
����������
�������

Citation: Muhammad, F.; Xie, C.;

Vogel, J.; Afshari, A. Inference of

Local Climate Zones from GIS Data,

and Comparison to WUDAPT

Classification and Custom-Fit

Clusters. Land 2022, 11, 747. https://

doi.org/10.3390/land11050747

Academic Editor: Guoyu Ren

Received: 14 April 2022

Accepted: 11 May 2022

Published: 18 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Inference of Local Climate Zones from GIS Data, and
Comparison to WUDAPT Classification and
Custom-Fit Clusters

Fadel Muhammad 1 , Changkun Xie 1,2, Julian Vogel 1,* and Afshin Afshari 1,*

1 Fraunhofer Institute for Building Physics, Fraunhoferstraße 10, 83626 Valley, Germany;
fadel.muhammad@ibp.fraunhofer.de (F.M.); xiechangkun@sjtu.edu.cn (C.X.)

2 School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
* Correspondence: julian.vogel@ibp.fraunhofer.de (J.V.); afshin.afshari@ibp.fraunhofer.de (A.A.)

Abstract: A GIS-based approach is used in this study to obtain a better LCZ map of Berlin in
comparison to the remote-sensing-based WUDAPT L0 approach. The LCZ classification of land
use/cover can be used, among other applications, to characterize the urban heat island. An improved
fuzzy logic method is employed for the purpose of classification of the zone properties to yield
the GIS-LCZ map over 100 m × 100 m grid tiles covering the Berlin region. The zone properties
are calculated from raster and vector datasets with the aids of the urban multi-scale environmental
predictor (UMEP), QGIS and Python scripts. The standard framework is modified by reducing the
threshold for the zone property impervious fraction for LCZ E to better detect paved surfaces in
urban areas. Another modification is the reduction in the window size in the majority filter during
post-processing, compared to the WUDAPT L0 method, to retain more details in the GIS-LCZ map.
Moreover, new training areas are generated considering building height information. The result
of the GIS-LCZ approach is compared to the new training areas for accuracy assessment, which
shows better overall accuracy compared to that of the WUDAPT L0 method. The new training
areas are also submitted to the LCZ generator and the resulting LCZ-map gives a better overall
accuracy value compared to the previous (WUDAPT) submission. This study shows one shortcoming
of the WUDAPT L0 method: it does not explicitly use building height information and that leads
to misclassification of LCZs in several cases. The GIS-LCZ method addresses this shortcoming
effectively. Finally, an unsupervised machine learning method, k-means clustering, is applied to
cluster the grid tiles according to their zone properties into custom classes. The custom clusters are
compared to the GIS-LCZ classes and the results indicate that k-means clustering can identify more
complex city-specific classes or LCZ transition types, while the GIS-LCZ method always divides
regions into the standard LCZ classes.

Keywords: urban heat island (UHI); local climate zones (LCZ); WUDAPT; LCZ generator; k-means
clustering

1. Introduction

The urban heat island (UHI) effect has been defined as a phenomenon whereby
the near-surface urban canopy air temperature is, on average, higher than that of its
surrounding countryside [1]. Its intensity is likely to keep increasing in the future due to
population and urbanization growth [2]. The UHI intensity characterizes urban climates
and is related to a negative impact on the environment by increasing energy demand due to
an increase in air conditioning, elevating emission of greenhouse gases and air pollutants,
endangering human health and comfort and impairing water quality [3]; therefore, the
prediction of UHI is becoming significantly important.

Mesoscale numerical climate simulation software such as the Weather Research and
Forecasting (WRF) [4] as well as simplified urban canopy models [5] is used to estimate the
UHI intensity; however, they require highly resolved and accurate land use/land cover
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(LULC) maps. For this purpose, LULC data sources such as CORINE by the Copernicus
Land Monitoring Service have been used, where urban classes are derived from spectral
features of the surface, neglecting the importance of the urban geometry on the microcli-
mate [6]. More recently, local climate zone (LCZ) classification maps have been proposed
for LULC characterization considering the urban geometry property. The LCZ method was
developed by Stewart and Oke [7] for urban climate study purposes by classifying urban
and rural sites into 10 built-up classes and 7 land cover classes. According to the standard
framework, these classes are defined by 10 zone properties such as sky view factor, mean
building height, and surface fractions. The LCZ scheme has been used extensively for
characterizing UHI.

