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Abstract: Cadmium (Cd) pollution in a soil–rice system is closely related to widely concerning issues,
such as food security and health risk due to exposure to heavy metals. Therefore, modeling the
Cd content in a soil–rice system and identifying related controls could provide critical information
for ensuring food security and reducing related health risks. To archive this goal, in this study, we
collected 217 pairs of soil–rice samples from three subareas in Zhejiang Province in the Yangtze
River Delta of China. All soil–rice samples were air-dried and conducted for chemical analysis.
The Pearson’s correlation coefficient, ANOVA, co-occurrence network, multiple regression model,
and nonlinear principal component analysis were then used to predict the Cd content in rice and
identify potential controls for the accumulation of Cd in rice. Our results indicate that although
the mean total concentration of Cd in soil samples was higher than that of the background value
in Zhejiang Province, the mean concentration of Cd in rice was higher than that of the national
regulation value. Furthermore, a significant difference was detected for Cd content in rice planted
in different soil groups derived from different parental materials. In addition, soil organic matter
and total Cd in the soil are essential factors for predicting Cd concentrations in rice. Additionally,
specific dominant factors resulting in Cd accumulation in rice planted at different subareas were
identified via nonlinear principal component analysis. Our study provides new insights and essential
implications for policymakers to formulate specific prevention and control strategies for Cd pollution
and related health risks.

Keywords: cadmium; soil–rice system; co-occurrence network; nonlinear principal component
analysis; potential controls; Zhejiang Province

1. Introduction

In the last several decades, with the advancement of industrialization and urbanization,
soil heavy metal pollution has become a hot and widely discussed issue globally [1–6]. An
increasing concentration of heavy metals has entered the soil via atmospheric deposition,
wastewater irrigation, and solid waste landfill sourced from anthropogenic activities, such
as industry waste discharge, traffic emission, and application of chemical fertilizers and
pesticides [7–11]. As a result, crops, such as rice, growing in contaminated soils, can absorb
heavy metals in the soil, which could pose a significant health threat to the human body
through the food chain.
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Soil heavy metal pollution comprises characteristics including high mobility, easy
accumulation, and strong toxicity. The per capita rice consumption in China was about
143 kg in 2019. However, Dudka et al. [12] reported that more than 50% of the rice
growing was at risk of heavy metal pollution. Chen et al. [13] also revealed that the annual
reduction in rice production due to heavy metal pollution was as high as 10 million tons in
China. Among these pollutants, cadmium (Cd) is currently the most polluting heavy metal
element in China, as revealed by the national survey [14]. Cd can enter rice roots through
the epidermis and concentrate in the tissues of the rice plant, after which the human body
can ingest Cd during the consumption of the contaminated rice [15–17]. Additionally, Cd
can accumulate in the human body through skin contact, food-chain bioaccumulation,
inhalation, and so on [18–20]. In addition, long-term exposure to Cd can cause severe
and damaging effects on the human body, such as lung cancer, bone fractures, and kidney
dysfunction [21–23]. A significant correlation was observed between the exchangeable state
and available state of heavy metals [24], as the exchangeable state reflects the available
form of heavy metals. Therefore, the available Cd content in soil samples has frequently
been estimated using the exchangeable Cd content in soil [25]. Therefore, analyzing the
pollution status and exploring the correlation between Cd pollution and the soil–rice system
is of great significance to ensure soil environmental quality and food safety, which has
attracted increasing attention from researchers in different disciplines, such as soil science,
agricultural resources and environment, and ecological science [6,26–28].

Since the soil–rice ecosystem is an open system comprising the internal environment,
external environment, and system interface environment, including those having natural
characteristics and the imprint of manufacturing activities, Cd pollution has been closely re-
lated to the regional soil geochemical background. The natural background value, therefore,
has a great effect on the spatial pattern of pollutant distribution in the soil [9,29].

Therefore, the study area, Zhejiang Province in the Yangtze River Delta, was selected
for this study. Here, 217 pairs of soil–rice samples were collected from three subareas in
Zhejiang Province to construct a model for predicting Cd in rice using auxiliary variables
and identify related controls for managing Cd accumulation in rice. The obtained results
are expected to provide scientific implications and essential references for controlling Cd
pollution in the soil–rice system, thereby ensuring food security.

