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Abstract: Fires can have an anthropogenic or natural origin. The most frequent natural fire cause
is lightning. Since anthropogenic and lightning fires have different climatic and socio-economic
drivers, it is important to distinguish between these different fire causes. We developed random forest
models that predict the fraction of anthropogenic and lightning fire incidences, and their burned
area, at the level of the Nomenclature des Unités Territoriales Statistiques level 3 (NUTS3) for Europe.
The models were calibrated using the centered log-ratio of fire incidence and burned area reference
data from the European Forest Fire Information System. After a correlation analysis, the population
density, fractional human land impact, elevation and burned area coefficient of variation—a measure
of interannual variability in burned area—were selected as predictor variables in the models. After
parameter tuning and running the models with several train-validate compositions, we found that the
vast majority of fires and burned area in Europe has an anthropogenic cause, while lightning plays a
significant role in the remote northern regions of Scandinavia. Combining our results with burned
area data from the Moderate Resolution Imaging Spectroradiometer, we estimated that 96.5 ± 0.9%
of the burned area in Europe has an anthropogenic cause. Our spatially explicit fire cause attribution
model demonstrates the spatial variability between anthropogenic and lightning fires and their
burned area over Europe and could be used to improve predictive fire models by accounting for
fire cause.

Keywords: fire cause; burned area; ignition; random forest model; Europe

1. Introduction

Wildfires are common in many ecosystems [1]. The major natural cause of wildfires is
lightning [2], but humans have increasingly affected fire regimes since their sedentariza-
tion [3]. Due to climate change, fire weather extremes such as droughts and heatwaves
will become more frequent and put an upward pressure on fire risk [4–8]. As such, some
regions on Earth have experienced an increase in fire extent, magnitude and frequency over
past decades [9,10].

Lightning and anthropogenic fires are fundamentally different from each other. In
the United States, for example, lightning fires tend to be larger and more intense, while
anthropogenic fires are more frequent and occur during a larger period of the year than
lightning fires [9]. Moreover, the human influence on the spatial and temporal patterns
of fires is increasing, such as by promoting drier fuel conditions as a result of land use
changes [11].

The attribution of fires to either lightning or human causes has a high spatial variability.
This spatial variability is largely explained by the seasonal coincidences between lightning
occurrence and low fuel moisture [12] and the human accessibility of landscapes [11]. In
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Southern Europe, more than 95% of the fires with a known cause have an anthropogenic
origin [13,14]. In central Europe, more than 99% of fires are caused by humans [13]. In
mountainous regions, the fraction of lightning fires is higher. In Austria, for example,
Müller et al. [15] documented that 15% of the fires were started by lightning, while their
relative occurrence increased with altitude. Remote northern landscapes also experience
relatively higher fractions of lightning fires. Larjavaara et al. [16], for example, calculated
that 13% of fires in Finland were started by lightning.

A better understanding of the spatial variation in ignition causes is imperative to
improve or create policies that aim to adapt to or mitigate the detrimental effects of fires.
Discriminating between anthropogenic and lightning ignitions positively affected the
predictive power of a fire model for Switzerland [17]. Several studies have attempted to
identify key wildfire drivers and to what extent they affect the fire regime over parts of
Europe [13,17–22]. None of these studies have done this in a spatially explicit manner for
Europe while also differentiating between anthropogenic and lightning fires.

Here, we used a fire cause reference dataset from the European Forest Fire Information
System (EFFIS) [23] that registered the causes of fires and burned area over many European
regions to better understand the drivers of spatial variation in the relative occurrences of
anthropogenic and lightning fires. We used this dataset to calibrate and validate a European
fire cause attribution model using machine learning. In addition, the model was used to
estimate the attribution between anthropogenic and lightning fires for regions where no
reference data were available. By doing so, we created the first pan-European fire cause
attribution model.

2. Data and Methods
2.1. Reference Data of Anthropogenic and Lightning Fires and Burned Area

The European Forest Fire Information System (EFFIS) collects data on wildfires from
member state countries in the European Union, as well as from other European countries.
We retrieved data on the number of wildfires (fire incidence), their causes and burned
area from the European Fire Database (EFD) from the EFFIS. In this study, we used data
reported between 2001 and 2019, but reported years vary between countries (Table A1).
The data are stored at Nomenclature des Unités Territoriales Statistiques (NUTS) level 3 to
overcome the differences between different administrative levels between countries. The
NUTS regions are statistical subdivisions of countries on the basis of demographic data.
NUTS3 is the finest subdivision; however, NUTS3 regions vary in size from approximately
20 km2 in densely populated areas to more than 100,000 km2 in remote areas.

