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Abstract: Land-cover change is a major cause of global ecosystem degradation, a severe threat to
sustainable development and human welfare. In mountainous regions that cross national political
boundaries, sensitive and fragile ecosystems are under complex disturbance pressures. Land-cover
change may further exacerbate ecological risks in these regions. However, few studies have assessed
the ecological risks in transboundary areas. This study focused on the Gandaki Basin (GRB), a
typical transboundary region in the Himalayas. Based on the dynamic change in land cover, the
landscape ecological risk index (ERI) model was constructed to assess the ecological risk in the
GRB, revealing the evolution characteristics and spatial correlation of such a risk during the period
1990–2020. The results showed that all land cover types in the GRB have changed over the last
30 years. The interconversion of cropland and forestland was a distinctive feature in all periods.
Overall, the medium and medium to low ecological risk level areas account for approximately 65%
of the study area. The areas of high ecological risk were mainly distributed in the high elevation
mountains of the northern Himalayas, while the low risk areas were located in the other mountains
and hills of Nepal. In addition, the ecological risk in the Gandaki basin has shown a fluctuating
trend of increasing over the past 30 years. However, there were different phases, with the order of
ecological risk being 2020 >2000 >2010 >1990. Ecological risks displayed positive spatial correlation
and aggregation characteristics across periods. The high–high risk clusters were primarily located in
the high and medium high ecological risk areas, while the low–low risk clusters were similar to low
risk levels region. The findings provided the reference for ecosystem conservation and landscape
management in transboundary areas.

Keywords: transboundary basin; ecological risk assessment; land cover; Himalayas

1. Introduction

Ecosystems are an essential part of the biosphere [1], providing not only services
including provisioning, regulation, culture and support for humans, but more crucially,
playing an irreplaceable role in maintaining the balance of the Earth’s living systems and
environment [2–4]. However, in recent decades, global multiple ecosystems have been
seriously degraded as a result of rapid population growth, exploitation of resources and
accelerated urbanization [5–8]. At present, as global climate change, species invasions and
environmental pollution intensify, ecosystems are under substantial pressure [9,10]. Land-
cover change is an integrated reflection of the interaction of natural and anthropogenic
factors in the ecosystem [11], which directly affects the ecosystem structure and function of
the region and is considered the most prevalent influence on ecosystem degradation [12].
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In the course of land-cover change, composite ecosystems coupled with socio-economic
and natural environments are threatened by human disturbances and complex biological
processes, raising many substantial ecological risks [13,14]. Therefore, it is imperative to
analyze land-cover change and assess the ecological risks associated with it.

Ecological risk represents the risk of stress on ecosystems and their components
from external disturbances, describing the probability of negative impacts on ecosystem
function and structure from anthropogenic activities or natural hazards [15]. It reflects
the ability of an ecosystem to maintain its self-stability under specific environmental
pressures [16]. Ecological risk assessment is an effective measure to detect and contain
ecosystem degradation. The assessment contributes to our understanding of the extent to
which anthropogenic activities and natural environmental changes are potentially harmful
to regional ecosystems [17]. Most of the early ecological risk assessments focused on the
environmental impacts of chemical contaminants or pollution events on ecosystems, mostly
at the scale of a single risk source or a single risk receptor [18,19]. With the advancement of
global change and ecological risk studies, landscape ecological risk assessment from the
perspective of land-cover change has become a mainstream of research [20]. Landscapes
are heterogeneous or patchwork spatial units made up of different ecosystem types and
are considered the appropriate scale for examining the impact of human activities on
the natural environment [21]. The associated changes in landscape patterns are closely
related to disturbances and ecological processes at different scales within ecosystems [22].
The landscape ecological risk index (ERI) combines multiple sources of risk generated by
natural or human disturbances [23]. It is mostly constructed on the basis of a landscape
pattern index to assess the various potential factors in the landscape mosaic and their
cumulative damage levels. Thus, the combination of land-cover change and the ERI is
widely applied. Related studies are currently concerned with wetlands [24,25], coastal
zones [26–28], river basins [29–31], protected areas [17,32], administrative districts [33–35]
and urban agglomerations [36,37]. However, few studies have focused on risk assessment
in transboundary regions.

Transboundary regions are areas near or that cross national political boundaries that
define countries and territories [38,39]. National political boundaries rarely coincide with
natural ecological boundaries [40]. However, cross-border landscapes often overlap with
biodiversity hotspots [38]. It is estimated that approximately one-third of all terrestrial
biodiversity hotspots cross national borders [41]. When ecological conservation policies
conflict with the administrative and political boundaries, the situation is further com-
plicated [42,43]. As globalization progresses, national borders and frontier areas can be
transformed into urban concentrations with dense cultural and commercial populations. In-
creased population, exploitation and trade lead to dramatic land-cover changes within and
beyond international borders, which exacerbate the negative impacts on ecosystems [44,45].
In addition, weak governance often affects remote border areas in environmentally hetero-
geneous regions with varying socio-economic levels, environmental acts and enforcement
capabilities [46]. These areas are more prone to habitat changes, species invasions, pollution
and the illegal adoption of natural resources, which may increase ecological risks in trans-
boundary areas [47]. Therefore, space–time changes of ecological risks in transboundary
areas and their assessment are urgently required.

The Gandaki river basin (GRB) in the central Himalaya is a typical transboundary
region, spanning China, Nepal and India, with one of the largest elevation differences in
the world [48]. In general, the GRB has complex and diverse landscape types, complete
ecosystem types and is a global biodiversity hotspot. Meanwhile, mountain ecosystems are
susceptible to climate change and human activities [49,50]. Land cover diversity and its
relationship with variable topography, climate and socio-demographic interactions are ex-
tremely vulnerable [51]. Moreover, poverty levels are high across the basin, socio-economic
indicators are low, and unsustainable disturbances are exacerbated with high population
growth rates [52]. Significant changes in land cover have occurred, with ecological prob-
lems of the overexploitation of natural resources, loss of critical ecosystem services and
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ecological degradation [53,54]. Furthermore, multi-national transboundary areas are often
not easily managed due to complex political situations, policies and cultural interactions,
which further exacerbate the potential for ecological risk deterioration [55,56]. In particular,
the population of the GRB is vulnerable to a range of natural hazards, including avalanches,
landslides and glacial lake outburst floods [57]. Among these are floods and droughts
caused by heavy rainfall, which are the main climatic problems in the upstream [58]; land-
slides and the drying up of springs in the midstream [59]; river flooding in the plains [60].
In the context of global environmental change, it is urgent to assess ecological risks to GRB.
This assessment can provide critical information to help policymakers, land managers and
conservation organizations to monitor and curtail the loss of ecosystems and the deteriora-
tion of ecological risks in these regions. However, to the best of our knowledge, no studies
have investigated the ecological risk changes induced by the land-cover change in the GRB.
Therefore, this study aimed to assess the landscape ecological risks of the GRB during
the process of land-cover change over the last 30 years. The specific research objectives
were to: (1) analyze the characteristics of temporal changes in land cover types in the GRB
from 1990 to 2020, (2) assess landscape ecological risk patterns in the GRB during the study
period based on land-cover change and (3) explore the dynamic of ecological risk at the
landscape scale using spatial autocorrelation analysis.

2. Materials and Methods
2.1. Study Area

The Gandaki transboundary basin is located in the central Himalaya between
85◦22′–88◦21′ E and 26◦47′–29◦12′ N [48]. The region spans three countries, China (10%),
Nepal (72%) and India (18%), with a total area of 44,731 km2 (Figure 1). The GRB is a
sub-basin of the Ganges Basin. The main river in the basin is the Gandaki River, which
originates in the southern Tibetan Autonomous Region of China and flows through the
deepest gorge in the world [61]. It is known as Narayani River in Nepal and Gandak River
in India. With three peaks above 8000 m, the GRB has one of the world’s most extensive
ranges of elevation differences. It ranges from 8141 m above sea level in the north of the
basin to 28 m in the south [62]. The GRB is geologically complex, with high climatic and
ecological variability and distinct differences along the upstream and downstream reaches
of the elevational gradient. The upstream areas are located on the Tibetan Plateau towards
the northern side of the Himalayas, on the rain shadow side and are relatively unaffected
by the monsoon [63]. They are in semi-arid climatic conditions, with an average annual
precipitation of less than 163 mm. In contrast, the midstream and downstream areas are
located on the windward slopes of the Himalayas and the Indian plains, which experience
a humid subtropical to a temperate climate with average annual precipitation greater than
2667 mm [64,65]. The upstream areas are mostly snow-covered, semi-arid barren lands
in the High Himalayas and Trans-Himalayas. In the midstream and downstream areas,
cultivated land and forests are the dominant land use [48]. In addition, the basin has a high
biodiversity level, with three protected areas and five national parks from south to north,
such as Mount Qomolangma National Nature Reserve and Chitwan National Park.
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Figure 1. Location and boundary of the Gandaki River Basin (The digital boundary of the GRB from
Rai et al. [48] and Tibetan Plateau from Zhang et al. [66]).

2.2. Land Cover Data Sources and Processing

Land cover data at 30 m spatial resolution (30 × 30 m) for 1990, 2000, 2010 and 2020
were used in this study. Specifically, the existing 1990 land cover data, with the user and
producer accuracies were 91.86% and 86.11%, respectively [48], were provided by the Land
Change and Regional Adaptation Research Group of the Qinghai–Tibet Plateau, Institute
of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
(CAS). Data for 2000, 2010 and 2020 were produced based on the Google Earth Engine
platform [67]. These datasets have a consistent classification system. A total of seven land
cover types were included: forestland, cropland, barren land, glacier/snow, grassland,
water and urban land.