2. Materials and Methods
2.1. Study Area

Study areas were selected from the west, southwest, and north of Zhejiang Province,
which is located at the south wing of the Yangtze River Delta (121◦3′ to 122◦8′ E, 29◦24′

to 30◦4′ N). The three rice-growing areas (Sites A, B, and C) (Figure 1) selected were dis-
tributed in the plains, low hills, and mountains, respectively. Differences in the geological
backgrounds of the soils in the three areas were observed. Although the soil parent materi-
als (PmT) in Site A comprised high-silicon, high-aluminum, and potassium–sodium-rich
rocks, mainly derived from metamorphic rocks, the primary rocks were mostly feldspar
rocks. Furthermore, the geological age of the PmT was mostly Quaternary and Jurassic.
Moreover, while the content of MgO in the surface soil was high, the range of CaO and
Na2O was low.

The PmT in Site B was mostly aluminum-rich, silicon-rich, and ironrich loose sedi-
ments, comprising mainly loose sediments. As observed, primary rocks were porphyritic
diorite and lamprophyre. Although the geological age periods of the parent materials were
mostly Quaternary Holocene, the bedrock was weathered, comprising residual diluvial
and alluvial lacustrine sediments. The soil in hilly areas was highly weathered and leached;
a large amount of its salt base was leached. Additionally, the soil maturity in the plain area
was high, as most of its salt base was also leached. Therefore, the contents of CaO, MgO,
and Na2O in the topsoil were low, showing a relatively low background area.
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Figure 1. A map showing the study areas (A, B, and C means three different rice-growing areas
where the sampling work was conducted).

The PmT in Site C were mostly silicon-rich, Al-rich, Fe-rich, and potassium-rich rocks,
mainly comprising sedimentary rocks, primarily limestone, shale, and granite, formed
in the Cambrian and Ordovician. As observed, average values of Ag, As, Ca, Cd, Na, S,
and other elements, which existed as weathering products of the carbonate rocks at the
study area, were higher than in other regions. Contents of Cd, Pb, Al, Cl, K, Na, CaO, and
Na2O in weathering products of granite were significantly higher as well, showing a high
background area [30].

2.2. Samples Collection and Analysis

From the three study areas, 217 soil surface (0–20 cm) samples were collected in 2013
based on the grid, with a size of 3000 m, including 94 soil samples from Site A, 106 soil
samples from Site B, and 17 soil samples from Site C. Each soil sample was composited with
five subsamples collected in the buffer zone with a radius of 5 m and then were mixed to
compose a representative soil sample. There were 217 corresponding rice samples collected
at the same locations as the soil samples during the harvest season. The sampling locations
and elevation (Ele) were accurately recorded based on a differential global positioning
system (GPS).

The soil surface sample was air-dried and ground to pass through a nylon sieve with a
2-mm pore diameter during data collection. Then, some soil samples were ground to pass
through 100 meshes before laboratory chemical analysis. Soil pH (pH) was measured in
water at a soil/solution ratio of 1:2.5 (m/v) using a pHS-3C digital pH meter (Shanghai REX
Sensor Technology Co., Ltd., Shanghai, China) following the national standard of China
(NY/T1377-2007). Total Cd in the soils (CdT) and rice (CdN) were determined from digested
samples (HF–HNO3–HClO4) using inductively coupled plasma mass spectrometry (ICP-
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MS, Agilent 7500a, Santa Clara, CA, USA) [9]. Moreover, while the soil-available Cd (CdA)
was determined using the CaCl2 solution method, the exchangeable state was extracted
using the continuous extraction method (GB/T23739-2009). A significant correlation was
observed between the exchangeable state and available state of heavy metals [24], as the
exchangeable state reflects the available form of heavy metals. Therefore, the available Cd
content in soil samples was frequently estimated using the exchangeable Cd content in
soil [25].

All rice samples were oven-dried at 105 ◦C for one hour and then dried at 70 ◦C until
a constant weight was reached. The rice samples were then comminuted using a pulverizer
until the powder passed through a 100-mesh nylon sieve. This material was then stored
in closed polyethylene bags for further analysis. The specific sample preparation method
was adopted by national standards (NY/T 398-2000). The content of heavy metals in rice
samples obtained was determined via inductively coupled plasma mass spectrometry
(GB 5009.268-2016).

Additionally, pH, PmT, soil type (ST), soil cation exchange capacity (CEC), soil bulk
density (BD), and soil organic matter (SOM) were selected as covariate data of soil environ-
ments. The quantity of irrigation water (IrW), pesticide (Pes), and fertilizer (Fer), including
the density of enterprise (EnP) and elevation (Ele), were also selected as environmental
variables for relevant research and analysis.