The data in the EFD include records of all known uncontrolled vegetation fires [24].
Different European countries often have their own systems to classify fire causes and, hence,
the EFFIS has developed a conversion scheme to harmonize the dataset [25]. Despite these
efforts, minor reporting differences between countries may still be present in the EFD.

Since this research attempts to quantify the spatial variation in fire cause, the analysis
only included fires with known (anthropogenic or lightning) fire causes, thereby excluding
45% of the fires and 32% of the burned area with unknown cause. Since we were interested
in the relative distribution between anthropogenic and lightning fires, we assumed that the
fires with unknown causes followed the same distribution as the reported fires. This as-
sumption might be an oversimplification, as authorities might favor investigating probable
anthropogenic fire causes at the expense of lightning caused fires due to resource limita-
tions. No fires were reported from The United Kingdom, Belgium, Austria, Serbia, Norway,
Albania, Denmark, Ireland, North Macedonia, Iceland, Malta, Liechtenstein, Luxembourg
nor Montenegro, which together account for 347 NUTS3 regions. In addition, another 317
out of 1521 NUTS3 regions had not recorded fires, 33 regions only recorded fires with an
unknown cause, and 2 registered the fires but not the burned area. All these regions were
excluded from the analysis and considered as regions with “no data”, so, ultimately, the
data from 822 NUTS3 regions were used in the analysis (Figures 1 and 2).
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2.2. Anthropogenic Fire Drivers

Since humans cause the majority of forest fires in Europe, population density was
used as a predictor variable. This variable was obtained from Eurostat, the statistical office
of the European Union, which offers annual demographic data on several NUTS levels
between 1990 until 2019. For our analysis, we calculated the multi-year average within the
temporal extent for the NUTS3 regions covered in the EFD.

Since population density is not an inclusive measure of anthropogenic influences on
landscapes, we also included the percentage of low impact land [26] as a predictor variable.
The low impact land layer dataset was generated at 1 km2 resolution by Jacobson et al. [26]
by combining global and spatially explicit datasets on human impacts including ecoregions,
land use, nighttime lights, human population, livestock density, forest cover change and
areas protected for biodiversity conservation. Jacobson et al. [26] further discriminated
between low and very low impact. As such, both layers existed of grid cells of either human
impacted (0) or (very) low impacted land (1). We used the low impact layer in our study,
and, since we are interested in the human land impact, we calculated the percentage of
human impacted land per NUTS3 region as the complement of the low impact land, since
low and human impacted land sum to unity. For the 1521 NUTS3 regions in the EFD, the
percentage of human impacted land varied between 1% and 100% (Table 1).

Table 1. Overview of all environmental variables used in the fire cause attribution model. Summary
statistics (Min: minimum, Max: maximum, x: mean, s: standard deviation) were calculated over the
1521 NUTS3 regions in the European Fire Database from the European Forest Fire Information System.

Independent Variable Source Min Max x s

Population density [people per km2] Eurostat 1.98 8927 235.9 538.7
Human land impact [%] Jacobsen et al., 2019 [26] 1.0 100.0 80 18

Lightning flashes per km2 yr−1 Cecil et al., 2014 [27] 0.13 21.32 4.36 2.78
Burned area coefficient of variation [-] Giglio et al., 2018 [28] 0.53 12.67 4.43 4.18

Altitude [m] Danielson & Gesch, 2011 [29] −1.22 2266.0 354.9 368.71
Terrain Ruggedness Index [-] Danielson & Gesch, 2011 [29] 1.37 965.04 155.77 165.66

Tree cover density [%] Copernicus Land Monitoring
Service [30] 0 64 24 14

2.3. Climatic Fire Drivers

We retrieved the mean annual lightning flash rate at 0.5◦ resolution from the remotely
sensed lightning product that combines observations from the Lightning Imaging Sensor
(LIS) and the Optical Transient Detector (OTD) [27]. The LIS detected lightning between
1998 and 2014 between 38◦ N and 38◦ S, whereas the OTD achieved global coverage
between 1995 and 2000. The flash rate estimates over the parts of Europe south of 38◦ N
stem from combining LIS and OTD data, while the flash rate estimates at higher latitudes
originate from OTD only. The lightning flash rate has been shown to correlate strongly with
cloud-to-ground strikes, which are relevant as potential ignition sources [31]. The mean
annual flashes per km2 for each NUTS3 region were calculated as a distance-weighted
mean for the NUTS region, centroid from the lightning flash rates of surrounding 0.5◦ grid
cell centers.

