and
vice versa. The average density of all elements is the density of the observation points. The
equation of KDE (Pi) is as follows:

Pi =
1

nπR2 ×
n

∑
j=1

Kj

(
1−

D2
ij

R2

)2

(1)

where Kj represents the weight of pixel j; Dij is the distance from pixel i to pixel j; R is
the bandwidth (Dij < R), which is 2 km in this study; n is the number of pixel j within the
calculation range.

The index of change importance (Cimpor) is chosen to detect the main change types or
areas of agricultural land, and the equation is as follows:

Cimpor =
∆S

∑ ∆S
× 100% (2)

where the value of Cimpor is between 0 and 1, the larger the value, the more dominant the
change; ∆S is the change area of each agricultural land; Σ∆S is the total change area of
agricultural land.

http://www.resdc.cn/
http://www.geodata.cn/
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The equation for calculating change rate of agricultural land (Na) is as follows:

Na =
Sb − Sa

Sa
× 100% (3)

where the larger the value of Na, the faster change rate; Sb and Sa are the area of agricultural
land at the final and the initial stage of the monitoring period, respectively.

The equation for calculating the dynamic of agricultural land (Kd) is:

Kd = ∑
(
|∆S|
Ssum

)
× 100% (4)

where the larger the value of Kd, the more violent agricultural land change, and vice versa;
|∆S| is the absolute value of change area in agricultural land; Ssum is the total area of land.

2.3.3. Future Scenario of Agricultural Land Use Is Simulated

Gray forecasting model and GeoSoS-FLUS model are used to simulate the future
scenario of agricultural land use.

(1) Gray forecasting model

Equidistant observations are used in the gray forecasting model to predict systems
with uncertain factors [33,34]. The agricultural land dataset of 2000, 2005, 2010, and 2015
are used as basic data to predict the amount of agricultural land in 2030. The main process
of establishing the single-sequence linear differential equation GM(1,1) is as follows:

First, a new data sequence (x(1)) is obtained by accumulating the original data se-
quence (x(0)).

x(0) =
(

x(0)(1), x(0)(2), . . . , x(0)(n)
)

(5)

x(1)(t) =
t

∑
k=1

x(0)(k), t = 1, 2, · · · , n (6)

Second, the first order linear differential equation of new data sequence (x(1)) is solved.

dx(1)

dt
+ ax(1) = v (7)

Third, the mean value of the accumulated data B and constant vector Yn are calculated.

B =


0.5
(

x(1)(1) + x(1)(2)
)

0.5
(

x(1)(2) + x(1)(3)
)

...
0.5
(

x(1)(n− 1) + x(1)(n)
)

 (8)

Yn =
(

x(0)(2), x(0)(3), · · · , x(0)(n)
)

(9)

Fourth, the gray parameter â is solved.

â =

(
a
v

)
=
(

BT B
)−1

Yn (10)

Fifth, the prediction function is solved.

x̂(1)(t + 1) =
(

x(0)(1)− v
a

)
e−at +

v
a

(11)
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Sixth, x̂(0) is obtained by reducing X(0).

x̂(0)(t + 1) = x̂(1)(t + 1)− x̂(1)(t) (12)

(2) GeoSoS-FLUS model

The advantages of GeoSoS-FLUS are wide applicability and high resolution [13,35].
Artificial neural networks (ANN) and cellular automata (CA) are used in GeoSoS-FLUS
model to simulate land use change scenario. The main calculation steps are as follows.

First, the driving factors of agricultural land use change are identified. Agricultural
land can be influenced not only by natural variables such as topography and climate [36],
but also by socio-economic variables such as demographic and traffic drivers [24]. Ac-
cording to the related reference [37,38], 10 important driving factors are selected from two
aspects: natural and human variables (Table 2, Figure 2).

Table 2. Driving factors of agricultural land use change.