In addition, PmT information was sourced from Zhejiang Soil (National Soil Survey
Office, 1995). The ST was taken from the second national soil survey in China (National
soil survey office, 1998). The CEC data was provided by the China Soil Data Set (v1.1). The
BD data were collected from the global soil grid in this study. The SOM data were from
our previous study [1]. The EnP data were from the list of key monitoring enterprises of
soil environment published by the industrial and commercial departments in 2017, the
list of enterprises involved in heavy metal industries in 2018, and the list of key pollutant
discharge units in Zhejiang Province in 2019. Information regarding IrW, Pes, and Fer were
provided by the Zhejiang Statistical Yearbook of 2013. More details regarding the sampling
and samples pretreatment were provided in our previous article [1].

2.3. Data Analysis
2.3.1. Correlation Analysis of Heavy Metal Content in Soil–Rice Systems

The Pearson’s correlation coefficient was used to calculate the correlation between Cd
in the soil and rice samples. The formula used was as follows:

ρX,Y =
cov(X, Y)
σXσY

=
E(XY)−E(X)E(Y)√

E
(

X2
)
−E2(X)

√
E(Y2)−E2(Y)

(1)

where ρX,Y is the Pearson’s correlation coefficient, which varied between −1 and 1. While
the absolute value of the correlation coefficient represents the correlation between the two
variables and the positive coefficient represents the positive correlation, the negative num-
ber represents the negative correlation. Additionally, cov(X, Y) represents the covariance
between two variables, E(X) and E(Y) represent the expectations for X and Y variables, and
σX and σY indicate the variances of X and Y, respectively. In addition, the first-order and
second-order partial correlation coefficients were used to conduct relevant research and
analysis, and related details are provided in the Support Information.

2.3.2. Quantification of Qualitative Variables

The soil environment, including external and internal environmental variables of rice
samples, affect the CdN. These variables include quantitative factors, such as CdT, CdA,
pH, SOM, and qualitative variables, comprising ST and PmT. All these variables have an
important influence on the accumulation of Cd content in rice [31,32].

This study included three qualitative variables: soil texture, ST, and PmT. Conversely,
12 quantitative indices were considered, including CdT, pH, CdA, SOM, CEC, Ele, BD, EnP,
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IrW, Pes, Fer, and clay percentage. The qualitative variables were quantified through the
following formula:

C(x i,k, yj,k) = m(k) + r(x i,k, yj,k) (2)

where C(x i,k, yj,k) represents the content of Cd in rice at a location (x i, yj) planted in soil,
which belongs to the kth parental material; m(k) represents the average Cd content of rice
planted in the kth parental material, which can also reflect the variation in Cd content
of rice planted in different parental materials. Alternatively, r(x i,k, yj,k) is the difference
between the averaged Cd content of rice planted at the kth parental material and rice
planted at a site (x i, yj), which reflects the invariance of Cd contents in rice planted in soil
belonging to the same kind of parental material. Based on these parameters, all qualitative
and quantitative variables were used for further analysis.

In this study, a co-occurrence network [33] was constructed to analyze the correlation
between the independent and dependent variables. The nodes represent the independent
variables such as pH, CEC, BD, SOM, Pes, Fer, IrW, EnP, Ele, CdT, and CdA and dependent
variables such as CdN.

2.3.3. The Multiple Regression Model

The functional relationship between multiple independent and dependent variables
was explored using mathematical statistics based on the combination of the existing empir-
ical models and data. Ignoring the interaction between independent variables, the multiple
regression models were established according to the relationship between the dependent
variable Y and the respective variable Xi. Then, we overlayed each mathematical model
to develop a new multivariate nonlinear regression equation to construct the evaluation
index system better.

The log transformation was conducted on the SOM, CdT, CEC, CdA, BD, and EnP
data. The Pes, Fer, and Irw were then integrated as a new variable named the outside input
(OuI). Furthermore, we constructed a multiple regression model to predict Cd content in
rice using other variables.

2.3.4. Nonlinear Principal Component Analysis

With conventional principal component analysis (PCA), both the covariance matrix
and correlation coefficient matrix are transformed linearly, reflecting the linear correlation
between different variables but not the nonlinear correlation.

Hence, Ye and Yang [34] previously proposed a nonlinear PCA to fill this gap, which
combined the main direction information with peripheral information and imposed evalu-
ation punishments according to the distance between the individual and main directions.
Hence, suppose k =[k1, k2, . . . , ki]n×i is the initial matrix composed of n individuals and i
attributes to be evaluated, transformation into a standardized matrix using standardized
formula K = [K1, K2, . . . , Ki]n×i becomes possible:

Ki =
ki −minki

maxki −minki
(i = 1, 2, . . . , 13) (3)

where maxki is the maximum value of ki in each column and minki takes a value close
to the minimum value of ki. After the standardization of variables, PCA was conducted
on the standard variable lnK. The number of principal components (a) were determined
according to the principle that the eigenvalue was greater than 1 or the cumulative variance
contribution rate exceeded 80%. The principal component Pj was then calculated according
to the load matrix in the following manner:

lij= eij/
√

λij (4)