The land cover data classification consisted of the following steps: first, the USGS
Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI/TIRS atmospherically corrected surface
reflectance products covering the study area were selected. We created a collection of cloud–
shadow-free images by pre-processing, including cloud removal and shadow masking.
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Pixel-based median image compositing methods were applied to obtain the best observ-
able Landsat image composites. Secondly, sample dataset was obtained by manual visual
interpretation supported by Google Earth high-resolution images and existing 1990 land
cover data. Then, we randomly segmented the sampled dataset into training samples (70%)
for classification and validation (30%). In addition, to ensure comparability of land cover
classification results, training and validation samples were derived from the sample dataset
for all three periods. Thirdly, to sufficiently detect the information contained in the remote
sensing images, as well as the six spectral bands of the Landsat satellite data themselves
(blue, green, red, near-infrared, shortwave infrared 1 and shortwave infrared 2), we added
some further spectral indices, namely: normalized difference vegetation index [68], the
enhancement vegetable index [69], the normalized difference build index [70], the land sur-
face water index [71], the normalized difference snow index [72], the normalized difference
tillage index [73]. Furthermore, because the topography of the GRB has a strong influence
on the land cover type, we calculated topographic elevation, slope and aspect factors from
Shuttle Radar Topography Mission (SRTM) data [74]. Finally, a random forest classification
model [75] was used to generate land cover data for three periods. Furthermore, due
to the low quality of the images covering the study area and the limited availability of
satellite images, we chose images from the target year and the previous year as combina-
tion conditions to obtain as many images as possible. The overall accuracy of land cover
classification in the study area from 2000 to 2020 was 0.93 ± 0.04, and detailed accuracy
results for each land cover category using confusion matrix are presented in Table S1. In
addition, we performed a basic visual assessment by overlaying the existing 1990 data with
the generated data, correcting obvious errors and problems in the product and ensuring
comparability between datasets as much as possible.

In this study, geographic information databases were created using four periods of
land cover data at 10 year intervals. In addition, we performed a basic visual assessment
by overlaying the data to correct for obvious errors and ensure comparability between the
data as much as possible. Land cover categories were quantified for each period, with area
and percentage change numbers derived from map-to-map differences. Afterward, the
land-cover change transfer matrix was conducted by ArcGIS 10.4 software for the analysis
of land-cover change and its characteristics in the GRB from 1990 to 2020.

2.3. Ecological Risk Assessment

The magnitude of regional ecological risk is related to the strength of the disturbance
to which the local ecosystem is exposed and its own ability to resist external distress. In gen-
eral, the greater the extent of external disruption and the weaker its resistance, the greater
the ecological risk [23]. Therefore, this study integrates the landscape ecology perspective
and ecological risk assessment connotation. The relationship between landscape structure
and ecological risk in GRB was also considered, and ERI based on landscape disturbance
index and landscape vulnerability index was constructed [33]. The index is based on the
proportion of land cover type area. The spatial pattern characteristics of each landscape are
converted into a composite representation of the relative scale of ecological risk and the
degree of the potential loss. The expression is as follows

ERI =
n

∑
i=1

Aki
Ak

Ri (1)

where ERI is the landscape ecological risk index for 6 × 6 km grid, Ak is the total area of
the kth grid, Aki is the area of ith land cover type in the kth grid, Ri is the ecological loss
index for ith land cover type, which is formulated as follows

Ri = Fi ∗ Si (2)

where Fi is the landscape vulnerability index, which refers to the probability that the ecosys-
tem is able to maintain its structure and function in the presence of external disturbances
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and is a comprehensive indicator of the sensitivity and resistance of the landscape type.
High values of Fi indicate that this type of landscape has a high probability of loss of
function and poor ecological stability or resilience to external impacts, and is therefore
at higher ecological risk [76]. According to previous studies [21,26,28], and taking into
account the features of the GRB, the ecological risk of the different land cover types was
ranked from low to high and the corresponding rank values were urban land (1), forestland
(2), grassland (3), cropland (4), water (5), barren land (6) and glacier/snow (6). Then, vul-
nerability indices for specific land cover types were obtained by normalization. Si refers to
the landscape disturbance index, which primarily reflects the degree of disturbance caused
by human disturbance and exploitation practices to the ecosystems of each landscape
constituent, expressed as follows

Si = aCi + bNi + cDi (3)

where Ci is the landscape fragmentation index, Ni is the landscape isolation index and Di
is the landscape fractal index, the formula for calculating these indices and the ecological
meaning are shown in Table 1. a, b and c represent the weights of the three landscape
indices respectively, and a + b + c = 1. According to previous studies and the importance of
each index, a, b, c were assigned values of 0.5, 0.3 and 0.2, respectively [26,35].

Table 1. Ecological meaning and expression of the landscape index.

Index Formula Ecological Meaning

Landscape
fragmentation (Ci)

Ci =
ni
Ai

The landscape type changes from a continuous
and complete morphology to patches in response
to external disturbances. The higher the value,

the higher the degree of fragmentation.

Landscape Isolation
(Ni)

Ni =
A

2Ai

√
ni
A

The degree of separation of individual patches
within the landscape type. The higher the value,
the more dispersed the patches and the lower the

ecological stability.

Landscape fractal
dimension (Di) Di =

2 ln
(

Pi
4

)
ln(Ai)

The degree of geometric regularity and
intensification of patches within the landscape

type. The higher the value, the more complex the
shape of the patches.

ni is the number of patches in the ith land cover type; Ai is the area of the ith land cover type; A is the total area;
Pi is the perimeter of the ith land cover type.

In order to better represent the distribution patterns and spatial heterogeneity of
ecological risks within the GRB, the grid with a width and height of 6 km was applied to
spatialize the ecological risk index, regarding existing studies and the local situation of
landscape patches in the study area [76,77]. Total of 1411 assessment units were sampled
using an equal distance sampling approach. Then, the ERI for each sample area was
assigned to the ecological risk value at the center of the sample area. Furthermore, to
identify the spatial characteristics of the ecological risk of the GRB, we mapped the spatial
distribution of ecological risk in the landscape based on the level of ERI for each assessment
unit using the ordinary kriging method in the ArcGIS 10.4 geostatistical analysis tool. Some
studies have indicated that the natural breakpoint method has high grading accuracy and
also takes into account the balance of extreme differences in index intensity at all levels,
with better integrated mapping results [31]. Therefore, this method was employed to
classify ERI into five grades: low risk (ERI ≤ 0.117), medium low risk (0.117 < ERI ≤ 0.150),
medium risk (0.150 < ERI ≤ 0.201), medium high risk (0.201 < ERI ≤ 0.263) and high risk
(0.263 < ERI).
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2.4. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is a spatial measurement that describes the dependence
of attribute values of a spatial reference unit and its adjacent or nearby units. This analysis
of the ERI in the GRB was performed in GeoDa software and reflects the spatial clustering
characteristics of the landscape ecological risk, contributing to the understanding of eco-
logical risk occurrence and evolutionary mechanisms [78]. The Moran index (Moran’s I) is
a generally prevalent method of global spatial autocorrelation analysis and is calculated
as follows

Global Moran′s I =
∑n

i=1 ∑m
j=1 wij(xi − x)(xj − x)

s2∑n
i=1 ∑m

j=1 wij
(4)

S2 =
1
n

n

∑
i=1

(xi − x)2 (5)

x =
1
n

n

∑
i=1

xi (6)

where xi is the value of ERI in evaluation unit i; xj is the value of ERI in adjacent evaluation
j; n is the number of assessment units; wij is the weight matrix reflecting spatial relation of
evaluation unit; when two assessment units are adjacent, wij = 1, otherwise, wij = 0; s2 is
the mean square deviation. The Moran’s I values range from −1 to 1. Moran’s I > 0 indicates
that ecological risks are aggregated in space, Moran’s I < 0 indicates that ecological risks are
discrete in space, and Moran’s I = 0 indicates that ecological risks are randomly distributed.

The local index of spatial autocorrelation (LISA), also named local Moran’s Ii index,
is obtained by decomposing Moran’s I [79]. LISA can reflect the correlation of spatially
adjacent grid attribute values and identify hot and cold spots of ecological risk in local land
cover. When Ii > 0, it means that a region with a high (low) attribute value is surrounded
by a region with a high (low) attribute value with little spatial difference, which is called
high–high agglomeration (low–low agglomeration). When Ii < 0, a region with a high
(low) attribute value is surrounded by a region with a low (low) attribute value, with a
large spatial difference, which is called high–low agglomeration (low–high agglomera-
tion). When Ii = 0, there is no significant relationship between the target region and the
neighboring regions.

3. Results
3.1. Land-Cover Changes

The land-cover changes in the GRB from 1990 to 2020 are shown in Figure 2. Forest-
land and cropland are the dominant land cover types in the GRB, together consistently
accounting for greater than 60% of the area. Distinct trend changes occurred over the whole
study period in the various land cover types at different times. In general, forestland,
glacier/snow and grassland showed a decreasing trend, while the remaining land cover
types showed an increasing trend. During the study period, bare land experienced the
largest percentage increase from 10% in 1990 to 15.5% in 2020. Still, the land type with
the highest rate of change (area in 2020 divided by area in 1990 minus 1) was urban land,
and grassland experienced the largest decrease of about 7.9% (accounting for the whole
study area). In addition, the different land cover types have distinctive phase traits. For
1990–2000, forestland showed a decrease, while cropland showed a marked increase in the
same period. The forestland area gradually increased after 2000, while the cropland pro-
portion steadily decreased every decade. Furthermore, the glacier/snow area continuously
declined throughout the study period, decreasing by an average of 250 km2 per decade. In
contrast, urban land increased every period, averaging about 91 km2 per decade.
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Figure 2. Percentage change in the area of land cover type in GRB from 1990 to 2020.

The land cover transfer matrix for the period 1990 to 2020 is shown in Table 2. As
the dominant land cover type in the GRB, forestland was reduced by 488.12 km2 and
was converted mainly to cropland, barren land and grassland. Cropland increased by
1572.81 km2, mainly from forestland, grassland and barren land. It is worth noting that
the largest conversion between land cover types occurred on forestland. Cropland was the
leading conversion type for forestland, with approximately 74.4% of the change involving
the forestland becoming cropland compared to 1990. In other words, the most frequent
land cover type of interaction identified in the GRB was between cropland and forestland.
Moreover, approximately 33% and 34% of the total glaciers/snow and grassland areas were
converted to barren land, respectively. Furthermore, although the urban land cover type
represented only 2% of the entire basin, it increased nearly fourfold during the last 30 years.
The majority (74.65%) of the change occurred on cropland.