Chuvieco et al. [20] established that the interannual variability of wildfires can serve
as a proxy for some of the most significant climatic factors that drive forest fires. They
described the interannual variability with the burned area coefficient of variation (BA_CV).
This metric is defined as the ratio between the interannual standard deviation of the burned
area and the annual mean of the burned area over a given number of years.

The BA_CV was computed using data from the MCD64A1 product of the Moderate
Resolution Imaging Spectroradiometer (MODIS) [28] between 2001 and 2019, aggregated
over the NUTS3 regions. The MCD64A1 dataset has a pixel size of 25 ha, and it is well
known that the MCD64A1 product underestimates small fire occurrences [32]. Since a
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burned area product that adequately resolves small fires does not currently exist, we used
the MCD64A1 product because it captures the spatiotemporal dynamics of fires larger than
25 ha. As high BA_CV values correspond to a lower fire incidence, and vice versa, the
BA_CV component can be interpreted as a surrogate for the fire return interval. For the
NUTS3 regions where MODIS did not register any burned area, the BA_CV was calculated
by using an empirically determined replacement value of the annual mean burned area of
10−10 km2, as this value approximates zero yet still allows for the calculation of the BA_CV.

2.4. Landscape Fire Drivers

Using several input data sources, the United States Geological Survey (USGS) and
the National Geospatial-Intelligence Agency (NGA) developed a digital elevation model
with global coverage with a spatial resolution of approximately 250 m: the Global Multi-
resolution Terrain Elevation Data (GMTED2010) [29]. Because the literature suggests that
elevation influences European wildfire patterns [33,34], the GMTED2010 dataset was used
to calculate the mean elevation for each NUTS3 region.

Similar to elevation, the heterogeneity of the terrain is another topographic parameter
that has been linked to wildfire incidence [35,36]. Riley et al. [37] described terrain rugged-
ness as the total change between a reference grid cell and its surroundings. Thus, terrain
ruggedness is a measure of spatial variation in altitude. Therefore, we used the standard
deviation of the elevation of all pixels per NUTS3 region as a proxy of terrain ruggedness.

We also included tree cover as a predictor variable in the analysis. The variable
was derived by computing the zonal mean per NUTS3 region from the tree cover map
developed by the Copernicus Land Monitoring Service [30], which contains the fraction
cover of tree crowns in Europe at a 10 m spatial resolution.

2.5. Statistical Analyses
2.5.1. Transformation for Compositional Data

We did not use the absolute number of fires and burned area from the EFD in the
analyses, as that would have resulted in inconsistencies between regions because of the
differences in temporal coverage. Therefore, we calculated the percentages of anthro-
pogenic and lightning fires and their burned area (Figures 1 and 2). In this calculation, the
percentages of anthropogenic and lightning fires amount to 100 percent.

Although the use of percentages or fractions facilitates a comparison between NUTS3
regions, the data cannot directly be used as a response variable in a statistical model. This
is because the fractions of lightning and anthropogenic fires sum to one and, as such,
are compositional data. This implies that predicting the fractions of anthropogenic and
lightning fires separately in a model would not necessarily result in two fractions that
amount to a whole [38–40]. To overcome this, the independent variable (y) in the statistical
analysis was defined using a centered log-ratio (Equation (1)).

y = ln

(
fanthropogenic

flightning

)
(1)

In addition, to overcome problems with undefined ratios and logarithms due to zero
values, the anthropogenic fraction was put at 10−5 when the anthropogenic fraction was
zero, and the lightning fraction to 10−5 when the lightning fraction was zero.

2.5.2. Correlations

We explored the relationships between the anthropogenic, climatic and landscape
drivers and the fractions of anthropogenic and lightning fires, and their burned area, using a
correlation analysis. In addition to the Pearson correlation coefficient (r), we also calculated
the Spearman’s rank correlation coefficients (ρ) to account for non-Gaussian distributions
and non-linear relationships.
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2.5.3. Random Forest Model

We employed two random forest models in our fire cause attribution modeling. The
first model attributes the fraction of anthropogenic and lightning fires, whereas the second
one attributes the burned area of anthropogenic and lightning fires. We included only vari-
ables in the models that were significant at p < 0.05 from the Spearman correlation analysis.