Data Categories Data Name Year Unit Reference

natural factors

elevation m [37]
slope ◦ [37,38]
aspect ◦ [37]

temperature 2018 ◦C [37]
precipitation 2018 mm [38]

human factors

population density 2018 person/km2 [37]
distance to highways 2018 m [37,38]
distance to railways 2018 m [37]
distance to the cities 2018 m [37,38]

distance to rivers 2018 m [37,38]
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Next, the suitability probability is calculated based on ANN. The complex relationship
between input data and setting targets is continuously simulated through lots of learning
and iteration by ANN, to calculate the suitability probability of land. The calculation
equations are as follows:
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sp(p, k, t)= ∑
j

ωj,k × sigmoid
(
netj(p, t)

)
= ∑

j
ωj,k ×

1

1 + e−netj(p,t)

(13)

∑
k

sq(p, k, t) = 1 (14)

In the above equations, sp(p, k, t) represents the suitability probability of land K in grid
P at time t, and the sum of suitability probability for all land types is 1; ωj,k represents the
adaptive weight between the output and the hidden layers, which is adjusted according to
the training results; sigmoid is the correlation function between the hidden and the output
layers; netj(p, t) is the signal received by the hidden layer j grid p at time t.

Then, the adaptive inertia competition mechanism is evaluated based on CA model.
The conversion probability is affected by the adaptive inertia coefficient of land. The
equation of the adaptive inertia coefficient for land K at time t (Intertiak

t) is as follows:

Intertiat
k


Intertia t−1

k ,
∣∣∣Dt−2

k

∣∣∣ 6 ∣∣∣Dt−1
k

∣∣∣
Intertia t−1

k × Dt−2
k

Dt−1
k

, 0 > Dt−2
k > Dt−1

k

Intertiat−1
k × Dt−1

k
Dt−2

k
, Dt−1

k > Dt−2
k > 0

(15)

where Dt−2
k and Dt−1

k represent the demand and the actual quantity of land k at time t − 1
and t − 2, respectively.

The equations of the probability for grid P converting into land K in time t (TProbt
p,k)

are as follows:

Probt
p,k = sp(p, k, t)×Ωt

p,t × Intertia t
k × (1− scc→k) (16)

Ωt
p,t =

∑
N×N

con
(

ct−1
p = k

)
N × N − 1

×ωk (17)

where scc→k is conversion cost of land c to land k; 1− scc→k is the difficulty coefficient for
land conversion; Ωt

p,t is the neighborhood effect; ∑
N×N

con
(

ct−1
p = k

)
represents the total

number of land k at time t − 1 under the mole window of n × n matrix, where n is 5 in this
study; ωk is the domain factor parameter of each class.

Finally, agricultural data of 2010 is used to simulate the data of 2015, and the simulation
results are compared with the real situation to verify the accuracy of the model by the indexes
of overall accuracy and kappa coefficient. Generally speaking, kappa < 0.5, the fitting effect is
poor; 0.5 ≤ kappa ≤ 0.75, the fitting effect is general; kappa > 0.75, the fitting effect is good.

3. Results and Analysis
3.1. Overall Characteristics of Agricultural Land Use Change
3.1.1. More Than Half of Total Extent Is Agricultural Land, While the Extent of Which Has
Decreased

The extent of agriculture land in Xiangxi was 8454.98 km2 in 2000 and 8323.72 km2 in
2018 (Table 3), while the proportions of which, to the total extent in the above two years,
were 58.40% and 54.66%, respectively. The total agricultural land extent, therefore, de-
creased about 131.26 km2 or 3.74%. The above data showed that Xiangxi was dominated by
agricultural production, but the problem of agricultural land occupation was a little serious.
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Table 3. Agricultural land extent (km2) between 2000 and 2018.

Category Arable Land Forestry Land Rangeland Fishery Land Total

2000 2990.99 4193.75 1239.42 30.81 8454.98
2018 2925.80 4142.95 1232.24 22.72 8323.72

Mean 2958.40 4168.35 1235.83 26.77 8389.35
net change, 2000–2018 −65.19 −50.80 −7.18 −8.09 −131.26

% of 2018 35.15 49.77 14.81 0.27 100

Forestry land was the most abundant class with an average extent of 4168.35 km2 or a
proportion of 49.77% in 2018, while fishery land was the rarest class with only 26.77 km2 or
0.27%, reflecting that the study area had natural advantage in forestry production and the
advantage for fishery production was insufficient. Each agricultural land had varied loss
across these 18 years, and arable land had the highest loss of 65.19 km2, while rangeland had
the lowest of 7.18 km2. A constant decrease of agricultural land undoubtedly threatened the
food supply and brought the considerable economic pressure to farmers in poor areas [39],
so related stakeholders should unswervingly protect the agricultural land. Therefore, the
basic conditions and development orientation of agricultural production could be clearly
reflected by the composition and change of agricultural land.