Table 2. Land cover type transfer matrix for GRB from 1990 to 2020 (unit: km2).

Land Cover
Types

2020

1 2 3 4 5 6 7 Total

1990

1 244.27 22.37 1.29 27.43 0.55 9.04 233.81 538.76
2 1.39 49.66 0 1.75 0 0 41.19 93.98
3 0.55 0 2495.40 41.91 79.97 1275.46 0.43 3893.72
4 77.09 7.86 21.79 13,336.31 317.19 376.38 2320.12 16,456.75
5 39.89 3.30 367.10 1423.26 1607.78 2097.55 591.82 6130.70
6 164.30 10.26 262.95 64.86 567.05 3180.35 242.87 4492.64
7 501.07 275.14 0.01 1073.11 7.39 0.72 11,264.56 13,121.99

Total 1028.54 368.58 3148.54 15,968.63 2579.93 6939.51 14,694.80
Note: 1: Water; 2: Urban land; 3: Glaciers/permanent snow; 4: Forestland; 5: Grassland; 6: Barren land;
7: Cropland.

3.2. Spatiotemporal Changes in Ecological Risk Pattern

In the past 30 years, the average level of the ERI for the basin was 0.17, indicating the
medium level of ecological risk in the GRB. In general, there is pronounced heterogeneity
in the spatial distribution of ERI and the hierarchy of risk areas is apparent. Specifically,
the high and medium high ecological risk areas were mainly located in the northern part of
the GRB; the low and medium low regions were concentrated in the central part, while the
medium risk areas were primarily distributed in the basin’s southern part.

Figure 3 shows the spatial distribution of changes in the ERI in the GRB from 1990 to 2020.
In 1990, the ecological risk areas not exceeding the medium low ERI accounted for 65.8% of
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the basin, mainly in the Middle Mountain region and the Siwalik region of Nepal and the
Ganges plain of India. The medium high ERI areas were located primarily in the Mustang
and Manang districts of Nepal in the north of the basin. The medium ERI areas were
mainly detected in the Gyirong County of China and the main channel of the Gandak
River in India. In 2000, the medium low and medium ecological risk index area expanded
further, accounting for nearly 60% of the total area. The low risk changed from 23.6% in
1990 to 12.9%. Moreover, the proportion of medium and high risk areas increased from 22%
in 1990 to 27% in 2000, indicating an increasing general ecological risk trend in the GRB
during 1990–2000. Given the spatial distribution, the main areas of increased ecological
risk occurred in Gyirong County in China, central Nepal, and the lower reaches of the
Gandak River in India. A similar spatial pattern to that of 2000 was detected in 2010, but
it is noteworthy that the percentage of low risk areas increased by close to 6% between
2000 and 2010. In 2020, the rate of the medium and high risk areas of the ERI increased
by approximately 7%, with the high risk area reaching 4032.91 km2. This indicated an
overall deterioration in the ecological environment in the GRB for 2010–2020. The areas
of worsening were mainly focused on the border between China and Nepal and in the
Himalayan region and within the Ganges plain in India. In addition, we calculated average
ERI of 0.154, 0.174, 0.166 and 0.175 for the period 1990 to 2020. In other words, the ecological
risk in the GRB showed an overall fluctuating upward trend over the 30 years, specifically,
first increasing and then slightly slowing and then increasing.

3.3. Analysis of Ecological Risk Changes in Sub-Basin and Countries

Owing to the marked regional differences in the landscapes of transboundary water-
sheds, we have studied trends of ecological risk in the upper, middle and lower streams of
the GRB. Figure 4a illustrates the variation in ecological risk in the three sub-basins over
the study period. Overall, the trends of ERI in each sub-basin are the same as those for
the basin as a whole. However, there are apparent discrepancies in the rates and levels
of change at different stages. The ecological risk in all sub-basins showed an increasing
trend during 1990–2000. At the same time, although the ERI was the highest upstream, the
ERI increased the fastest downstream, with a growth rate of 0.007/a. The ecological risk in
the sub-basins showed a downward trend between 2000 and 2010, but the rate of change
was lower compared with before 2000. The rate of decline was faster in the upstream and
midstream than in the downstream, at −0.005/a and −0.004/a, respectively. The rate of
increase in upstream and midstream ecological risk over the period 2010–2020 was greater
than the average rate of the change prior to 2010. Meanwhile, the upstream ERI rose at
a rate of 0.008/a, the highest in the last 30 years, while the midstream and downstream
rates of change were 0.004/a and 0.006/a, respectively. In addition, the order of growth of
the ERI during the study period from high to low was downstream (0.004/a), upstream
(0.003/a) and midstream (0.001/a). This means that the average ecological risk level and
the decadal risk growth rate were not consistent across the GRB. Although the downstream
is currently at lower ecological risk than the upstream, it has a faster average growth rate.
Therefore, there will be a greater emphasis on downstream environmental protection and
ecological management in the future.

To clarify the level of ecological risk in different countries, we further calculated the
percentage of ERI for Nepal, India and China within the GRB shown in Figure 4b. On
the whole, the ERI for India and Nepal in the study area are at a medium level, while at
a medium high level within China. The average ERI for India in the GRB for 1990–2020
was 0.14, the lowest risk index of the three countries. Before 2010, India had a shallow
ecological risk level, with only low, medium low and medium risk zones. Similarly, low
and medium low risk zones accounted for as much as 92.69% in 1990. During 2010–2020,
medium high and high risk zones emerged, and the medium risk percentage increased
the most to 56.05%. During the study period, the average ERI for Nepal in the Gandaki
watershed was 0.15 and the highest percentage was of medium risk areas. For the period
1990–2000, the medium low risk level increased by 12%, mainly from the low risk area.
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After the 2010s, the medium high risk area increased to 26.20%. The average ERI for the
Chinese portion of the GRB over the past 30 years was 0.21, the highest risk level of the
three countries. The medium risk zone dominated in 1990, and since then, the ecological
risk has gradually increased to a predominantly medium high risk.
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3.4. Spatial Autocorrelation Analysis of Ecological Risk

Moran’s I was applied to conduct the global spatial autocorrelation analysis of eco-
logical risks to explore the clustering characteristics of ecological risks, and the results are
presented in Figure 5. The Moran’s I reached 0.76, 0.51, 0.59 and 0.74 in 1990, 2000, 2010
and 2020, respectively. Moran’s I values were higher at each phase, indicating a significant
positive spatial clustering effect of the GRB ecological risk index over the 30-year period.
That is, the ecological risk grades at most landscape scales are similar to the risk levels in
their surroundings. In addition, there were fluctuations in the values of Moran’s I, as it
showed a certain decline from 1990 to 2000 and a gradual increase after the 2000s. This
phenomenon suggested that before 2000, land-cover change mainly contributed to the in-
creased spatial heterogeneity of landscape ecological risk. While patches with similar levels
of landscape ecological risk continued to spread after 2000, the spatial aggregation effect
increased substantially and positive spatial correlation became the prevailing characteristic
of the GRB. However, compared to 1990, the values of Moran’s I were lower in 2020, which
further indicated that the factors influencing changes in ecological risk in the GRB tended
to be more diverse.
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Subsequently, we applied the LISA to visualize the landscape scale agglomeration
characteristics and spatial dynamics at the time scale of ecological risk from 1990 to 2020
(Figure 6). The general characteristics of the spatial clustering of ecological risks in the GRB
were relatively similar over the 30 years and changes occurred mainly at local scales. In
general, four spatial autocorrelation patterns are involved in the GRB: high–high, high–low,
low–high and low–low. Among them, high–high agglomeration and low–low agglomera-
tion were the dominant patterns of spatial autocorrelation. However, the distribution of
the two patterns was dramatically spatially heterogeneous. Specifically, the high–high risk
clusters were mainly located in the northern part of the basin, in line with the medium
high ecological risk area concentrated in the north of the Himalayas, including the Gyirong
County in China and the Annapurna and Manaslu conservation areas in Nepal. The low–
low risk clustering was mainly in the central part of the basin, consistent with the low
risk area and distributed in the Myagdi, Kaski and Chitwan districts of Nepal. In contrast
to these two agglomeration types, the low–high and high–low cluster types were rarely
distributed and were mainly scattered.
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Notably, from 1990 to 2020, the extent of both high–high and low–low spatial autocor-
relation patterns showed a significant expansion. The total proportion of the two together
increased from 53.2% to 61.7%. However, the two patterns show different characteristics
of change at each stage. In 2000, approximately 2.4% of the study area shifted from a
non-significant pattern to a high–high-risk agglomeration, which may be associated with
grassland degradation and high-elevation forest deforestation, accompanied by an increase
in economic activity at the border [48,80]. After 2010, when community forestry projects
played a prominent role in Nepal, along with the abandonment of a large amount of hilly
mountainous cultivated land, the low–low agglomeration pattern expanded moderately in
the central sub-basin increasing from 28.1% in 2010 to 34.3% in 2020.
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4. Discussion
4.1. Analysis of Land Cover Dynamics Change

The most predominant land cover types in the GRB were forestland and cropland.
During 1990–2020, the main characteristics of land-cover change in the study area were
increased cropland and reduced forestland. This finding is similar to that of previous
studies [48,81]. It can be observed that cropland in the basin increased by 12%, mainly
derived from forestland (68%) and grassland (17%), while forestland decreased due to
conversion primarily into cropland (74%). This suggests that cropland and forestland are
the two land cover types that interact extremely frequently within the GRB. However, there
are phased features in the interactive transfer of forestland and agricultural land, which
differ from other land cover types.