As described by Lehnert et al. [8], there are four approaches that have been applied
to generate LCZ classification maps: expert knowledge, remote sensing imagery (RS),
geographic information system (GIS), and combined approaches. In this paper, the RS-LCZ
and GIS-LCZ are applied to derive the LCZ of Berlin. The RS-LCZ is the approach adopted
by the World Urban Database and Access Portal Tools (WUDAPT) project [9], which
produces its Level 0 (L0) data comprising the LCZ map derived from machine learning
supervised classification of Landsat or Sentinel images [10–12]. The classification is carried
out by using an open source software, the System for Automated Geoscientific Analyses
(SAGA) [13] by applying training areas that are digitized in Google Earth by volunteer local
experts. The classification step can be performed several times to improve the classification
result. The result is checked with Google imagery, and existing training areas (TAs) can
be modified or additional TAs can be digitized to repeat the classification process. If the
classification result is too heterogeneous, it can be filtered using a majority filter. One major
downside of the WUDAPT L0 method in deriving LCZs is that its accuracy highly depends
on the number and quality of TAs, which are generated from satellite imagery relying on a
2D perspective neglecting the building height information [14].

The WUDAPT L0 method has been further simplified with the introduction of a new
platform named the LCZ Generator [15]. This platform is an online-based processing
tool [16] that integrates the state-of-the-art of LCZ mapping, and simultaneously provides
an automated accuracy assessment, training data derivatives, and a novel approach to
identify suspicious training areas. The LCZ Generator web application consists of three
major steps: In the first step, personal and training information needs to be submitted via
the web application by the user. In the second step, upon successful submission, the LCZ
classification and quality control is launched in the back-end to produce a quality-controlled
LCZ map, metadata statistics, and labels for suspicious polygons. In a third and final step,
compressed results are sent to the user via e-mail, and simultaneously added to the online
submission table. These steps require the users to only submit their TAs to the website to
obtain an automated LCZs result after less than half an hour.

Another method is the so called GIS-based method, in which vector or raster datasets
of buildings, roads, vegetation, and LULC are used to estimate the zone properties to
define LCZ classes. The GIS-LCZ method is claimed to primarily have a better accuracy for
deriving LCZ compared to the WUDAPT L0 method since it is particularly considering
the building height information [14]. As summarized by Quan and Bansal [17], the first
GIS-based approach employed in deriving LCZ was described by Lelovics et al. [18] and
Unger et al. [19]. Since then, several representative studies implementing the GIS-based
LCZ mapping have been published.

Lelovics et al. [18] and Unger et al. [19] focused on the city of Szeged in Hungary
and applied the lot area polygon as basic spatial units (BSU). They used seven zone
properties: sky view factor, building height, surface roughness, surface albedo, and three
surface fractions (building fraction, impervious fraction, and pervious fraction). These
zone properties were classified using fuzzy logic. The classification result was further
processed by merging the BSUs. The resulting map has six built-up classes of GIS-LCZ.
The map was used to plan the location of an urban temperature measurement network.
Other related studies used this map for the integration with WUDAPT L0 map [20] and
for analyzing temperature conditions in an urban meteorological network that is designed
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based on the LCZ scheme [21]. A GIS-LCZ map was also generated for Vienna, Austria by
Hammeberg et al. [22]. This work applies 100 m × 100 m grid tiles as the BSU and employs
five zone properties: building height, aspect ratio, and the usual three surface fractions.
The classification of the zone properties utilizes a naive Bayes classifier. There was no
post-processing performed in this study. The evaluation for the classification result was
carried out by comparing it to the WUDAPT L0 map.