The models were trained on a randomly sampled set of 575 NUTS3 regions. The
remaining 247 NUTS3 regions were used to validate the performance of the model. To find
the best parameters for each model, 50 different parameter combinations were randomly
drawn from a pre-defined parameter space. Each combination was fitted to the training
data using 3-fold cross-validation. This process was repeated on a new parameter space,
with finer intervals, around the parameter set that yielded the decision tree with the highest
coefficient of determination (R2). After that, the process of parameter tuning was repeated
for all possible combinations of statistically significant predictor variables. Thereafter, only
the variable combinations that yielded the highest R2 scores were considered in the model.

To test the robustness of the model, the variability imposed by the random selection
of the training and validation datasets was assessed. Both models were run 100 times for
different training-validation compositions. In each run, an extrapolation was done for the
NUTS3 zones where no data was reported. Subsequently, the variability per region was
computed by means of the standard deviation from the 100 predicted values per NUTS3
region. The modeled outputs were derived from the random forest model that yielded the
highest R2 scores in all runs.

Since the model was calibrated to the NUTS3 scale, it is not viable to use it to predict
fractions on a national or continental level. The fraction of anthropogenic burned area
per country can be calculated as the mean anthropogenic fraction weighted by mean
annual burned area per NUTS3 region from the spaceborne MODIS MCD64A1 dataset [28].
Similarly, the fraction of the anthropogenic burned area for the whole of Europe can also
be estimated.

3. Results and Discussion
3.1. Variable Correlations

The correlation analysis between the anthropogenic, climatic and landscape drivers
and the fractions of anthropogenic and lightning fires, and their burned area, indicated
that they were mostly non-linear, as the Spearman’s rank correlation coefficients (Figure 3)
outperformed the Pearson correlations. In addition, most relationships exhibited statistical
significance at p < 0.05. The relationships between the annual lightning flashes and the
fire fractions were not statistically significant and, therefore, excluded from the analysis.
A possible reason for the absence of a statistically significant correlation is the fact that
the lightning flashes dataset is characterized by a strong northward decreasing gradient,
which is not as pronounced in the anthropogenic- and lightning-caused fire incidence and
burned fractions.

In addition to the dependent-independent variable correlations, the correlation matrix
in Figure 3 also reveals some striking collinear relationships between predictor variables,
such as the mean altitude and terrain ruggedness index (ρ = 0.87). Besides the fact
that the terrain ruggedness was derived from the same dataset as the mean altitude, this
correlation is a logical result, as terrains will be more rugged if there are more elevation
differences. Similarly, more lightning flashes will occur in more rugged terrains (ρ = 0.52)
due to orographic convection processes [41]. The correlation coefficients also suggest that
enhanced human land impact is associated with a decreased tree cover density (ρ = −0.52).
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Another interesting collinear correlation was found between the burned area coeffi-
cient of variation and annual lightning flashes (ρ = −0.33). High burned area coefficients
are associated with low lightning flash rates. However, as high burned area coefficients
relate to a low fire return interval, the trend also implies that there is a positive correlation
between the amount of lightning strikes and the fire return interval. The correlation in our
data may, therefore, merely be the result of latitudinal climate differences that influence
both variables.

A more detailed representation of the statistical relationships between the predictor
variables and the anthropogenic fire incidence and burned area fractions revealed clustered
relationships (Figure 4). For example, most areas have human land impact fractions larger
than 50%, while most anthropogenic fire and burned area fractions are larger than 80%.
Similarly, high anthropogenic fire and burned area fractions are associated with lower
elevation and terrain ruggedness. Although most low population density values are also
clustered to high anthropogenic fire and burned area fractions, there appears to be less
scatter in the trend. Low anthropogenic fire and burned area fractions are almost exclusively
encountered in regions with low population density, and very high population density
almost exclusively in regions where all fires are of anthropogenic origin.



Land 2022, 11, 651 8 of 19

Land 2022, 11, x FOR PEER REVIEW 8 of 19 
 

exclusively encountered in regions with low population density, and very high popula-
tion density almost exclusively in regions where all fires are of anthropogenic origin. 

Unlike the other independent variables, the data of the tree cover density are not 
skewed. Although the scatter plots in Figure 4G,H are somewhat noisy, they exhibit mod-
erate negative correlations. Thus, high anthropogenic fire incidence and burned area frac-
tions are associated with low tree cover densities. However, as mentioned before, tree 
cover density is also strongly negatively correlated to the human land impact (𝜌 = −0.52, 
Figure 3). 