Before 2000, the expansion of cropland at the expense of forest loss was a substan-
tial feature of this period. Rapid population increase and policy and climatic factors are
considered the principal causes of the shift [82–84]. Population growth inevitably led
to greater demand for food. However, there was a contradiction between the excessive
increase in population and the scarcity of agricultural land in mountainous regions. High
population growth rates and poverty levels have played a vital role in the expansion of
agricultural land. The heavy dependence on natural resources for income generation has
also contributed to massive and irreversible deforestation in the Himalayan region [85,86].
In addition, climatic changes and the introduction of commercial crop cultivation have
made it possible to practice planting at higher elevation. This has also resulted in a sub-
stantial increase in agricultural land in forested areas [55,87]. Furthermore, the expansion
of cropland in the GRB has been facilitated by the promulgation and implementation of the
plans and policies of Nepal, such as the Pesticides Act 1991, Water Resources Act 1992 and
Agricultural Perspective Plan (APP) 1995–2015 [88].

After 2000, the abandonment of cropland and the rise in forestland became the main
trends. Some similar results were also found in other regions of Nepal [89–91]. This trend
generally results from a combination of socio-economic and climatic factors, land man-
agement practices, and forest conservation plans [88,92,93]. In the study area, small-scale
subsistence farming is the dominant mode of cultivation. Historical studies have shown
that approximately 73% of cultivated land is rain-fed on the border between India and
Nepal [94]. As a result, agriculture in the basin has a low adaptive capacity to climate
change and natural disasters. In addition, the large amount of migration for work has left a
shortage of rural labor, and increasing non-farm wage income is essential to understanding
this movement [95,96]. The steep gradient of arable land in mountainous areas and the
low productivity also contribute to the yearly decline in cropland [97]. Correspondingly,
agricultural abandonment or some long-term fallow situation leading to subsequent nat-
ural regeneration of vegetation is also responsible for increasing forestland. In addition,
economic development and the implementation of the government’s Land Use Policy (2013,
2015) in Nepal prohibiting the illegal conversion of one land use to another has effectively
protected existing forestland [98]. Some studies highlight the Community Forestry Program
(CFP) as one of the world’s most successful forest conservation initiatives. Many targeted
forest policy initiatives have led to substantial progress in national forest conservation and
restoration [99,100]. Afforestation and improved forest management both contribute to the
increase in forest cover [101]. Furthermore, this study identified the rapid urban expan-
sion of the Himalayan valley in recent decades that has taken up surrounding cropland,
contributing to the decline in cropland.

The GRB is one of the most sensitive areas for global climate change due to its enor-
mous elevation difference and vertical zonation [102]. Glacial snow cover is one of the
critical land covers in the Gandaki basin and is also particularly sensitive to climate change.
Over the last 30 years, there has been a substantial reduction trend in glacial snow cover in
the study area, representing a loss of 23% of the initial total. This may be related to climate
change-induced increases in temperature and decreases in precipitation [103,104]. In addi-
tion, many studies have confirmed that grassland ecosystems on the Tibetan Plateau are
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suffering from severe degradation under the comprehensive effects of climate change and
human activities [105–107]. This study also provides evidence for those results. The GRB
grassland is located in the rain shadow zone of the northern slopes of the Himalayas and
is also subject to a warm and dry climate. Overgrazing may have accelerated its degrada-
tion [108]. It is a common phenomenon that urban land has become the land type with the
highest growth rate in the GRB in the context of global urbanization. Meanwhile, it is in line
with historical research on the decreasing trend of agricultural land near large cities [109].

4.2. Spatial-Temporal Characteristics Change in ERI

Overall, ecological risk in the GRB is relatively low, with more than 65% of the area at
medium and medium low risk levels. Still, there is significant heterogeneity in the spatial
distribution of ecological risk. The northern part of the GRB is on the Tibetan Plateau, with
a high elevation and fragile landscape that permits lower anthropogenic disturbance [110].
However, the extensive range of barren ground and glaciers and permanent snow also
causes high ecological risks. In addition, slight anthropogenic disturbances to sensitive
ecosystems can cause irreversible damage. In the central and southern parts of the GRB,
forestland is the most widely distributed landscape type. Compared to other landscape
types, forestland has low vulnerability and is more resistant to disturbance [111], and thus
has relatively low ecological risk. In the southern part of the basin are scattered settlements
with high degrees of human activity. However, the continuous agricultural landscape
covers up to 84% of the total downstream area, rendering the ecological risk medium.

The general ecological risk to GRB has increased over the past 30 years. However, three
stages of change were observed: the ERI showed an increasing trend before 2000; a slight
decrease during 2000–2010; a gradual increase after 2010. From 1990–2000, the leading
causes of increased risk during this period were high population growth rates and natural
resource-based livelihood behavior [86]. In addition to the extensive deforestation for agri-
culture to satisfy essential food requirements, the demand for timber and firewood by local
people has increased forest fragmentation in terms of the exploitation of forest land [112].
In the southern part of the basin in the Indian state of Bihar, the imbalance between the
large population and the limited cultivated area has intensified the reclamation of cropland.
In addition, forest encroachment and grassland degradation are also important causes of
ecological risk deterioration in the northern part of the basin. For example, the expansion
of colonized areas brought about by population migration to high elevation mountains,
the number of livestock maintained over their carrying capacity, harsh climatic conditions,
inadequate management and overgrazing negatively impact the environment [113,114].
The deterioration in ecological risk was mitigated to some extent between 2000 and 2010. A
series of Nepalese government policies to protect forests were implemented during this
period, such as the agricultural biodiversity policy (2007) plant protection act (2007), which
contributed to ecological improvements. Furthermore, the beginning of the abandonment
of cropland during this period also contributed to the natural recovery of the vegetation.
After 2010, the ecological risks have deteriorated due to a combination of natural and
human factors. On the frontier between China and Nepal, warming climates exacerbated
the melting and fragmentation of Himalayan glaciers. At the trading ports, the frequent
economic and trade activities also increased human disturbance [80]. In addition, the
construction of transport and the development of tourism have inevitably altered the
continuous landscape. The high intensity of natural catastrophes in the GRB, especially
the Gorkha earthquake in 2015, which triggered landslides and mudslides, continues to
affect the ecological environment in the central mountainous region. In the southern part
of the study area in Bihar, floods have resulted in large areas of fallow land and a more
fragmented landscape due to urbanization as new buildings are built on agricultural and
vegetated land.
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4.3. Implication and Uncertainty of Ecological Risk Assessment

Ecological risk assessment based on land-cover change is an important tool for the
integrated conservation and management of watershed ecosystems. The rationality of land
use in watersheds is of great relevance to the control of ecological risks. There is a high
degree of spatial heterogeneity in the impact of unsustainable anthropogenic disturbance
on ecological risk in the study area. Therefore, optimizing land management options and
developing targeted ecosystem protection measures depending on different ecological
or geographical zoning frameworks is required [115]. In the high Himalayas, the focus
is on overgrazing and high elevation reclamation. In the middle mountain, the conflict
between human survival and environmental protection should be reconciled by developing
a sound land development system, reducing deforestation and limiting cultivation on steep
slopes. In the south plain, appropriate policies and regulations should be improved to limit
urban sprawl.

This study found inconsistencies between ecological risk levels and rates of change.
The upstream was the area with the highest risk levels, while the downstream had the
fastest-growing risks. Therefore, while strengthening the landscape management of up-
stream ecological risk areas and improving and maintaining protected areas, the prevention
and control of downstream ecological risks should not be neglected. The study area is a
transboundary basin among three countries. The varying levels of risk and rates of change
between countries present a challenge for adequate protection and coordinated manage-
ment of the basins. Past studies have demonstrated that ecological risk management at
national boundaries is a weak point in watershed management [116]. Thus, there is a neces-
sity to establish special joint agencies for cross-national synergies to maintain the integrity
and connectivity of natural landscapes. In addition, the Gandaki basin has a large number
of national parks and protected areas that are hotspots for biodiversity maintenance and
ecosystem conservation. Increased ecological risk in ecologically sensitive areas of the
Himalayas could have irreversible consequences. For example, the endangered Bengal
tiger (Panthera tigris) and leopard (Panthera pardus fusca) inhabit the Chitwan National Park
in the GRB. Habitat degradation is inextricably linked to the deterioration in ecological
risks in protected areas. Increased ecological risk management practices in core protected
areas are essential for the ecological well-being and sustainable development of watersheds.
In addition, the study area is highly prone to a variety of natural hazards. In the upstream
basin, glacial melt brings glacial and hydrological hazards such as glacial lake outburst
floods and glacier debris flows [57], midstream mountain landslides and erosion [59,117],
and downstream floods and droughts are frequent. These disasters inevitably increase the
ecological risk to the basin. Attention should therefore be paid to the basin’s ecological risk
and hazard risk characteristics, and disaster risk pre-warning systems and ecological safety
measures should be actively pursued.

This research constructed an ecological risk assessment model based on the relation-
ship between ecosystem land-cover change and ecological risk at the landscape scale,
integrating the landscape disturbance index and the landscape vulnerability index. The
method has been widely applied at different spatial and temporal scales, providing a
convenient and efficient means of assessment. However, we realized that there are some un-
certainties in this study. Firstly, the ecological risk assessment results are highly dependent
on the results of land cover mapping. This consists of two main aspects: the cartographic
accuracy of the land cover and, on the other hand, the classification system of the land cover.
It is evident that the level of accuracy of land cover mapping affects the quality of ecological
risk assessment. In this study, the overall accuracy of the land cover mapping was above
85% for all four study periods, so evaluating ecological risk based on these data is probably
sufficient. However, the land-cover change analysis accuracy is not yet defined, and the
area and percentage statistics are derived from straight-line pixel counts tallying between
map dates, without a measure of statistical uncertainty to them [118,119]. In general, there
is often some error in the precision of the mapping, but access to highly accurate landscape
data can help to enhance the assessment results. However, the GRB is located in the Hi-



Land 2022, 11, 638 17 of 22

malayas, a data black hole [120]. The availability of good quality remote sensing imagery is
minimal. This research carried out an ecological risk assessment based on seven land cover
types over four time periods. Future land cover data with higher spatial and temporal
resolution and more advanced classification systems are the way to reduce ecological risk
uncertainty. Secondly, the spatial expression of ecological risk is sensitive to the delineation
of assessment units. The grid size of the sampling area is an important factor contributing
to the uncertainty in ecological risk assessment, and more research is needed to reveal
the relationship between the accuracy of ecological risk assessment and the optimal grid
size. Thirdly, in the ERI-based assessment model, the degree of vulnerability of different
landscapes and the weight of the disturbance index and vulnerability index is determined
empirically and based on thresholds. More attention should be given to modelling the
objective relationship and sensitivity of risk receptors to external perturbations to improve
accuracy. Finally, this study provided a preliminary examination of the possible drivers of
ecological risk change, which is essential for understanding the evolution and mechanisms
of action of ecological risk. In the future, an ecological process perspective should be used
to integrate the identification of ecological risk change factors.