3.1.2. The Change of Arable Land and Fishery Land Was the Most Prominent

About 88.26% (7775.03 km2) of agriculture land have never experienced land use
change during the study period (Table 4, Figure 3), while the rest 11.47% (1033.94 km2)
experienced it at least once. Change was spatially heterogeneous. Arable land change
totaled 47.93% of the total, and the change occurred across the region. Nearly 38.87%
of the change involved forestry land, with the majority change occurring in the central
region; 11.52% of the total change was comprised by rangeland, and this change occurred
predominantly in southwest of Jishou, north of Yongshun, and Longshan. Fishery land use
change comprised the rest at 1.68%, and was the most intensive in Huayuan and Jishou.

Arable land had the highest of change importance (Cimpor) at 49.36%, while rangeland had
the lowest of 5.64% (Table 4), reflecting the most obvious change and the least obvious change,
respectively. At the same time, fishery land had the highest loss rate (Na was −26.27%), while
rangeland was the lowest (Na was −0.6%). In addition, the index of dynamic (Kd) was also
different, with the highest (0.77%) for arable land, while the lowest (0.09%) for rangeland.
In short, the above data indicated that the change of arable land and fishery land was the
most prominent.

Table 4. Agricultural land change between 2000 and 2018.

Change of 2000–2018 No Change Arable Land Change Forestry Land Change Rangeland Change Fishery Land Change

Area (km2) 7775.03 495.65 401.89 119.07 17.33
% of agricultural land 88.26 5.63 4.56 1.35 0.20

% of change 47.93 38.87 11.52 1.68
Cimpor (%) 49.36 38.88 5.64 6.12

Na (%) −2.18 −1.22 −0.60 −26.27
Kd (%) 0.77 0.61 0.09 0.10
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3.2. Characteristics of Each Agricultural Land Use Change
3.2.1. The Density of Each Agricultural Land Had Strong Spatial Heterogeneity and
Changed Slightly

The spatial patterns of arable land density in Xiangxi showed a trend of lower in the
southeast and northwest, and higher in the center (Figure 4a). The higher-density areas
concentrated in Yongshun, Baojing, Huayuan, and Fenghuang, while the lower-density
areas were distributed in the junction of Jishou and Luxi. The reason is that the rivers
flow through the central part and the terrain is flatter, so there is more arable land. In
addition, the density dynamic of arable land had spatial heterogeneity, and Jishou has
decreased faster than other regions. The reason was that Jishou was the political and
economic center, and the problem of built-up area expansion at the expense of agricultural
land was more prominent.

The spatial distribution of forestry land density in Xiangxi was higher in the southeast
and northwest, and lower in the center (Figure 4b). The higher-value centers were Guzhang,
Jishou, and Luxi, and the lower were Yongshun, Baojing, and Huayuan. It decreased in the
north (Longshan and Yongshun) and increased in the south (Jishou), respectively. Overall,
these results suggested that forestry land in the southwest and northwest was more lush
and the environment was more beautiful, and this trend was strengthened in the south.

The density of rangeland in the northern and central regions was much higher than
that of the southern region (Figure 4c). It presented a spatial pattern of four high-value
centers surrounding a low-value center in the northern and central regions. At the same
time, the rangeland density in the northeast of Yongshun and at the junction of Baojing
and Huayuan was much higher than other areas. In addition, the spatial distribution of
rangeland density in Xiangxi changed little from 2000 to 2018.

The density of fishery land in Xiangxi had a characteristic of higher in the south and
lower in the north (Figure 4d). The high-value centers were mainly located in the northern
area of Huayuan, the junction of Jishou and Luxi, and the eastern area of Luxi. During the
study period, it showed a trend of stability in the north, and downward in the center and
south. Specifically, it decreased most dramatically in the northern area of Huayuan and the
junction of Jishou and Luxi; the bulk of this change was because of built-up area expansion
which was more prevalent in the south.
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3.2.2. Main Change Trend Was Loss, and Change Had Spatial Heterogeneity