Pj= lijlnKi(i = 1, 2, . . . , 13, j = 1, 2, . . . , a) (5)
where, eij represents the eigenvector of the variable i in the principal component j, and λj
represents the eigenvalues of the principal component j. The final principal component
factor should be an index of results obtained from the weighted combination.
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2.3.5. Data Analysis

Summary statistical analysis, Shapiro–Wilk test, and correlation analysis were con-
ducted in RStudio 1.1.383 [35]. One-way ANOVA was also analyzed in RStudio 1.1.383 [35]
to explore the indigenous effect of qualitative indicators on CdT and CdN. The multiple
regression model and nonlinear principal component analysis were processed in SPSS
Statistics 24. The site map was edited in ArcGIS 10.7 (ESRI, Redlands, CA, USA).

3. Results and Discussion
3.1. Summarized Statistics of Cd Content in the Soil–Rice System

The descriptive statistics showing the content of heavy metals in soil–rice systems are
presented in Table 1 and Figure S1. As observed, the averaged CdT in Sites A, B, and C
were 1.50, 0.49, and 0.68 mg kg−1, respectively, which were higher than the background
value of Cd (0.07 mg kg−1) in the soil in Zhejiang Province [9]. Correspondingly, the mean
of CdA in Sites A, B, and C was 0.26, 0.07, and 0.18 mg kg−1, respectively. The mean CdN
in Sites A, B, and C was 0.83, 0.22, and 0.25 mg kg−1, respectively, which exceeded the
national regulation value (0.20 mg kg−1) [36]. Therefore, these results highlight the urgency
of identifying potential Cd controls in rice and taking measures to control Cd pollution in
the soil–rice system.

Table 1. Descriptive statistics of Cd content in soil and rice.

Variables Site n Mean
mg kg−1

Min
mg kg−1

Max
mg kg−1

SD
mg kg−1

CV
% Skewness Kurtosis Approximate

Shapiro–Wilk

CdT
A 94 1.50 0.21 12.90 1.86 124 3.65 17.02 Non-normal
B 106 0.49 0.13 8.59 1.06 218 6.17 41.49 Normal
C 17 0.68 0.21 3.50 0.79 121 3.21 11.22 Normal

CdA
A 94 0.26 0.00 3.13 0.47 181 3.94 18.65 Non-normal
B 106 0.07 0.00 1.33 0.18 257 6.34 41.88 Normal
C 17 0.18 0.02 1.05 0.24 140 3.46 12.84 Normal

CdN
A 94 0.83 0.03 6.76 1.03 123 2.74 11.02 Non-normal
B 106 0.22 0.02 2.24 0.31 142 3.66 17.50 Normal
C 17 0.25 0.02 1.22 0.32 120 2.08 4.44 Normal

Note: SD means standard deviation and CV refers to the coefficient of variation (%). Significance level of
Approximate Shapiro–Wilk test is 0.05.

The averaged CdT and CdN collected from Site A was significantly higher than that
collected from Sites B and C. The skewness and kurtosis coefficient of Cd content in all
three sites were high, indicating that the data symmetry was unsatisfied (Table 1, Figure 2).
Nevertheless, more extreme values than the mean were observed. In addition, the data
transformed by Log were conducted by the approximate Shapiro–Wilk test.
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Figure 2. Correlation between Cd content in a soil–rice system (significance codes, ***: p < 0.001,
*: p ≤ 0.05).

3.2. Correlation Analysis of Cd Content in a Soil–Rice System

Our results indicate a significant and robust correlation among CdT, CdA, and CdN.
The Pearson’s correlation among CdT, including CdA and CdN, is shown in Figure 3. The
correlation between CdA and CdT was more substantial than that between CdA and CdN,
consistent with previous results [37–39].
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Figure 3. A co-occurrence network showing quantitative factors (note: CdT means total content of
Cd in the soil, CdN means the content of Cd in rice, CdA means available Cd in soil, pH means soil
pH, SOM means soil organic matter, CEC means soil cation exchange capacity, Ele means elevation,
BD means bulk density, EnP means the density of enterprise, IrW means irrigation water, Pes means
the amount of pesticide applied, and Fer means the amount of fertilizer applied).
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3.3. Identifying the Main Controls of Cd in Soil and Rice via Multivariate Statistical Analysis

Variance analysis was used to test the significant differences in CdN planted in soils
with different soil textures, ST, and PmT in the study area. As listed in Table 2, significant
differences were detected for soil and rice Cd contents in different ST and PmT (p < 0.05).
Meanwhile, Cd was not significantly different in soil and rice samples collected from the
soil with different soil textures (p > 0.05). The physical and chemical soil properties are
largely dependent on soil types, thus soil types are closely related to the transfer of Cd in a
soil–rice system. Meanwhile, the PmT represents the types of rocks the soil is derived from,
which can also greatly affect the physical and chemical soil properties [40]. Therefore, the ST
and PmT were listed as potential controls for CdN accumulation during further analysis.