5. Conclusions

In this study, on the basis of a quantitative analysis of land-cover change over the last
30 years, the ERI was developed from a landscape ecology perspective to assess ecological
risks in the GRB for the period 1990–2020, using a spatial autocorrelation approach to
identify spatial clustering characteristic of ecological risk. The main land cover types in the
GRB during the study period were always forestland and cropland, together accounting
for over 60% of the total watershed area. Overall, the GRB has experienced substantial
land-cover change. Forestland, glacier/snow and grassland showed a decreasing trend,
while the remaining land cover types showed an increasing trend. It is worth noting that
cropland and forestland were the most frequently interacting land cover types in the basin.
There is apparent heterogeneity in the spatial distribution of ecological risks. The medium
high risk areas were mainly located in the northern Himalayas and the medium low risk
areas were located in the other mountains and hills of Nepal. Furthermore, there was
a general fluctuating upward trend in the ecological risk of GRB. Still, the changes can
be divided into three phases: Ecological risk increased before 2000, decreased slightly
during 2000–2010 and turned to an increasing trend after 2010 when the medium and
high risk areas increased extensively. In addition, the upstream portions in Nepal and
China were the areas with the highest levels of ecological risk in the study area. However,
downstream in the Ganges Plain was the area with the fastest growth rate of risk. The ERI
of the basin showed a positive high spatial autocorrelation and spatial clustering effect,
with high–high aggregation mainly distributed within the Tibetan Plateau and low–low
aggregation primarily in the central part. This study provided valuable information and
scientific guidance for cross-national cooperation on quality development and landscape
management in transboundary basins.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land11050638/s1, Table S1: Accuracy assessment of land cover
classification from 2000 to 2020.

Author Contributions: L.L. and B.C. had the original idea and designed the study. B.C. processed
and analyzed the data and wrote the manuscript; Y.Z., Z.W. and L.L. had insights on the revision
of the manuscript and suggestions for improvement. C.G. provided help and guidance for data
processing mapping. C.G., B.W. and D.G. revised the paper. M.K.R. polished the manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Strategic Priority Research Program of the Chinese
Academy of Sciences (Grant No. XDA20040201), the Second Tibetan Plateau Scientific Expedition
and Research (Grant No. 2019QZKK0603), and the Award of 2019 CAS-TWAS President’s Fellowship
(Series No 2019-001).

https://www.mdpi.com/article/10.3390/land11050638/s1
https://www.mdpi.com/article/10.3390/land11050638/s1


Land 2022, 11, 638 18 of 22

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful for the data provider of Land Change and Regional
Adaptation Research Group of the Tibetan Plateau, Institute of Geographic Sciences and Natural Re-
sources Research, CAS, and the anonymous reviewers and the editor for their constructive comments
and suggestions for this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, W.H.; Zhang, B.; Xie, G.D. Research on ecosystem services in China: Progress and perspectives. J. Nat. Resour. 2009, 24, 1–10.
2. Ecosystem Assessment Millennium. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005.
3. Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al.

The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [CrossRef]
4. Daniel, T.C.; Muhar, A.; Arnberger, A.; Aznar, O.; Boyd, J.W.; Chan, K.M.; Costanza, R.; Elmqvist, T.; Flint, C.G.; Gobster, P.H.; et al.

Contributions of cultural services to the ecosystem services agenda. Proc. Natl. Acad. Sci. USA 2012, 109, 8812–8819. [CrossRef]
[PubMed]

5. Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.;
Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [CrossRef]

6. Geldmann, J.; Joppa, L.N.; Burgess, N.D. Mapping change in human pressure globally on land and within protected areas.
Conserv. Biol. 2014, 28, 1604–1616. [CrossRef]

7. Vogt, J.V.; Safriel, U.; Von Maltitz, G.; Sokona, Y.; Zougmore, R.; Bastin, G.; Hill, J. Monitoring and assessment of land degradation
and desertification: Towards new conceptual and integrated approaches. Land Degrad. Dev. 2011, 22, 150–165. [CrossRef]

8. Foley, J.A.; Asner, G.P.; Costa, M.H.; Coe, M.T.; DeFries, R.; Gibbs, H.K.; Howard, E.A.; Olson, S.; Patz, J.; Ramankutty, N.; et al.
Amazonia revealed: Forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 2007,
5, 25–32. [CrossRef]

9. Ravi, S.; Law, D.J.; Caplan, J.S.; Barron-Gafford, G.A.; Dontsova, K.M.; Espeleta, J.F.; Villegas, J.C.; Okin, G.S.; Breshears, D.D.;
Huxman, T.E. Biological invasions and climate change amplify each other’s effects on dryland degradation. Glob. Chang. Biol.
2022, 28, 285–295. [CrossRef]

10. Nguyen, K.; Liou, Y. Global mapping of eco-environmental vulnerability from human and nature disturbances. Sci. Total Environ.
2019, 664, 995–1004. [CrossRef]

11. Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719.
[CrossRef]

12. Verburg, P.H.; Crossman, N.; Ellis, E.C.; Heinimann, A.; Hostert, P.; Mertz, O.; Nagendra, H.; Sikor, T.; Erb, K.;
Golubiewski, N.; et al. Land system science and sustainable development of the earth system: A global land project per-
spective. Anthropocene 2015, 12, 29–41. [CrossRef]

13. Liao, J.; Jia, Y.; Tang, L.; Huang, Q.; Wang, Y.; Huang, N.; Hua, L. Assessment of urbanization-induced ecological risks in an area
with significant ecosystem services based on land use/cover change scenarios. Int. J. Sustain. Dev. World Ecol. 2018, 25, 448–457.
[CrossRef]

14. Xie, H.; Wang, P.; Huang, H. Ecological risk assessment of land use change in the Poyang Lake eco-economic zone, China. Int. J.
Environ. Res. Public Health 2013, 10, 328. [CrossRef] [PubMed]

15. Chen, H.; Liu, J.; Cao, Y.; Li, S.; Ouyang, H. Progresses of ecological risk assessment. Acta Ecol. Sin. 2006, 26, 1558–1566.
16. Hope, B.K. An examination of ecological risk assessment and management practices. Environ. Int. 2006, 32, 983–995. [CrossRef]
17. Wang, H.; Liu, X.; Zhao, C.; Chang, Y.; Liu, Y.; Zang, F. Spatial-temporal pattern analysis of landscape ecological risk assessment

based on land use/land cover change in Baishuijiang National nature reserve in Gansu Province, China. Ecol. Indic. 2021, 124, 107454.
[CrossRef]

18. Solomon, K.R.; Baker, D.B.; Richards, R.P.; Dixon, K.R.; Klaine, S.J.; La Point, T.W.; Kendall, R.J.; Weisskopf, C.P.; Giddings, J.M.;
Giesy, J.P.; et al. Ecological risk assessment of atrazine in North American surface waters. Environ. Toxicol. Chem. Int. J. 1996, 15,
31–76. [CrossRef]

19. National Research Council. Risk Assessment in the Federal Government: Managing the Process; The National Academies Press:
Washington, DC, USA, 1983.

20. Peng, J.; Dang, W.X.; Liu, Y.X.; Zong, M.L.; Hu, X.X. Review on landscape ecological risk assessment. Acta Geogr. Sin 2015, 70,
664–677.

21. Wang, B.; Ding, M.; Li, S.; Liu, L.; Ai, J. Assessment of landscape ecological risk for a cross-border basin: A case study of the
Koshi River Basin, central Himalayas. Ecol. Indic. 2020, 117, 106621. [CrossRef]

22. Kwon, O.; Kim, J.; Ra, J. Landscape ecological analysis of green network in urban area using circuit theory and least-cost path.
Land 2021, 10, 847. [CrossRef]

23. Zhang, T.; Du, Z.; Yang, J.; Yao, X.; Ou, C.; Niu, B.; Yan, S. Land cover mapping and ecological risk assessment in the context of
recent ecological migration. Remote Sens. 2021, 13, 1381. [CrossRef]

http://doi.org/10.1038/387253a0
http://doi.org/10.1073/pnas.1114773109
http://www.ncbi.nlm.nih.gov/pubmed/22615401
http://doi.org/10.1126/sciadv.1500052
http://doi.org/10.1111/cobi.12332
http://doi.org/10.1002/ldr.1075
http://doi.org/10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2
http://doi.org/10.1111/gcb.15919
http://doi.org/10.1016/j.scitotenv.2019.01.407
http://doi.org/10.1016/j.scitotenv.2016.07.078
http://doi.org/10.1016/j.ancene.2015.09.004
http://doi.org/10.1080/13504509.2017.1415234
http://doi.org/10.3390/ijerph10010328
http://www.ncbi.nlm.nih.gov/pubmed/23343986
http://doi.org/10.1016/j.envint.2006.06.005
http://doi.org/10.1016/j.ecolind.2021.107454
http://doi.org/10.1002/etc.5620150105
http://doi.org/10.1016/j.ecolind.2020.106621
http://doi.org/10.3390/land10080847
http://doi.org/10.3390/rs13071381


Land 2022, 11, 638 19 of 22

24. Xie, H.; Wen, J.; Chen, Q.; Wu, Q. Evaluating the landscape ecological risk based on GIS: A case-study in the Poyang Lake region
of China. Land Degrad. Dev. 2021, 32, 2762–2774. [CrossRef]

25. Hou, M.; Ge, J.; Gao, J.; Meng, B.; Li, Y.; Yin, J.; Liu, J.; Feng, Q.; Liang, T. Ecological risk assessment and impact factor analysis of
alpine wetland ecosystem based on LUCC and boosted regression tree on the Zoige Plateau, China. Remote Sens. 2020, 12, 368.
[CrossRef]