The gain of arable land was concentrated in the north, and Yongshun had the highest
positive gain (62.95 km2) (Figure 5a, Table 5). Nevertheless, the loss was concentrated in the
south and north, and Yongshun also had the highest negative loss (75.17 km2) (Figure 5a,
Table 5). Arable land in all regions declined across the 18 years, and Jishou declined the
most (20.55 km2), while Huayuan declined the least (2.90 km2). Yongshun and Jishou were
the most frequently changing regions (consisting of 47.42% of total change), while Huayuan
and Longshan were the least frequently changing regions (only consisting of 8.8%) (Table 5).
In addition, the change rate (Na) and dynamic (Kd) in Jishou were also higher than other
areas. This showed that the problem of arable land occupation in Xiangxi could not be
ignored, especially in the administrative center (Jishou).
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The gain or loss of forestry land had spatial differences (Figure 5b, Table 5). The gain
was concentrated in the south, and Jishou had the highest positive gain (60.70 km2), while
Huayuan had the lowest (16.54 km2). The loss was more obvious in the north, and the
highest negative loss was in Yongshun (66.33 km2), while Huayuan the lowest (16.38 km2).
Forestry land in majority areas reduced, except for Huayuan and Jishou. Nearly 95% of
forestry land change occurred in Jishou, Luxi, Longshan, and Yongshun (Cimpor were 30.17%,
20.46%, 20.03%, and 23.01%, respectively). Na in Jishou was 10.27%, which was the fastest
growth rate, while Luxi had −4.54%, the most significant shrinkage. Kd in Jishou, Luxi,
Longshan, and Yongshun were also higher than other regions. Above all, forestry land in
most administrative units decreased, and the magnitude of the decline varied, which was
higher in north and south, and lower in the center.

The loss of rangeland was concentrated in the south, and the gain in the center
(Figure 5c). The gain and loss in Yongshun were 24.14 km2 and 22.28 km2, which were
highest gain and highest loss (Table 5), respectively. Since 2000, rangeland in most regions
decreased, except for Yongshun, Huayuan, and Guzhang. Furthermore, Guzhang and
Luxi exhibited larger change, with the highest gain in Guzhang (5.20 km2) and the highest
loss in Luxi (−8.32 km2). During the 18-year period, Guzhang and Luxi were the most
frequently changing areas, consisting of nearly 50% of total change, while Fenghuang was
the least, with only 1.65%. Guzhang had the fastest growth (Na is 3.11%), while Luxi had
fastest shrinkage (Na is −16.79%). In addition, Kd in Luxi and Guzhang were also much
higher than other regions. In short, the main trend of rangeland in Xiangxi was shrinkage,
and Luxi and Guzhang were the typical case of growth and shrinkage, respectively.

The gain and loss of fishery land varied across regions (Figure 5d). The gained areas
were sparsely distributed, Yongshun had the highest positive gain (2.23 km2), and Guzhang
the lowest (0.08 km2) (Figure 5a, Table 5). Nevertheless, the lost areas were concentrated
in the south, Huayuan had the highest negative loss (3.90 km2), and Guzhang the lowest
(0.45 km2). Since 2000, fishery land in most regions had shrunk, with the exception of
Yongshun. Jishou and Huayuan had the most significant shrinkage (3.01 km2 and 3.43 km2,
respectively). Likewise, the most frequent change of fishery land occurred in Huayuan and
Jishou, consisting of nearly 65% of total change. As for Na, most regions decreased by more
than 10%, and even more than 50% in some regions, indicating there were serious problems
of ponds and reservoirs’ occupation. Kd in Huayuan and Jishou were also much higher
than other regions. Overall, fishery land in Xiangxi had declined since 2000, with the most
obvious decline in Jishou and Huayuan.
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Table 5. Statistics of each agricultural land use change for 2000–2018.

Arable Land

Name Gain (km2) Loss (km2) Net Change (km2) Cimpor (%) Na (%) Kd (%)

Yongshun 62.95 75.17 −12.22 17.53 −1.43 0.38
Baojing 33.22 40.51 −7.29 10.76 −1.98 0.23
Huayuan 34.28 37.18 −2.90 4.40 −1.06 0.10
Jishou 17.37 37.91 −20.54 29.89 −11.96 0.65

Guzhang 20.44 26.40 −5.96 8.59 −3.31 0.19
Luxi 23.61 31.40 −7.79 11.21 −3.14 0.24

Longshan 46.06 49.03 −2.97 4.40 −0.49 0.10
Fenghuang 31.09 40.09 −9.01 13.23 −2.05 0.29

Forestry land

Name Gain (km2) Loss (km2) Net change (km2) Cimpor (%) Na (%) Kd (%)