Table 2. ANOVA analysis for testing the significance and effects of three qualitative variables on the
variance of cadmium in rice.

Qualitative
Variable

Soil Texture Soil Type Soil Parent Material

Soil Cd Rice Cd Soil Cd Rice Cd Soil Cd Rice Cd

P 0.931 0.968 0.007 0.000 0.067 0.004
Note: Significance level: 0.05.

After selecting qualitative indicators (Table 3), quantitative variables were subse-
quently screened based on the correlation between independent (quantitative variables)
and dependent variables (CdN). As shown in Figure 3, the lines represent the relation-
ship between variables with a correlation coefficient greater than 0.5. While the solid line
represents a positive correlation, the dashed line indicates a negative correlation. Our
results also show that although the CdN only had a positive and direct relationship with
CdT and CdA, CdT and CdA were closely related to other factors, such as Ele, Fer, Pes,
IrW, pH, and CEC. Thus, these variables can indirectly affect the accumulation of CdN
by affecting the accumulation of CdT and CdA. For example, pH is closely related to the
Cd phytoavailability. As suggested by Zhao et al. [41], liming of acidic soils should be
implemented to reduce Cd phytoavailability, especially in the areas with a high risk of Cd
exceedance. In terms of CEC, high CEC could significantly slow down Cd uptake by rice
from the soil [42], and the CEC can also allow the minerals in soil to absorb Cd ions from
soil solutions through ion-exchange processes [43].

Table 3. Parameters accounting for the multiple regression model.

Coefficients Standard Error t Stat p Value

Intercept 2.771 2.153 1.287 0.199
ST 0.512 0.086 5.955 0.000

log10 (SOM) −0.721 0.239 −3.013 0.003
log10 (CdT) 0.378 0.205 1.839 0.047

PmT −0.159 0.086 −1.858 0.065
Ele 0.001 0.001 1.621 0.107
OuI −0.787 0.646 −1.219 0.224

log10 (CEC) 0.275 0.299 0.920 0.359
pH −0.054 0.117 −0.460 0.646

log10 (CdA) 0.083 0.191 0.434 0.665
log10 (BD) 0.990 4.374 0.226 0.821

EnP −0.010 0.068 −0.146 0.884
Note: ST means soil type, SOM means soil organic matter, CdT means total soil Cd, PmT means parent material
type, Ele means Elevation, OuI means outside input (pesticide, fertilizer, and irrigation water), CEC means
cation exchange capacity, pH means soil pH, CdA means available soil Cd, BD means bulk density, and EnP
means enterprise.

Furthermore, we constructed a multiple regression model to predict CdN using other
variables. As observed, the R2 of the multiple regression model was 0.68, with a p value
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of 1.68 × 10−47. These results, therefore, represent that our model can explain most of the
variances and make reliable predictions of CdN.

Fitted parameters for the multiple regression model are presented in Table 3. As
listed in Table 3, the CdN showed a significant relationship with soil type, SOM, and
the CdT, with a p value < 0.05 (Table 3). This finding revealed that soil type, SOM, and
the CdT were potential dominators for CdN accumulation, consistent with previously
reported results [1,44,45]. In addition, the SOM could supply organic chemicals that would
enhance the availability of Cd to plants [1], thereby leading to more CdN accumulation.
Additionally, Zeng et al. [45] observed that SOM affected the ability of soils to retain Cd in
an exchangeable state. A previous study also reported that the contents of Cd absorbed in
soil constituents declined with a decrease in SOM [46]. In contrast, since CdT is the major
source of CdN, most CdN is absorbed from the soil it was planted in, which explains the
strong relationship between CdN and CdT. Alternatively, the ST can indirectly affect CdT
accumulation through other soil properties.

However, other factors, especially pH and CdA, showed no significant relationship
with CdN. This result contradicts our expectations but is consistent with the results reported
by Hu et al. [1] and Xie et al. [40]. However, the research organized by Xiao et al. [47],
Liu et al. [48], and Zhang et al. [49] revealed that pH and CdA show a significant relation-
ship with CdN. Thus, further surveys and studies are necessary to make this issue more
clear in our future work.