26. Zhang, W.; Chang, W.J.; Zhu, Z.C.; Hui, Z. Landscape ecological risk assessment of Chinese coastal cities based on land use
change. Appl. Geogr. 2020, 117, 102174. [CrossRef]

27. Zhai, T.; Wang, J.; Fang, Y.; Qin, Y.; Huang, L.; Chen, Y. Assessing ecological risks caused by human activities in rapid urbanization
coastal areas: Towards an integrated approach to determining key areas of terrestrial-oceanic ecosystems preservation and
restoration. Sci. Total Environ. 2020, 708, 135153. [CrossRef] [PubMed]

28. Li, J.; Pu, R.; Gong, H.; Luo, X.; Ye, M.; Feng, B. Evolution characteristics of landscape ecological risk patterns in coastal zones in
Zhejiang Province, China. Sustainability 2017, 9, 584. [CrossRef]

29. Xue, L.; Zhu, B.; Wu, Y.; Wei, G.; Liao, S.; Yang, C.; Wang, J.; Zhang, H.; Ren, L.; Han, Q. Dynamic projection of ecological risk in
the Manas River basin based on terrain gradients. Sci. Total Environ. 2019, 653, 283–293. [CrossRef]

30. Leuven, R.S.; Poudevigne, I. Riverine landscape dynamics and ecological risk assessment. Freshw. Biol. 2002, 47, 845–865.
[CrossRef]

31. Gong, J.; Zhao, C.; Xie, Y.; Gao, Y. Ecological risk assessment and its management of Bailongjiang watershed, southern Gansu
based on landscape pattern. Chin. J. Appl. Ecol. 2014, 25, 2041–2048.

32. Zhang, Y.; Lei, G.; Lin, J.; Zhang, H. Spatiotemporal change and its ecological risk of landscape pattern in different spatial scales
in Zhalong Nature Reserve. Chin. J. Ecol. 2012, 31, 1250–1256.

33. Jin, X.; Jin, Y.; Mao, X. Ecological risk assessment of cities on the Tibetan Plateau based on land use/land cover changes—Case
study of Delingha City. Ecol. Indic. 2019, 101, 185–191. [CrossRef]

34. Gong, J.; Yang, J.; Tang, W. Spatially explicit landscape-level ecological risks induced by land use and land cover change in a
national ecologically representative region in China. Int. J. Environ. Res. Public Health 2015, 12, 4192. [CrossRef] [PubMed]

35. Mo, W.; Wang, Y.; Zhang, Y.; Zhuang, D. Impacts of road network expansion on landscape ecological risk in a megacity, China: A
case study of Beijing. Sci. Total Environ. 2017, 574, 1000–1011. [CrossRef] [PubMed]

36. Wang, X.; Che, L.; Zhou, L.; Xu, J. Spatio-temporal Dynamic Simulation of Land use and Ecological Risk in the Yangtze River
Delta Urban Agglomeration, China. Chin. Geogr. Sci. 2021, 31, 829–847. [CrossRef]

37. Kang, P.; Chen, W.; Hou, Y.; Li, Y. Linking ecosystem services and ecosystem health to ecological risk assessment: A case study of
the Beijing-Tianjin-Hebei urban agglomeration. Sci. Total Environ. 2018, 636, 1442–1454. [CrossRef]

38. Liu, J.; Yong, D.L.; Choi, C.; Gibson, L. Transboundary frontiers: An emerging priority for biodiversity conservation. Trends Ecol.
Evol. 2020, 35, 679–690. [CrossRef]

39. Kark, S.; Tulloch, A.; Gordon, A.; Mazor, T.; Bunnefeld, N.; Levin, N. Cross-boundary collaboration: Key to the conservation
puzzle. Curr. Opin. Environ. Sustain. 2015, 12, 12–24. [CrossRef]

40. López-Hoffman, L.; Varady, R.G.; Flessa, K.W.; Balvanera, P. Ecosystem services across borders: A framework for transboundary
conservation policy. Front. Ecol. Environ. 2010, 8, 84–91. [CrossRef]

41. Erg, B.; Groves, C.; McKinney, M.; Michel, T.R.; Phillips, A.; Schoon, M.L.; Vasilijevic, M.; Zunckel, K. Trans-Boundary Conservation:
A Systematic and Integrated Approach; Best practice protected area guidelines series 2015; IUCN: Gland, Switzerland, 2015.

42. De Castro-Pardo, M.; Pérez-Rodríguez, F.; Martín-Martín, J.M.; Azevedo, J.C. Modelling stakeholders’ preferences to pinpoint
conflicts in the planning of transboundary protected areas. Land Use Policy 2019, 89, 104233. [CrossRef]

43. Gu, C.; Zhang, Y.; Liu, L.; Li, L.; Li, S.; Zhang, B.; Cui, B.; Rai, M.K. Qualifying land use and land cover dynamics and their
impacts on ecosystem service in central himalaya transboundary landscape based on google earth engine. Land 2021, 10, 173.
[CrossRef]

44. McCallum, J.W.; Vasilijevi, C.M.; Cuthill, I. Assessing the benefits of Transboundary Protected Areas: A questionnaire survey in
the Americas and the Caribbean. J. Environ. Manag. 2015, 149, 245–252. [CrossRef] [PubMed]

45. Chicas, S.D.; Omine, K.; Ford, J.B.; Sugimura, K.; Yoshida, K. Using spatial metrics and surveys for the assessment of trans-
boundary deforestation in protected areas of the Maya Mountain Massif: Belize-Guatemala border. J. Environ. Manag. 2017, 187,
320–329. [CrossRef]

46. Gurung, J.; Chettri, N.; Sharma, E.; Ning, W.; Chaudhary, R.P.; Badola, H.K.; Wangchuk, S.; Uprety, Y.; Gaira, K.S.; Bidha, N.; et al.
Evolution of a transboundary landscape approach in the Hindu Kush Himalaya: Key learnings from the Kangchenjunga
Landscape. Glob. Ecol. Conserv. 2019, 17, e00599. [CrossRef]

47. Zeitoun, M.; Goulden, M.; Tickner, D. Current and future challenges facing transboundary river basin management. Wiley
Interdiscip. Rev. Clim. Chang. 2013, 4, 331–349. [CrossRef]

48. Rai, R.; Zhang, Y.; Paudel, B.; Acharya, B.K.; Basnet, L. Land use and land cover dynamics and assessing the ecosystem service
values in the trans-boundary Gandaki River Basin, Central Himalayas. Sustainability 2018, 10, 3052. [CrossRef]

49. Wu, X.; Paudel, B.; Zhang, Y.; Liu, L.; Wang, Z.; Xie, F.; Gao, J.; Sun, X. Vertical distribution changes in land cover between 1990
and 2015 within the Koshi River Basin, Central Himalayas. J. Geogr. Sci. 2021, 31, 1419–1436. [CrossRef]

50. Da Silva, R.F.B.; Millington, J.D.; Moran, E.F.; Batistella, M.; Liu, J. Three decades of land-use and land-cover change in mountain
regions of the Brazilian Atlantic Forest. Landsc. Urban Plan. 2020, 204, 103948. [CrossRef]

http://doi.org/10.1002/ldr.3951
http://doi.org/10.3390/rs12030368
http://doi.org/10.1016/j.apgeog.2020.102174
http://doi.org/10.1016/j.scitotenv.2019.135153
http://www.ncbi.nlm.nih.gov/pubmed/31810665
http://doi.org/10.3390/su9040584
http://doi.org/10.1016/j.scitotenv.2018.10.382
http://doi.org/10.1046/j.1365-2427.2002.00918.x
http://doi.org/10.1016/j.ecolind.2018.12.050
http://doi.org/10.3390/ijerph121114192
http://www.ncbi.nlm.nih.gov/pubmed/26569270
http://doi.org/10.1016/j.scitotenv.2016.09.048
http://www.ncbi.nlm.nih.gov/pubmed/27668852
http://doi.org/10.1007/s11769-021-1229-1
http://doi.org/10.1016/j.scitotenv.2018.04.427
http://doi.org/10.1016/j.tree.2020.03.004
http://doi.org/10.1016/j.cosust.2014.08.005
http://doi.org/10.1890/070216
http://doi.org/10.1016/j.landusepol.2019.104233
http://doi.org/10.3390/land10020173
http://doi.org/10.1016/j.jenvman.2014.10.013
http://www.ncbi.nlm.nih.gov/pubmed/25463587
http://doi.org/10.1016/j.jenvman.2016.11.063
http://doi.org/10.1016/j.gecco.2019.e00599
http://doi.org/10.1002/wcc.228
http://doi.org/10.3390/su10093052
http://doi.org/10.1007/s11442-021-1904-2
http://doi.org/10.1016/j.landurbplan.2020.103948


Land 2022, 11, 638 20 of 22

51. Paudel, B.; Zhang, Y.; Li, S.; Liu, L.; Wu, X.; Khanal, N.R. Review of studies on land use and land cover change in Nepal. J. Mt. Sci.
2016, 13, 643–660. [CrossRef]

52. Maharjan, A.; Kochhar, I.; Chitale, V.S.; Hussain, A.; Gioli, G. Understanding rural outmigration and agricultural land use change
in the Gandaki Basin, Nepal. Appl. Geogr. 2020, 124, 102278. [CrossRef]

53. Karki, K.B.; Ojha, R.B. Land Degradation. In The Soils of Nepal; Springer: Berlin/Heidelberg, Germany, 2021; pp. 127–142.
54. Rimal, B.; Sharma, R.; Kunwar, R.; Keshtkar, H.; Stork, N.E.; Rijal, S.; Rahman, S.A.; Baral, H. Effects of land use and land cover

change on ecosystem services in the Koshi River Basin, Eastern Nepal. Ecosyst. Serv. 2019, 38, 100963. [CrossRef]
55. Bocchiola, D.; Brunetti, L.; Soncini, A.; Polinelli, F.; Gianinetto, M. Impact of climate change on agricultural productivity and food

security in the Himalayas: A case study in Nepal. Agric. Syst. 2019, 171, 113–125. [CrossRef]
56. Tilleard, S.; Ford, J. Adaptation readiness and adaptive capacity of transboundary river basins. Clim. Chang. 2016, 137, 575–591.