 
Figure 4. Scatter plots with the anthropogenic fire incidence and burned area fractions for each 
NUTS3 region with known data in the European Fire Database, against the NUTS3 aggregated in-
dividual predictor variables: Human Land Impact (A,B), Mean Altitude (m) (C,D), Population per 

Figure 4. Scatter plots with the anthropogenic fire incidence and burned area fractions for each
NUTS3 region with known data in the European Fire Database, against the NUTS3 aggregated
individual predictor variables: Human Land Impact (A,B), Mean Altitude (m) (C,D), Population
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Unlike the other independent variables, the data of the tree cover density are not
skewed. Although the scatter plots in Figure 4G,H are somewhat noisy, they exhibit
moderate negative correlations. Thus, high anthropogenic fire incidence and burned area
fractions are associated with low tree cover densities. However, as mentioned before, tree
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cover density is also strongly negatively correlated to the human land impact (ρ = −0.52,
Figure 3).

The Spearman correlation coefficients between the fire fractions and burned area
coefficient of variation are weak, but statistically significant nonetheless. A probable cause
for the low correlation coefficients is the apparent clustering of data points at BA_CV of
around 12 and 4.8, which is caused by imputation values that we implemented for the
interpolations in NUTS3 regions where no burned areas were reported within the temporal
extent of the EFD. The positive Spearman coefficients imply that the higher the burned
area coefficient of variation, and thus the smaller the fire return interval, the higher the
fractions of anthropogenic fire incidence and burned area. This is in line with the findings of
Catteau et al. [9], who concluded that fire frequency is higher in anthropogenic dominated
fire regimes compared to lightning-dominated regimes.

In all relationships, outliers are present. These might be related to data quality issues
or because of simplification issues: the variables can have a high spatial variability within a
NUTS3 region; however, we used zonal averages in the analysis.

3.2. Random Forest Models

After parameter tuning, both random forest models found an optimal R2 when the
altitude, burned area coefficient of variation, human land impact and population density
were used as explanatory variables. The best R2 that was found after 100 model runs with
different train-validate compositions was 0.34 for the fire incidence and 0.35 for the burned
area fractions model. The corresponding mean absolute errors (MAE) of the extrapolations
of the test data were 0.07 for the fire incidence model and 0.05 for the burned area model.
The relatively small MAEs in both models are partly related to the data distribution, which
is primarily skewed towards anthropogenic fires and burned area fractions between 0.9
and 1. Therefore, most model predictions also fall within this range and absolute errors
remain small.

These performance metrics were based on a single train-validate composition. A more
robust measure of model performance is given by comparing the known fire incidence
and burned area fractions of each NUTS3 region to the average predicted fractions of the
100 model runs with different train-validate compositions (Figure 5). This shows that, on
average, both models have a tendency to overpredict the anthropogenic fire incidence and
burned area fractions, as the observations ranged between fractions 0 and 1, while the
estimated fractions started around 0.75 for the fire incidence model and around 0.6 for the
burned area model.
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In the fire incidence model that yielded the highest R2, the human land impact variable
has the greatest relative contribution in determining the fire incidence fraction (Figure 6A).
In the burned area model, the population density is the main contributor to the output frac-
tion (Figure 6B). A likely reason for this difference could be that, regardless of population
density, more fires occur in areas with human land impact, while a high population density
might be a limiting factor for a fire to grow [42]. In both models, population density and
altitude also have a relatively high R-squared, while the burned area coefficient of variation
contributes the least to the modelled output.
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(A) anthropogenic and lightning fire incidence random forest model and the (B) anthropogenic and
lightning burned area random forest model.

A comparable pattern arises when the average loss in R2, due to the exclusion of a
predictor variable, is used as a measure of variable importance (Figure 7). The average R2

of 100 model runs with different train-validate compositions was 0.25 ± 0.04 for the fire
incidence model and 0.24 ± 0.05 for the burned area model. When either the altitude or
human land impact variables were removed from the fire incidence model, the average R2

of 100 runs decreased to 0.18 ± 0.045, while the exclusion of the burned area coefficient
of variation caused the R2 to decrease to 0.21 ± 0.047. Contradictory to the fire incidence
model, the biggest average loss in R2 in the burned area model resulted from excluding
the population density variable (R2 = 0.18 ± 0.044), while the exclusion of the human land
impact variable resulted in an R2 of 0.21 ± 0.041.