3.4. Identifying Main Controls of Cd in Rice via Nonlinear PCA

In this study, strong collinearity was detected among the variables used. Using the
multiple regression model, we identified ST, SOM, and CdT as potential controls of Cd in
rice. However, we did not consider the collinearity of different variables in the multiple
regression model, negatively affecting the model’s performance and feasibility. Therefore,
to make up for this shortcoming, we used the nonlinear PCA to confirm the potential
controls of CdN.

Four main components were extracted using logarithmic PCA (Table 4), which explains
80.14% of the total variance. The first principal component (PC1) was most loaded through
elevation, EnP, IrW, and Fer (Table 5). However, the second principal component (PC2)
mainly consisted of ST, PmT, and Pes. The third principal component (PC3) mainly included
CdT and CdA. The fourth principal component (PC4) mainly included pH, SOM, CEC,
and BD. Based on these results, we classified these four principal components under the
following four factors: anthropogenic action (PC1), geology (PC2), Cd in soil (PC3), and
soil property (PC4).

Table 4. Eigenvalue and variance contribution rates obtained from nonlinear principal component
analysis.

PC Eigenvalue Variance % Cumulative Contribution Rate%

1 4.426 34.049 34.049
2 2.713 20.870 54.919
3 2.130 16.381 71.300
4 1.150 8.844 80.144

Subsequently, these four factors were inputted as an independent variable to predict
Cd in rice using a stepwise regression method. After which, dominant controls of Cd in rice
from different survey areas were identified on the basis of a 95% confidence double-tail test.

Our results reveal that the main controls of Cd in rice from Site A were Cd in soil and
geology; the main controls of Cd in rice from Site B were Cd in soil and anthropogenic
action, whereas the main controls of Cd in rice from Site C were Cd in soil and soil property.
Thus, CdT was identified as the dominant factor affecting CdN from all three survey areas in
this study, which also agreed with our expectations and numerous existing studies [50–52].
The geology is identified as another control of CdN from Site A. This may be attributed to
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the complex regional geological environment and high geological background value of Cd
in Site A. Anthropogenic action was another control of CdN from Site B. Site B was located
in a flood plain comprising important agricultural production bases’ industrial enterprises.
Thus, extensive industrial and agricultural activities were expected in this region. A large
quantity of fertilizer and pesticide was applied to the farmland, accompanied by the
emission of a large amount of wastewater and solid waste, leading to Cd accumulation
in the soil–rice system. Therefore, this soil property was confirmed as one of the two
controls of CdN from Site C. Although mountainous regions and an underdeveloped
economy dominated Site C, anthropogenic disturbances still have no negligible effects on
the ecological environment. Nevertheless, natural factors dominated the CdN from Site C,
including CdT and soil property.

Table 5. A rotation matrix table showing nonlinear principal component analysis results.

Factor Load after Rotation

PC1 PC2 PC3 PC4

Zscore (CdT) 0.117 0.211 0.322 0.214
Zscore (pH) −0.037 −0.003 0.008 0.347

Zscore (CdA) 0.119 0.244 −0.408 −0.004
Zscore (SOM) −0.118 0.067 −0.057 0.546
Zscore (CEC) −0.159 0.105 0.093 0.400
Zscore (Ele) 0.162 −0.164 −0.180 0.177
Zscore (BD) −0.130 0.143 0.154 −0.360
Zscore (EnP) 0.163 −0.106 −0.030 0.283
Zscore (IrW) 0.189 −0.053 0.226 −0.003
Zscore (Pes) −0.034 −0.102 −0.093 0.055
Zscore (Fer) 0.190 −0.056 0.220 −0.002
Zscore (ST) 0.099 0.294 −0.046 −0.036

Zscore (PmT) 0.070 0.296 −0.143 0.015

3.5. Recommendations

Several strategies are recommended to reduce the Cd content in the soil–rice system,
especially rice. Firstly, it is worth more effort to accurately identify the sources of Cd in
the soil–rice system and then stop the further accumulation of Cd in the soil–rice system.
Secondly, in areas with a high background value of Cd, the food crops should be avoided,
and other crops such as flowers, landscape seeding, and cotton are recommended to be
planted. Thirdly, phytoavailability of Cd, instead of the total concentration of Cd, is the
focus of risk management regarding soil contamination with Cd. Thus, we should pay more
attention to manipulating the Cd phytoavailability. Finally, in areas with a relatively high
risk of Cd pollution, breeding rice cultivars with low accumulation is suggested, which is
more readily acceptable for farmers.