[CrossRef]
57. Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C. A regional-scale assessment of Himalayan glacial lake changes using

satellite observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 1–13. [CrossRef]
58. Fort, M. Natural hazards versus climate change and their potential impacts in the dry, northern Himalayas: Focus on the upper

Kali Gandaki (Mustang District, Nepal). Environ. Earth Sci. 2015, 73, 801–814. [CrossRef]
59. Bricker, J.D.; Schwanghart, W.; Adhikari, B.R.; Moriguchi, S.; Roeber, V.; Giri, S. Performance of models for flash flood warning

and hazard assessment: The 2015 Kali Gandaki landslide dam breach in Nepal. Mt. Res. Dev. 2017, 37, 5–15. [CrossRef]
60. Aryal, D.; Wang, L.; Adhikari, T.R.; Zhou, J.; Li, X.; Shrestha, M.; Wang, Y.; Chen, D. A model-based flood hazard mapping on the

southern slope of Himalaya. Water 2020, 12, 540. [CrossRef]
61. Pant, R.R.; Zhang, F.; Rehman, F.U.; Wang, G.; Ye, M.; Zeng, C.; Tang, H. Spatiotemporal variations of hydrogeochemistry and its

controlling factors in the Gandaki River Basin, Central Himalaya Nepal. Sci. Total Environ. 2018, 622, 770–782. [CrossRef]
62. Panthi, J.; Dahal, P.; Shrestha, M.L.; Aryal, S.; Krakauer, N.Y.; Pradhanang, S.M.; Lakhankar, T.; Jha, A.K.; Sharma, M.; Karki, R.

Spatial and temporal variability of rainfall in the Gandaki River Basin of Nepal Himalaya. Climate 2015, 3, 210. [CrossRef]
63. Bahadur, K.K. Spatio-temporal patterns of agricultural expansion and its effect on watershed degradation: A case from the

mountains of Nepal. Environ. Earth Sci. 2012, 65, 2063–2077. [CrossRef]
64. Sharma, S.; Khadka, N.; Hamal, K.; Shrestha, D.; Talchabhadel, R.; Chen, Y. How accurately can satellite products

(TMPA and IMERG) detect precipitation patterns, extremities, and drought across the Nepalese Himalaya? Earth Space
Sci. 2020, 7, e2020EA001315. [CrossRef]

65. Karki, R.; Talchabhadel, R.; Aalto, J.; Baidya, S.K. New climatic classification of Nepal. Theor. Appl. Climatol. 2016, 125, 799–808.
[CrossRef]

66. Zhang, Y.; Liu, L.; Li, B.; Zheng, D. Redetermine the region and boundaries of Tibetan Plateau. Geogr. Res. 2021, 40, 1543–1553.
67. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial

analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]
68. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150.

[CrossRef]
69. Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the enhanced vegetation index (EVI) and normalized difference

vegetation index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors 2007, 7, 2636. [CrossRef]
70. Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J.

Remote Sens. 2003, 24, 583–594. [CrossRef]
71. Fensholt, R.; Sandholt, I. Derivation of a shortwave infrared water stress index from MODIS near-and shortwave infrared data in

a semiarid environment. Remote Sens. Environ. 2003, 87, 111–121. [CrossRef]
72. Notarnicola, C.; Duguay, M.; Moelg, N.; Schellenberger, T.; Tetzlaff, A.; Monsorno, R.; Costa, A.; Steurer, C.; Zebisch, M. Snow

cover maps from MODIS images at 250 m resolution, Part 1: Algorithm description. Remote Sens. 2013, 5, 110. [CrossRef]
73. Ettehadi Osgouei, P.; Kaya, S.; Sertel, E.; Alganci, U. Separating built-up areas from bare land in Mediterranean cities using

sentinel-2a imagery. Remote Sens. 2019, 11, 345. [CrossRef]
74. Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The

shuttle radar topography mission. Rev. Geophys. 2007, 45, 1–33. [CrossRef]
75. Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in

ecology. Ecology 2007, 88, 2783–2792. [CrossRef] [PubMed]
76. Xu, W.; Wang, J.; Zhang, M.; Li, S. Construction of landscape ecological network based on landscape ecological risk assessment in

a large-scale opencast coal mine area. J. Clean. Prod. 2021, 286, 125523. [CrossRef]
77. Li, C.; Chen, J.; Liao, M.; Chen, G.; Zhou, Q. Ecological risk assessment of Shan Xin mining area based on remote sensing and

geography information system technology. J. Geogr. Inf. Syst. 2018, 10, 234. [CrossRef]
78. Anselin, L. Spatial econometrics. In A Companion to Theoretical Econometrics; Wiley-Blackwell: Hoboken, NJ, USA, 2001; p. 310330.
79. Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [CrossRef]
80. Chan, R.C.; Bhatta, K.D. Trans-Himalayan connectivity and sustainable tourism development in Nepal: A study of community

perceptions of tourism impacts along the Nepal—China Friendship Highway. Asian Geogr. 2021, 1–22. [CrossRef]
81. Wu, X.; Gao, J.; Zhang, Y.; Liu, L.; Zhao, Z.; Basanta, P. Land cover status in the Koshi River Basin, central Himalayas. J. Resour.

Ecol. 2017, 8, 10–19.

http://doi.org/10.1007/s11629-015-3604-9
http://doi.org/10.1016/j.apgeog.2020.102278
http://doi.org/10.1016/j.ecoser.2019.100963
http://doi.org/10.1016/j.agsy.2019.01.008
http://doi.org/10.1007/s10584-016-1699-9
http://doi.org/10.1016/j.rse.2016.11.008
http://doi.org/10.1007/s12665-014-3087-y
http://doi.org/10.1659/MRD-JOURNAL-D-16-00043.1
http://doi.org/10.3390/w12020540
http://doi.org/10.1016/j.scitotenv.2017.12.063
http://doi.org/10.3390/cli3010210
http://doi.org/10.1007/s12665-011-1186-6
http://doi.org/10.1029/2020EA001315
http://doi.org/10.1007/s00704-015-1549-0
http://doi.org/10.1016/j.rse.2017.06.031
http://doi.org/10.1016/0034-4257(79)90013-0
http://doi.org/10.3390/s7112636
http://doi.org/10.1080/01431160304987
http://doi.org/10.1016/j.rse.2003.07.002
http://doi.org/10.3390/rs5010110
http://doi.org/10.3390/rs11030345
http://doi.org/10.1029/2005RG000183
http://doi.org/10.1890/07-0539.1
http://www.ncbi.nlm.nih.gov/pubmed/18051647
http://doi.org/10.1016/j.jclepro.2020.125523
http://doi.org/10.4236/jgis.2018.102012
http://doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://doi.org/10.1080/10225706.2021.1943470


Land 2022, 11, 638 21 of 22

82. Paudel, B.; Zhang, Y.; Li, S.; Liu, L. Spatiotemporal changes in agricultural land cover in Nepal over the last 100 years. J. Geogr.
Sci. 2018, 28, 1519–1537. [CrossRef]

83. Nepal, P.; Khanal, N.R.; Zhang, Y.; Paudel, B.; Liu, L. Land use policies in Nepal: An overview. Land Degrad. Dev. 2020, 31,
2203–2212. [CrossRef]

84. Roy, P.S.; Roy, A.; Joshi, P.K.; Kale, M.P.; Srivastava, V.K.; Srivastava, S.K.; Dwevidi, R.S.; Joshi, C.; Behera, M.D.; Meiyappan, P.;
et al. Development of decadal (1985–1995–2005) land use and land cover database for India. Remote Sens. 2015, 7, 2401. [CrossRef]

85. Agrawal, A.; Ostrom, E. Collective action, property rights, and decentralization in resource use in India and Nepal. Politics Soc.
2001, 29, 485–514. [CrossRef]

86. Tiwari, P.C. Land-use changes in Himalaya and their impact on the plains ecosystem: Need for sustainable land use. Land Use
Policy 2000, 17, 101–111. [CrossRef]

87. Paudel, B.; Zhang, Y.; Yan, J.; Rai, R.; Li, L. Farmers’ perceptions of agricultural land use changes in Nepal and their major drivers.
J. Environ. Manag. 2019, 235, 432–441. [CrossRef] [PubMed]

88. Ojha, H.R.; Shrestha, K.K.; Subedi, Y.R.; Shah, R.; Nuberg, I.; Heyojoo, B.; Cedamon, E.; Rigg, J.; Tamang, S.; Paudel, K.P.; et al.
Agricultural land underutilisation in the hills of Nepal: Investigating socio-environmental pathways of change. J. Rural Stud.
2017, 53, 156–172. [CrossRef]

89. Khanal, N.R.; Watanabe, T. Abandonment of agricultural land and its consequences. Mt. Res. Dev. 2006, 26, 32–40. [CrossRef]
90. Chidi, C.L.; Sulzer, W.; Xiong, D.; Wu, Y.; Zhao, W.; Pradhan, P.K. Land use intensity dynamics in the Andhikhola watershed,

middle hill of Nepal. J. Mt. Sci. 2021, 18, 1504–1520. [CrossRef]
91. Rai, R.; Zhang, Y.; Paudel, B.; Khanal, N.R. Status of farmland abandonment and its determinants in the transboundary Gandaki

River Basin. Sustainability 2019, 11, 5267. [CrossRef]
92. Paudel, K.P.; Tamang, S.; Shrestha, K.K. Transforming land and livelihood: Analysis of agricultural land abandonment in the Mid