Wang et al. [14] derived the GIS-LCZ map for Hong Kong applying a 100 m × 100 m
grid tile as the BSU. They used three zone properties and one additional land use data.
The zone property’s building height, building surface fraction, and sky view factor were
employed to classify the built-up classes (LCZs 1–10). Additional land use data are used
for the classification of the land cover classes (LCZs A–G). The classification was achieved
by modifying the standard rules proposed by Stewart and Oke [7]. An accuracy assess-
ment was carried out for the resulting GIS-LCZ map by comparing it to the established
validation samples.

Another GIS-LCZ method was conducted by Estacio et al. [23] for Quezon City, Philip-
pines. The study employed seven zone properties: sky view factor, building height, rough-
ness length, surface albedo, and the three usual surface fractions. These zone properties
were calculated over 100 m × 100 m grid tiles, which were further classified by applying
a fuzzy logic algorithm modified from Lelovics et al. [18]. The result of the classification
was aggregated by using cellular automata to derive the LCZ map. The map was validated
using expert knowledge. The land surface temperature profile for each LCZ type was also
assessed in this research.

A clustering method was also applied in the work of Hidalgo et al. [24] to classify three
cities in France (Toulouse, Paris and Nantes) based on the GIS datasets. They used eight
parameters to categorize the built up classes (LCZ 1–10), and from those parameters, there
was only one parameter that corresponds to the LCZ framework, which is mean building
height. The other parameters are building density, building typology, majority building
typology within the polygon, mean minimum distance, median minimum distance, main
morphological group, and number of buildings. Morphological groups are used to identify
LCZs 7 and 8. For the other built up classes, k-means clustering is applied for the classifi-
cation. LCZs A–G were classified with another set of parameters: urban vegetation data
from satellite images (LCZs A and B), road fraction indicator (LCZ E), and water fraction
indicator (LCZ G).

In this paper, the GIS-LCZ method was applied with several novelties. It was used to
define the LCZs in the city of Berlin, which, to the best of the authors’ knowledge, has not
been classified with the GIS-based method before. The resulting GIS-LCZ map is expected
to improve the existing remote sensing-based LCZ map (WUDAPT L0). The classification
of the zone properties employs an improved fuzzy logic algorithm and modification of
the standard LCZ framework. The post-processing applied to the result of the GIS-LCZ
classification is a majority filter as applied by the WUDAPT L0 approach, but in this paper,
the window size in the majority filter is reduced to retain more detail from the GIS-LCZ
data. New TAs of LCZ classes for Berlin are also generated considering the building height
information, which is not considered by the TAs generated for WUDAPT L0. The resulting
GIS-LCZ map and the WUDAPT L0 map are compared to the TAs for assessing the accuracy.
Moreover, the TAs are also submitted to the LCZ generator website to derive an improved
RS-LCZ. Furthermore, the k-means clustering method is used to cluster the grid tiles
according to their zone properties into custom classes. Finally, the custom clusters are
compared to the GIS-LCZ classes to investigate their similarities and differences. Section 2
in this paper explains the study area and methodology. Section 3 describes the classification
results and discussions. Section 4 contains conclusions and research outlook.

2. Methodology

In this study, a GIS-based method was employed to derive the LCZs for Berlin. The
general GIS-LCZ mapping process is illustrated in Figure 1. The process was initialized by
collecting vector and raster data that are later used to calculate the zone properties. The
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zone properties are calculated based on a basic spatial unit (BSU), which is defined as a grid
tile. Each BSU is classified applying a fuzzy logic algorithm to derive the LCZs. During
post-processing, a filtering is carried out to the classification result of LCZs. An evaluation
was performed on the final GIS-LCZ by comparing it to the new training areas. The new
training areas were further used to evaluate the existing WUDAPT L0 map and to generate
an LCZ map from the LCZ generator. Furthermore, the zone properties of the grid tiles
were clustered, and then compared to the GIS-LCZ result.