The percentage of anthropogenic fire incidence, modelled by the random forest with
the highest R2 score (Figure 8), displays similar geographic patterns as the reference
data in the EFD (Figure 1). In remote regions, such as parts of Iceland and Norway,
the percentage of anthropogenic fires is lower than in populous areas such as parts of
Germany or Denmark. Also in mountainous regions, such as the Austrian Alps, the model
predicts lower anthropogenic fire incidence fractions compared to lower elevated areas.
Concurrently, the variability in the predictions imposed by the randomness of the selection
of the train-validate data is highest in the regions with the lowest anthropogenic fire
occurrence (Figure 9). This observation supports the observation of the models’ tendency
to overestimate the lower anthropogenic fire fractions, inferred from Figure 5.
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Figure 7. The average loss in R2 caused by excluding a predictor variable for (A) the anthropogenic
and lightning fire incidence and (B) the burned area model. This was assessed by determining
the mean R2 score of 100 model runs with different train-validate compositions, using the altitude,
burned area coefficient of variation, human land impact and population density as explanatory
variables (blue bars) and the mean R2 score of 100 different train-validate model runs, excluding one
of these variables (grey bars).
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Statistiques 3 (NUTS3) region extrapolated with a random forest model.

In Western Europe, such as parts of England, Belgium and Germany, the model pre-
dicts anthropogenic fire incidences higher than 99%. Although this might appear extreme
compared to the surrounding NUTS3 regions in the EFD (Figure 1), the extrapolated re-
gions cover some of the most populous zones of Europe such as, for example, the London
metropolitan and Ruhr-Rhine areas.



Land 2022, 11, 651 12 of 19
Land 2022, 11, x FOR PEER REVIEW 12 of 19 
 

 
Figure 9. Percentage of variation of the extrapolated anthropogenic fire incidence per Nomenclature 
des Unités Territoriales Statistiques 3 (NUTS3) region. The variability is defined as one standard 
deviation of all outputs of the model in 100 different train-validate compositions. 

In Western Europe, such as parts of England, Belgium and Germany, the model pre-
dicts anthropogenic fire incidences higher than 99%. Although this might appear extreme 
compared to the surrounding NUTS3 regions in the EFD (Figure 1), the extrapolated re-
gions cover some of the most populous zones of Europe such as, for example, the London 
metropolitan and Ruhr-Rhine areas. 

The relationship between fire incidence and remoteness is also present in the mod-
elled percentage of anthropogenic burned area (Figure 10). The extrapolated percentage 
of anthropogenic fire incidence is significantly lower in parts of Iceland, Norway and Scot-
land compared to, for example, England or Denmark. In addition, the fractions of anthro-
pogenic burned area in these regions appear to be lower than those of fire incidence, which 
is likely due to the fact that lightning fires are generally larger but occur less frequently 
than anthropogenic fires [9]. The extrapolation variability imposed by the random selec-
tion of the train-validate data is high in remote areas (Figure 11). 

Figure 9. Percentage of variation of the extrapolated anthropogenic fire incidence per Nomenclature
des Unités Territoriales Statistiques 3 (NUTS3) region. The variability is defined as one standard
deviation of all outputs of the model in 100 different train-validate compositions.

The relationship between fire incidence and remoteness is also present in the modelled
percentage of anthropogenic burned area (Figure 10). The extrapolated percentage of
anthropogenic fire incidence is significantly lower in parts of Iceland, Norway and Scotland
compared to, for example, England or Denmark. In addition, the fractions of anthropogenic
burned area in these regions appear to be lower than those of fire incidence, which is
likely due to the fact that lightning fires are generally larger but occur less frequently than
anthropogenic fires [9]. The extrapolation variability imposed by the random selection of
the train-validate data is high in remote areas (Figure 11).

In contrast to the fractional fire incidence, a relationship between elevation and the
percentage of burned area is not evident from our modelled results. In the burned area frac-
tions retrieved from the EFD, such a relationship is existing, albeit not as obvious as for the
fire incidence (Figure 2). Although the relative contribution of the average altitude variable
is lower in the burned area model than in the fire incidence one (Figure 6), the prediction
variability is somewhat higher in mountainous regions compared to non-mountainous
regions (Figure 11). Therefore, it might be possible that the model overestimates the
anthropogenic burned area in mountainous areas.