Hills of Nepal. J. For. Livelihood 2014, 12, 11–19.
93. Shah, K.U.; Dulal, H.B.; Johnson, C.; Baptiste, A. Understanding livelihood vulnerability to climate change: Applying the

livelihood vulnerability index in Trinidad and Tobago. Geoforum 2013, 47, 125–137. [CrossRef]
94. Palazzoli, I.; Maskey, S.; Uhlenbrook, S.; Nana, E.; Bocchiola, D. Impact of prospective climate change on water resources and

crop yields in the Indrawati basin, Nepal. Agric. Syst. 2015, 133, 143–157. [CrossRef]
95. Kc, B.; Race, D. Outmigration and land-use change: A case study from the Middle Hills of Nepal. Land 2020, 9, 2. [CrossRef]
96. Pandey, R.; Jha, S.K.; Alatalo, J.M.; Archie, K.M.; Gupta, A.K. Sustainable livelihood framework-based indicators for assessing

climate change vulnerability and adaptation for Himalayan communities. Ecol. Indic. 2017, 79, 338–346. [CrossRef]
97. Paudel, B.; Wu, X.; Zhang, Y.; Rai, R.; Liu, L.; Zhang, B.; Khanal, N.R.; Koirala, H.L.; Nepal, P. Farmland abandonment and its

determinants in the different ecological villages of the Koshi River Basin, Central Himalayas: Synergy of high-resolution remote
sensing and social surveys. Environ. Res. 2020, 188, 109711. [CrossRef] [PubMed]

98. Chalise, D.; Kumar, L. Land use change affects water erosion in the Nepal Himalayas. PLoS ONE 2020, 15, e231692. [CrossRef]
99. Niraula, R.R.; Gilani, H.; Pokharel, B.K.; Qamer, F.M. Measuring impacts of community forestry program through repeat

photography and satellite remote sensing in the Dolakha district of Nepal. J. Environ. Manag. 2013, 126, 20–29. [CrossRef]
100. Gautam, A.P.; Webb, E.L.; Eiumnoh, A. GIS assessment of land use/land cover changes associated with community forestry

implementation in the Middle Hills of Nepal. Mt. Res. Dev. 2002, 22, 63–69. [CrossRef]
101. Gautam, A.P.; Shivakoti, G.P.; Webb, E.L. Forest cover change, physiography, local economy, and institutions in a mountain

watershed in Nepal. Environ. Manag. 2004, 33, 48–61. [CrossRef] [PubMed]
102. Pangali Sharma, T.P.; Zhang, J.; Khanal, N.R.; Prodhan, F.A.; Paudel, B.; Shi, L.; Nepal, N. Assimilation of snowmelt runoff model

(SRM) using satellite remote sensing data in Budhi Gandaki River Basin, Nepal. Remote Sens. 2020, 12, 1951. [CrossRef]
103. Nie, Y.; Pritchard, H.D.; Liu, Q.; Hennig, T.; Wang, W.; Wang, X.; Liu, S.; Nepal, S.; Samyn, D.; Hewitt, K.; et al. Glacial change and

hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth Environ. 2021, 2, 91–106. [CrossRef]
104. Ren, J.; Qin, D.; Kang, S.; Hou, S.; Pu, J.; Jing, Z. Glacier variations and climate warming and drying in the central Himalayas.

Chin. Sci. Bull. 2004, 49, 65–69. [CrossRef]
105. Wang, Z.; Zhang, Y.; Yang, Y.; Zhou, W.; Gang, C.; Zhang, Y.; Li, J.; An, R.; Wang, K.; Odeh, I.; et al. Quantitative assess the driving

forces on the grassland degradation in the Qinghai—Tibet Plateau, in China. Ecol. Inform. 2016, 33, 32–44. [CrossRef]
106. Lehnert, L.W.; Meyer, H.; Meyer, N.; Reudenbach, C.; Bendix, J.O.R. A hyperspectral indicator system for rangeland degradation

on the Tibetan Plateau: A case study towards spaceborne monitoring. Ecol. Indic. 2014, 39, 54–64. [CrossRef]
107. Zhang, Z.; Duan, J.; Wang, S.; Luo, C.; Chang, X.; Zhu, X.; Xu, B.; Wang, W. Effects of land use and management on ecosystem

respiration in alpine meadow on the Tibetan plateau. Soil Tillage Res. 2012, 124, 161–169. [CrossRef]
108. Paudel, K.P.; Andersen, P. Assessing rangeland degradation using multi temporal satellite images and grazing pressure surface

model in Upper Mustang, Trans Himalaya, Nepal. Remote Sens. Environ. 2010, 114, 1845–1855. [CrossRef]
109. Rimal, B.; Baral, H.; Stork, N.E.; Paudyal, K.; Rijal, S. Growing city and rapid land use transition: Assessing multiple hazards and

risks in the Pokhara Valley, Nepal. Land 2015, 4, 957. [CrossRef]
110. Li, S.; Zhang, Y.; Wang, Z.; Li, L. Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service

functions. Ecosyst. Serv. 2018, 30, 276–286. [CrossRef]
111. Zhang, F.; Yushanjiang, A.; Wang, D. Ecological risk assessment due to land use/cover changes (LUCC) in Jinghe County,

Xinjiang, China from 1990 to 2014 based on landscape patterns and spatial statistics. Environ. Earth Sci. 2018, 77, 491. [CrossRef]

http://doi.org/10.1007/s11442-018-1559-9
http://doi.org/10.1002/ldr.3621
http://doi.org/10.3390/rs70302401
http://doi.org/10.1177/0032329201029004002
http://doi.org/10.1016/S0264-8377(00)00002-8
http://doi.org/10.1016/j.jenvman.2019.01.091
http://www.ncbi.nlm.nih.gov/pubmed/30710853
http://doi.org/10.1016/j.jrurstud.2017.05.012
http://doi.org/10.1659/0276-4741(2006)026[0032:AOALAI]2.0.CO;2
http://doi.org/10.1007/s11629-020-6652-8
http://doi.org/10.3390/su11195267
http://doi.org/10.1016/j.geoforum.2013.04.004
http://doi.org/10.1016/j.agsy.2014.10.016
http://doi.org/10.3390/land9010002
http://doi.org/10.1016/j.ecolind.2017.03.047
http://doi.org/10.1016/j.envres.2020.109711
http://www.ncbi.nlm.nih.gov/pubmed/32512374
http://doi.org/10.1371/journal.pone.0231692
http://doi.org/10.1016/j.jenvman.2013.04.006
http://doi.org/10.1659/0276-4741(2002)022[0063:GAOLUL]2.0.CO;2
http://doi.org/10.1007/s00267-003-0031-4
http://www.ncbi.nlm.nih.gov/pubmed/14708066
http://doi.org/10.3390/rs12121951
http://doi.org/10.1038/s43017-020-00124-w
http://doi.org/10.1007/BF02901744
http://doi.org/10.1016/j.ecoinf.2016.03.006
http://doi.org/10.1016/j.ecolind.2013.12.005
http://doi.org/10.1016/j.still.2012.05.012
http://doi.org/10.1016/j.rse.2010.03.011
http://doi.org/10.3390/land4040957
http://doi.org/10.1016/j.ecoser.2017.10.003
http://doi.org/10.1007/s12665-018-7676-z


Land 2022, 11, 638 22 of 22

112. Panta, M.; Kim, K.; Joshi, C. Temporal mapping of deforestation and forest degradation in Nepal: Applications to forest
conservation. Forest Ecol. Manag. 2008, 256, 1587–1595. [CrossRef]

113. Acharya, K.P.; Dangi, R.B.; Acharya, M. Understanding forest degradation in Nepal. Unasylva 2011, 62, 238.
114. Thapa, U.K.; George, S.S. Detecting the influence of climate and humans on pine forests across the dry valleys of eastern Nepal’s

Koshi River basin. Forest Ecol. Manag. 2019, 440, 12–22. [CrossRef]
115. Sleeter, B.M.; Sohl, T.L.; Bouchard, M.A.; Reker, R.R.; Soulard, C.E.; Acevedo, W.; Griffith, G.E.; Sleeter, R.R.; Auch, R.F.;

Sayler, K.L. Scenarios of land use and land cover change in the conterminous United States: Utilizing the special report on
emission scenarios at ecoregional scales. Glob. Environ. Chang. 2012, 22, 896–914. [CrossRef]

116. Murton, G. Making mountain places into state spaces: Infrastructure, consumption, and territorial practice in a Himalayan
borderland. Ann. Am. Assoc. Geogr. 2017, 107, 536–545. [CrossRef]

117. Cui, B.; Zhang, Y.; Liu, L.; Xu, Z.; Wang, Z.; Gu, C.; Wei, B.; Gong, D. Spatiotemporal variation in rainfall erosivity and correlation
with the ENSO on the Tibetan Plateau since 1971. Int. J. Environ. Res. Public Health 2021, 18, 11054. [CrossRef] [PubMed]

118. Auch, R.F.; Wellington, D.F.; Taylor, J.L.; Stehman, S.V.; Tollerud, H.J.; Brown, J.F.; Loveland, T.R.; Pengra, B.W.; Horton, J.A.;
Zhu, Z.; et al. Conterminous United States Land-Cover Change (1985–2016): New Insights from Annual Time Series. Land 2022,
11, 298. [CrossRef]

119. Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and
assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [CrossRef]

120. Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate
Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151.

http://doi.org/10.1016/j.foreco.2008.07.023
http://doi.org/10.1016/j.foreco.2019.03.013
http://doi.org/10.1016/j.gloenvcha.2012.03.008
http://doi.org/10.1080/24694452.2016.1232616
http://doi.org/10.3390/ijerph182111054
http://www.ncbi.nlm.nih.gov/pubmed/34769576
http://doi.org/10.3390/land11020298
http://doi.org/10.1016/j.rse.2014.02.015

	Introduction 
	Materials and Methods 
	Study Area 
	Land Cover Data Sources and Processing 
	Ecological Risk Assessment 
	Spatial Autocorrelation Analysis 

	Results 
	Land-Cover Changes 
	Spatiotemporal Changes in Ecological Risk Pattern 
	Analysis of Ecological Risk Changes in Sub-Basin and Countries 
	Spatial Autocorrelation Analysis of Ecological Risk 

	Discussion 
	Analysis of Land Cover Dynamics Change 
	Spatial-Temporal Characteristics Change in ERI 
	Implication and Uncertainty of Ecological Risk Assessment 

	Conclusions 
	References