Yongshun 34.92 66.33 −31.41 23.01 −3.51 0.71
Baojing 19.45 19.73 −0.28 0.19 −0.06 0.01
Huayuan 16.54 16.38 0.16 0.02 0.01 0.00
Jishou 60.70 19.52 41.18 30.17 10.27 0.93

Guzhang 17.22 23.18 −5.96 4.33 −1.26 0.13
Luxi 20.40 48.38 −27.98 20.46 −4.54 0.63

Longshan 27.72 54.90 −27.18 20.03 −3.35 0.62
Fenghuang 24.13 26.58 −2.45 1.78 −0.47 0.05

Rangeland

Name Gain (km2) Loss (km2) Net change (km2) Cimpor (%) Na (%) Kd (%)

Yongshun 24.14 22.28 1.87 6.24 0.39 0.13
Baojing 9.39 12.75 −3.36 12.99 −2.19 0.27
Huayuan 10.70 8.07 2.63 9.76 2.33 0.20
Jishou 5.33 7.77 −2.44 9.34 −3.01 0.19

Guzhang 16.57 11.37 5.20 19.40 3.11 0.40
Luxi 2.23 10.55 −8.32 30.79 −16.79 0.64

Longshan 12.27 14.89 −2.62 9.83 −0.93 0.20
Fenghuang 0.42 0.86 −0.44 1.65 −6.93 0.03

Fishery land

Name Gain (km2) Loss (km2) Net change (km2) Cimpor (%) Na (%) Kd (%)

Yongshun 2.23 2.08 0.15 1.50 2.19 0.41
Baojing 0.51 1.25 −0.74 7.97 −28.04 2.16
Huayuan 0.86 3.90 −3.04 34.35 −53.55 9.30
Jishou 0.29 3.66 −3.38 39.11 −72.97 10.59

Guzhang 0.08 0.45 −0.37 4.02 −55.60 1.09
Luxi 0.76 1.63 −0.88 10.02 −13.85 2.71

Longshan 0.46 0.74 −0.28 2.96 −10.80 0.80
Fenghuang 1.30 1.31 −0.01 0.07 −0.15 0.02

3.3. The Future Scenario of Agricultural Land Use in Xiangxi

The simulation accuracy of arable land, forestry land, rangeland, and fishery land are
95.95%, 96.54%, 96.85%, and 85.33%, respectively. At the same time, the overall accuracy
and the Kappa are 96.33% and 0.92, respectively. The above data show that the accuracy has
reached a high level, and the FLUS model has strong applicability in this study.

Agricultural land of Xiangxi in 2030 will maintain the existing spatial attributes
(Figure 6): arable land shows a northeast-southwest pattern; forestry land is mainly con-
centrated in the southeast; rangeland is more concentrated in north than the south; fishery
land is scattered in the whole area, and more in the south. That is roughly the same as 2000
and 2018.
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All types of agricultural land will decrease in 2030, and the extent of arable land has the
highest loss of 113.47 km2 as opposed to 2000, while fishery land has the lowest of 15.34 km2

(Table 6). However, fishery land will have the highest negative loss rate (−49.78%), and
rangeland the lowest negative loss rate (−1.86%). The above data shows that agricultural land
change is mainly composed of arable land and fishery land. The reason is that the area where
arable land and fishery land are located is more flat, with a larger number of population,
which is more susceptible to interference by human activities. However, the composition of
agricultural land was almost unchanged: forestry land had the largest proportion (49.97%),
followed by arable land and rangeland (35.03% and 14.81%, respectively), and fishery land
the smallest (0.19%). Overall, both of the area and proportion of agricultural land will
decline in 2030, with a loss of 241.34 km2 or 2.85% decrease from 2000.

Table 6. Statistics of agricultural land in Xiangxi in 2030.

Agricultural Land Arable Land Forestry Land Rangeland Fishery
Land Total

area (km2) 2877.52 4104.28 1216.37 15.47 8213.65
proportion (%) 35.03 49.97 14.81 0.19 100

net change (km2) −113.47 −89.47 −23.05 −15.34 −241.34
change rate (%) −3.79 −2.13 −1.86 −49.78 −2.85

Note: Both net change and change rate were obtained by comparing with 2000.