Similar to the anthropogenic fire incidence extrapolations in western and central
Europe, the predicted anthropogenic burned area is predominantly larger than 99%. This
fits the patterns of the EFD data as well (Figure 2). Both the fire incidence and burned area
models are capable of predicting anthropogenic fire incidence and burned area fractions at
the NUTS3 scale. The models tend to overpredict the anthropogenic fractions, leading to
more variability in the predictions in regions where lightning fires play a significant role.
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We combined the percentage of anthropogenic burned area per NUTS3 region from
the EFD (Figure 2) and the extrapolations of the random forest model (Figure 10) with the
MODIS burned area per NUTS3 region to determine the fraction of anthropogenic burned
area per country (Figure 12). The percentages of anthropogenic burned area are lowest
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in the northern countries Sweden (54%), Finland (67%) and Iceland (70%), while Norway
exhibited a higher anthropogenic burned area (87%). Unlike the fractions in Sweden and
Finland, which are based on observations from the EFD, the high anthropogenic burned
area fraction in Norway might be the result of the overpredicting behavior of the random
forest model, since the fraction is solely based on model extrapolations.
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Similarly, for Austria, we derived an anthropogenic burned area percentage of 99.7%,
while for the neighboring alpine country Switzerland this was 90.9%. Since Austrian
observations lacked in the EFD, this percentage was based on modelled values, while
the one for Switzerland was predominantly based on data from the EFD. In addition,
Müller et al. [15] notes that a significant portion (15%) of fires in Austria is caused by
lightning, and Conedera et al. [43] estimated that lightning was responsible for only 4.1%
of the burned area in the Alps. Therefore, it is possible that the calculated 99.7% for the
anthropogenic burned area fraction in our model for Austria may be an overestimation.

Another potential outlier is Slovenia, where 68% of burned area was attributed to
anthropogenic causes. Since the EFD contained data for all NUTS3 regions in Slovenia,
this may be related to inconsistencies in data harmonization between different countries in
the EFD.

In densely populated countries, such as the Netherlands and Belgium, fires are rare,
but, because of easy access, nearly all of the fires and burned area are of anthropogenic
origin. Likewise, in eastern European countries, such as Romania, Bulgaria, Poland and
the Czech Republic, almost all of the burned area has an anthropogenic cause. This is
likely related to land use changes, which have facilitated the formation of large fire prone
areas [44].

In France, we estimated that 86.7% of the burned area is due to anthropogenic causes,
which is a few percent lower than in surrounding countries. Ganteaume and Guerra [21]
showed that wildfire drivers in southeastern France vary spatially and seasonally, depend-
ing on the fire source. Therefore, it is likely that the relatively low fraction of anthropogenic
burned area in France, is a consequence of the high diversity in climate, land use, topogra-
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phy and socio-economic conditions in the country, which includes remote mountainous
regions with prevalent lightning fire occurrence.

Based on the MODIS burned area data across Europe and the observations and
extrapolations for all NUTS3 regions in the EFD, we estimated that 96.5 ± 0.9% of all
the burned area in Europe is from anthropogenic origin.

3.3. Model Performance

The R2 scores of the models that we selected for the extrapolations suggest a reasonable
fit between the train and validate datasets. The model performance was partly influenced
by external factors such as the selection of predictor variables. Our final models only
included four variables, as the selected combinations yielded the best scores, and we
wanted to limit the models’ loss in predictive power as a result of collinearity among the
variables. Despite including the most prominent anthropogenic, landscape and climatic
drivers of causes of fire in our model, it may be possible that other variables may further
enhance model performance. One particular variable of interest could be the seasonal
correlation between lightning and burned area [45], as this proxy may further constrain the
likelihood of lightning fires.

Another external factor impacting the R2 score of the model is the quality of the
input data. Despite the harmonization of the data in the European classification scheme,
reporting inconsistencies between countries persist. The fraction of anthropogenic fire inci-
dence in most Greek NUTS3 regions, for example, is markedly lower than in surrounding
Mediterranean countries (Figure 1). The same goes for the anthropogenic burned area
fraction in Slovenia (Figures 2 and 12). There is, however, no indication that fire patterns in
these countries are indeed anomalous compared to neighboring countries. In addition, the
data in the EFD is built up of empirical observations, suggesting a connection to terrain
accessibility as well. Fires in areas that are difficult to access, which will predominantly
be caused by lightning, will, therefore, more likely pass unnoticed or their cause will be
harder to retrace, than it would in highly accessible areas. Moreover, as noted before, the
actual cause of fires that have been classified as unknown might have been uninvestigated
rather than being undetermined. This might have impacted the ratio between anthro-
pogenic and lightning induced fires in some NUTS3 regions and could partially explain the
overestimating behavior of the model.

In addition, the data in the European Fire Database is recorded at the administrative
NUTS3 scale, which means that the subdivision of the regions is based on population
density, rather than equal surface area. Therefore, remote NUTS3 regions often cover a
large area. Since the data of the predictor variables were aggregated to the NUTS3 scale as
well, a large variation in anthropogenic, climate and landscape drivers within a zone will
get lost in the aggregation process. This problem becomes more prominent when the area
of a NUTS3 region gets larger. Therefore, it will be harder for the model to make precise
predictions for large NUTS3 regions.