4. Conclusions

In conclusion, our results reveal that the average total Cd content in soil samples
collected from the study area was higher than the background value in Zhejiang Province.
Although the mean concentration of Cd in rice was higher than the national regulation
value, a significant difference was observed for Cd content in rice planted in soils with
different STs and PmT. This study also observed that ST, SOM, and CdT were the most
critical factors for predicting CdN using a multiple regression model. Our results detect
specific controls of Cd in rice from different regions. As observed, natural and anthro-
pogenic factors play different roles in heavy metal accumulation in the soil–rice ecosystem
in various sites. CdT was the same main control of CdN in three areas. Creating specific
measures to control and reduce heavy metals in different regions’ soil–rice ecosystem was
highlighted, thereby enhancing further surveying in the other areas. Finally, we also pro-
vide specific suggestions for reducing the accumulation of Cd in the soil–rice system. Our
study revealed the heterogeneous spatial dominators accounting for CdN accumulation
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and enhanced the necessity to conduct surveys on other areas to propose more specific and
efficient measures for controlling heavy metal pollution, reducing related health risks posed
to humans. The main findings of this study are also expected to enhance our knowledge
of Cd accumulation in the soil–rice system, contributing to food safety and reducing the
human health risk of consuming Cd-contaminated rice.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land11050617/s1, Figure S1: (a) Boxplot of total Cd content in
soil. (b) Boxplot of available Cd content in soil. (c) Boxplot of Cd content in rice.

Author Contributions: Conceptualization, B.H. and T.F.; methodology, T.F., Y.Z. and X.C.; software,
T.F., Y.Z. and H.G.; formal analysis, T.F. and H.G.; resources, B.H. and H.L.; data curation, Y.Z., T.F.
and X.C.; writing—original draft preparation, Y.Z., T.F. and X.C.; writing—review and editing, Y.Z.
and X.C.; supervision, B.H. and H.L.; project administration, B.H.; funding acquisition, B.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by the Key Research and Development Program of Zhejiang
Province (2020C03011), the Open Foundation of Key Laboratory of Agricultural Remote Sensing
and Information System of Zhejiang Province (No. ZJRS-2022001), and Ten-thousand Talents Plan of
Zhejiang Province (2019R52004).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was financially supported by the Key Research and Development
Program of Zhejiang Province (2020C03011), the Open Foundation of Key Laboratory of Agricultural
Remote Sensing and Information System of Zhejiang Province (No. ZJRS-2022001), and Ten-thousand
Talents Plan of Zhejiang Province (2019R52004).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hu, B.F.; Xue, J.; Zhou, Y.; Shao, S.; Fu, Z.; Li, Y.; Chen, S.C.; Lin, Q.; Shi, Z. Modelling bioaccumulation of heavy metals in

soil-crop ecosystems and identifying its controlling factors using machine learning. Environ. Pollut. 2020, 262, 114308. [CrossRef]
[PubMed]

2. Jia, X.L.; Fu, T.T.; Hu, B.F.; Shi, Z.; Zhou, L.Q.; Zhu, Y.W. Identification of the potential risk areas for soil heavy metal pollution
based on the source-sink theory. J. Hazard. Mater. 2020, 393, 122424. [CrossRef] [PubMed]

3. Liu, J.; Liu, R.Z.; Yang, Z.F.; Kuikka, S. Quantifying and predicting ecological and human health risks for binary heavy metal
pollution accidents at the watershed scale using Bayesian Networks. Environ. Pollut. 2021, 269, 116125. [CrossRef] [PubMed]

4. Ogundele, L.T.; Oluwajana, O.A.; Ogunyele, A.C.; Inuyomi, S.O. Heavy metals, radionuclides activity and mineralogy of soil
samples from an artisanal gold mining site in Ile-Ife, Nigeria: Implications on human and environmental health. Environ. Earth
Sci. 2021, 80, 202. [CrossRef]

5. Sanaei, F.; Amin, M.M.; Alavijeh, Z.P.; Esfahani, R.A.; Sadeghi, M.; Bandarrig, N.S.; Fatehizadeh, A.; Taheri, E.; Rezakazemi, M.
Health risk assessment of potentially toxic elements intake via food crops consumption: Monte Carlo simulation-based proba-
bilistic and heavy metal pollution index. Environ. Sci. Pollut. Res. 2021, 28, 1479–1490. [CrossRef]

6. Sellami, S.; Zeghouan, O.; Dhahri, F.; Mechi, L.; Moussaoui, Y.; Kebabi, B. Assessment of heavy metal pollution in urban and
peri-urban soil of Setif city (High Plains, eastern Algeria). Environ. Monit. Assess. 2022, 194, 1–17. [CrossRef]