In summary, agricultural land in Xiangxi will be slightly occupied in 2030, but there
are certain differences in the amount and intensity of each agricultural land. Social and
economic development have led to higher demand for built-up more than agricultural
land, resulting in shrinkage of agricultural land, and expansion in construction land.
However, the Chinese government has issued strict protection policies of agricultural land,
which curb the disorderly construction expansion to a certain extent. Therefore, the slight
shrinkage of agricultural land in Xiangxi is in line with the objective law, under the current
socio-economic background and policy regulations.

4. Conclusions and Discussion
4.1. Conclusions

It was found that Xiangxi was dominated by agricultural land, but the total extent of
which decreased by about 56.89 km2 or 3.74% from 2000 to 2018. In terms of the composition,
nearly 50% of total extent was forestry land, reflecting great potential advantage of forestry
production in the study area. Since 2000, the area of each agricultural land reduced, with
the most obvious reduction in arable land.

The density of arable land in the study area showed a trend of lower in the southeast
and northwest, and higher in the middle, with shrinkage in most units, especially in the
administrative center. The density spatial pattern of forestry land was just the opposite of
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arable land and decreased in most regions, with more dramatic change in northwestern
and southwestern areas. The density of rangeland in the northern and central regions
was much higher than that of the southern regions; both trends of decrease and increase
coexisted, with the main trend being decrease. The density of fishery land was higher in
the north and lower in the south, with a trend of stability in the north and decrease in the
center and south.

In 2030, agricultural land in Xiangxi will almost maintain the existing spatial pattern,
and the extents of the arable land and fishery land have the highest loss of 113.47 km2

and the lowest loss of 15.34 km2 as opposed to 2000, respectively. The composition of
agricultural land will become nearly static, and both the area and proportion will decline in
2030, with a loss of 241.34 km2 or 2.85% decrease from 2000. However, the slight shrinkage
of the agricultural land in Xiangxi is in line with the objective law.

4.2. Discussion
4.2.1. Implications for Agricultural Land Use

In this study, we aimed to analyze the dynamic pattern of agricultural land use and
predict its future scenario in Xiangxi. Xiangxi is an important region of characteristic
agricultural products, with a large area and a high proportion of agricultural land. At
the same time, Xiangxi is also significantly affected by the policies of new urbanization,
beautiful village construction, and village revitalization. In terms of the analysis results,
agricultural land in Xiangxi has been occupied, with the most prevalent occupation in Jishou
(the administrative center). What is more, the problem of its occupation is consistent with that
in eastern China [40,41] and Hunan Province [42], but not as obvious as that in Changsha [43].

As far as the simulation results, the distribution pattern and change characteristics
of the agricultural land in Xiangxi are generally in line with the requirements of socio-
economic development and agricultural land protection policies. However, the problem
of agricultural land occupation will also exist in the future, which is similar to some other
regions of the world [44–46]. In addition, the occupation of arable land and fishery land is
more serious.

Therefore, it is necessary to strengthen the scientific management and rational utiliza-
tion of agricultural land, with emphasis on arable land and fishery land in the south, especially
the administrative center, to minimize the impact of the construction land expansion [47,48].

4.2.2. Contribution of This Study

Compared with existing studies [1,2], a scientific, systematic, and reasonable method-
ology has been proposed. First, based on the existing research and land use data, the
agricultural land classification system is constructed. Second, GIS spatial analysis methods,
nuclear density analysis, and the indexes of change importance, change area, change rate,
and dynamic are used to explore the distribution pattern and the evolution characteristics
of agricultural land in Xiangxi from 2000 to 2018. It realizes the long time and fine evalua-
tion of agricultural land use change, and can provide support for rural land planning and
reference for research on similar topics.

Gray prediction model and GeoSoS-FLUS model were used to simulate agricultural
land in Xiangxi in 2030. The simulation process has not only considered agricultural land
change since 2000, but also taken into account the key driving factors. The predicted results
are very similar to the actual agricultural land use, indicating that the combination of the
two models has good applicability and feasibility. This research has enriched the theory
and methods of land use change and its simulation.

4.2.3. Research Prospect

Nevertheless, we have not taken into account the adjustment of development strategies
and the changes of their focus and direction, and we did not carry out the simulation under
multiple scenarios. Therefore, in the future, we will adjust and modify the parameters,
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and explore agricultural land use under different conditions to find the best solution of
scientific planning and rational management for agricultural land.
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