The composition of the train and validate data sets also affected the model performance
(Figures 9 and 11). Each composition is randomly drawn from all data in the EFD, but
only 17% of NUTS3 regions in the EFD have reported a lightning induced burned area
of more than 10%, and 23% of the regions had a lightning fire incidence of more than
10%. Therefore, it is likely that regions with relatively high lightning fires and burned area
fractions will be underrepresented in a random train-validate selection. Correcting for
the imbalance between anthropogenic and lightning fires in the statistical approach may
further improve the model performance.

3.4. Implications and Directions for Future Work

Although our predictive models capture some important spatial heterogeneity of
anthropogenic, climatic and landscape drivers, model performance could be further im-
proved by, for example, including more training data in the model, especially from regions
dominated by lightning fires. Moreover, the current model provides a static view of the
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anthropogenic and lightning induced fire incidence and burned area fractions, but it might
be interesting to expand the model with a temporal component. By running the model
for several time windows, the change in anthropogenic and lightning fire and burned
area fractions over time could become apparent. Similarly, the effects of future changes in
population density, human land impact or burned area coefficient of variation on the ratio
between anthropogenic and lightning induced fire incidence and burned area could be
tested. Yet, such analyses would require changes in data structure and reporting consistency
of the European Fire Database.

Although the model that we developed in this project has been trained to data in
Europe, it might also be useful for other regions in the world on an administrative level
similar to the NUTS3. This means that we developed a model that is able to predict
the fractions of anthropogenic and lightning induced fire incidence and burned area at a
regional scale. In addition to this, the burned area fractions can be used in combination
with regionally aggregated MODIS burned area data to determine the anthropogenic and
lightning induced fire fractions at, for example, national or continental scales.

4. Conclusions

We created a pan-European attribution between anthropogenic and lightning fires
and their burned area. We, therefore, used reference data from the European Fire Database
where available, and we used this data to develop two random forest models to predict
the fractions of anthropogenic and lightning induced fire incidence and burned area at
the NUTS3 level for regions without reference data. Our models achieved reasonable
performances with R2 scores of 0.34 and 0.35 from regressions between estimated values
and independent validation data. The models tended to overestimate the anthropogenic
fractions in regions where lightning fires are more important. Despite this shortcoming, our
models successfully captured spatial variability in anthropogenic, climatic and landscape
drivers of fires such as the higher importance of lightning fires in more remote regions,
such as Scandinavia or the Alps.

Both the model results and the observations registered in the EFD showed that, even
in the more remote regions, humans are the predominant source of fires and burned area in
Europe. We estimated that 96.5 ± 0.9% of the burned area in Europe has an anthropogenic
origin. At a regional (NUTS3) scale, the main driver behind the fraction of anthropogenic
and lightning induced fire incidence was the fraction of human impacted land, while the
main driver of the burned area fractions was population density. Our model results can be
useful to optimize predictive fire models by accounting for fire cause when projecting future
fire regime changes under changing climatic and socio-economic conditions in Europe.
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Appendix A

Table A1. Overview of the time windows in which countries submitted data to the European
Fire Database.

Code Country From To Notes

AL Albania - -
AT Austria - -
BE Belgium - -
BG Bulgaria 2005 2019
CH Switzerland 2001 2018
CY Cyprus 2001 2016 Only Greek part of CY
CZ Czech Republic 2004 2019
DE Germany 2001 2018 Some NUTS regions missing
DK Denmark - -
EE Estonia 2005 2018
EL Greece 2001 2011 Some NUTS regions missing
ES Spain 2001 2015 Some NUTS regions missing
FI Finland 2005 2019
FR France 2001 2018
HR Croatia 2001 2019
HU Hungary 2002 2019
IE Ireland - -

IT Italy 2001 2015 Autonomous regions (e.g., Sicily,
Sardinia) often missing

LT Lithuania 2004 2018
LI Liechtenstein - -
LV Latvia 2004 2018
ME Montenegro - -

MK North
Macedonia - -

MT Malta - -
NL Netherlands 2017 2018
NO Norway - -
PL Poland 2001 2018
PT Portugal 2001 2018
RO Romania 2004 2018
RS Serbia - -

SE Sweden 2001 2018

1242 fires (451 ha) added to
“Unknown code” category, as local

and EU codes are mutually
inconsistent

SI Slovenia 2001 2019
SK Slovakia 2004 2018
TR Turkey 2005 2013 2009 and 2011 missing

UK United
Kingdom - -
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