7. Chen, H.R.; Wang, L.; Hu, B.F.; Xu, J.M.; Liu, X.M. Potential driving forces and probabilistic health risks of heavy metal
accumulation in the soils from an e-waste area, southeast China. Chemosphere 2022, 289, 133182. [CrossRef]

8. De Silva, S.; Ball, A.S.; Indrapala, D.V.; Reichman, S.M. Review of the interactions between vehicular emitted potentially toxic
elements, roadside soils, and associated biota. Chemosphere 2021, 263, 128135. [CrossRef]

9. Hu, B.F.; Shao, S.; Ni, H.; Fu, Z.Y.; Hu, L.S.; Zhou, Y.; Min, X.X.; She, S.F.; Chen, S.C.; Huang, M.X.; et al. Current status, spatial
features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ. Pollut. 2020,
266, 114961. [CrossRef]

10. Xia, F.; Zhu, Y.W.; Hu, B.F.; Chen, X.Y.; Li, H.Y.; Shi, K.J.; Xu, L.C. Pollution Characteristics, Spatial Patterns, and Sources of Toxic
Elements in Soils from a Typical Industrial City of Eastern China. Land 2021, 10, 1126. [CrossRef]

11. Tang, M.; Lu, G.; Fan, B.; Xiang, W.; Bao, Z. Bioaccumulation and risk assessment of heavy metals in soil-crop systems in Liujiang
karst area, Southwestern China. Environ. Sci. Pollut. Res. 2021, 28, 9657–9669. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/land11050617/s1
https://www.mdpi.com/article/10.3390/land11050617/s1
http://doi.org/10.1016/j.envpol.2020.114308
http://www.ncbi.nlm.nih.gov/pubmed/32155557
http://doi.org/10.1016/j.jhazmat.2020.122424
http://www.ncbi.nlm.nih.gov/pubmed/32143165
http://doi.org/10.1016/j.envpol.2020.116125
http://www.ncbi.nlm.nih.gov/pubmed/33250289
http://doi.org/10.1007/s12665-021-09494-w
http://doi.org/10.1007/s11356-020-10450-7
http://doi.org/10.1007/s10661-022-09781-4
http://doi.org/10.1016/j.chemosphere.2021.133182
http://doi.org/10.1016/j.chemosphere.2020.128135
http://doi.org/10.1016/j.envpol.2020.114961
http://doi.org/10.3390/land10111126
http://doi.org/10.1007/s11356-020-11448-x
http://www.ncbi.nlm.nih.gov/pubmed/33151491


Land 2022, 11, 617 12 of 13

12. Dudka, S.; Piotrowska, M.; Terelak, H. Transfer of cadmium, lead, and zinc from industrially contaminated soil to crop plants: A
field study. Environ. Pollut. 1996, 94, 181–188. [CrossRef]

13. Chen, B.Y.; Wang, H.J.; Cao, T.H.; Liang, X.H.; Yang, J.; Ren, J. Spatio-temporal characteristics of heavy metal accumulation
in soil-rice cropping systems under different phosphate fertilizer concentrations. J. Agro Environ. Sci. 2010, 29, 2274–2280.
(In Chinese)

14. Ministry of Ecology and Environment of the People’s Republic of China. China Soil Pollution Survey Communique; MEEPRC:
Beijing, China, 2014. (In Chinese)

15. DalCorso, G.; Farinati, S.; Maistri, S.; Furini, A. How plants cope with cadmium: Staking all on metabolism and gene expression.
J. Integr. Plant. Biol. 2008, 50, 1268–1280. [CrossRef]

16. Qian, Y.Z.; Chen, C.; Zhang, Q.; Li, Y.; Chen, Z.J.; Li, M. Concentrations of cadmium, lead, mercury and arsenic in Chinese market
milled rice and associated population health risk. Food Control 2010, 21, 1757–1763. [CrossRef]

17. Ronzan, M.; Piacentini, D.; Fattorini, L.; Della Rovere, F.; Eiche, E.; Riemann, M.; Falasca, G. Cadmium and arsenic affect root
development in Oryza sativa L. negatively interacting with auxin. Environ. Exp. Bot. 2018, 151, 64–75. [CrossRef]

18. Giri, S.; Singh, A.K. Human health risk assessment due to dietary intake of heavy metals through rice in the mining areas of
Singhbhum Copper Belt, India. Environ. Sci. Pollut. Res. 2017, 24, 14945–14956. [CrossRef]

19. Sawut, R.; Kasim, N.; Maihemuti, B.; Hu, L.; Abliz, A.; Abdujappar, A.; Kurban, M. Pollution characteristics and health risk
assessment of heavy metals in the vegetable bases of northwest China. Sci. Total Environ. 2018, 642, 864–878. [CrossRef]
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