Figure 1. GIS-LCZ mapping method of Berlin.

2.1. Study Area and Datasets

The focus of this study is the city of Berlin. Berlin has an area of 892 km2. As of 2019,
its population was around 3.8 million, which makes it the most populous city in Germany.
One of the reasons for choosing this city is the availability of the GIS data, which we require
for deriving the GIS-LCZ map. A Google Earth image of Berlin and the newly created
training areas (see Section 2.5) shown in Figure 2.

The datasets used in this study are from Deutsches Zentrum fur Luft- und Raumfahrt
(DLR) [25], OpenStreetMap (OSM) [26], WUDAPT L0, Copernicus [27], and Anthropogenic
Heat for Global Urban Climatology (AH4GUC) [28].

The DLR dataset is obtained from the work of Heldens et al. [25]. They generated
raster data of Berlin for a microclimate simulation. The raster dataset includes rasters of
building height, terrain height, vegetation height, water, streets, and bridges. The dataset
provides several resolution ranges from 1 m to 16 m. On the other hand, OSM is a vector
dataset containing primarily building land use, road, and water features. OSM is an open
source data generated by a community of mappers [29].

Satellite imagery form Copernicus is also used in this study. Copernicus is the Euro-
pean Earth monitoring system where data are acquired from different sources, such as in
situ sensors and Earth observation satellites. Raster data of land cover and high resolution
layers, such as imperviousness density (IMD) are provided by Copernicus [27].

As mentioned previously, WUDAPT data are used for evaluation purposes in this
paper. WUDAPT is a project initiated by urban climate research to provide universally
coherent and consistent information on form and function of urban morphology for climate
studies [9]. WUDAPT information consists of three levels of detail (L) and is gathered
using distinct methodologies. Level 0 (L0) data comprises a local climate zone map, which
is based on the work of Stewart and Oke [7]. On the other hand, Level 1 (L1) data provide
a better representation for each LCZ through sampling by providing information regarding
urban form and function in a finer spatial resolution. L1 data have a representation in
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three-dimensional form. Furthermore, Level 2 (L2) data provide more information by
giving detailed descriptions of urban parameter values for boundary layer modeling.

The WUDAPT project provides level 0 (L0) maps for many cities around the world.
The WUDAPT L0 map for Berlin was downloaded from the WUDAPT portal [30]. The map
was produced in 2016 and was derived from Landsat 8 Images from March and April 2015.
The resolution of the map is 100 m and it was resampled from 30 m Landsat 8 input image
resolution. The training areas can also be downloaded through the WUDAPT website [31].

The thermal property used for the classification of GIS-LCZ of Berlin is anthropogenic
heat flux that is obtained from AH4GUC. This dataset provides global present and future
hourly data of anthropogenic heat flux (AHF) with a resolution of 1 km, which is derived
from a global population density map, global gridded monthly air temperature, a global
nighttime lights map, and a global combustion sources map [28].

Figure 2. Local climate zones: Berlin’s training areas, see Section 2.5 (Google Earth image in QGIS).

2.2. Inference of Urban Morphology from GIS Data

According to the standard LCZ methodology, there are 10 zone properties defining
the 17 local climate zones. These properties are: sky view factor, aspect ratio, building
surface fraction, impervious surface fraction, pervious surface fraction, height of roughness
elements (building heights), terrain roughness class, surface admittance, surface albedo,
and anthropogenic heat flux. However, due to limited data sources, in practice, only a
subset of those properties can be used for the classification of the LCZs.

For this study, seven zone properties are calculated to generate the LCZ map: sky view
factor (SVF), mean building height (H) or mean vegetation height (Hv), aspect ratio (H/W),
building surface fraction (BSF), impervious surface fraction (ISF), anthropogenic heat flux
(AHF), and roughness length (z0). The basic spatial unit for the classification of the zone
properties is in the form of grid tiles with the size of 100 m × 100 m. Every zone property
will be resampled to this resolution. The polygon of the grid tiles is created in QGIS in the
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shapefile format with the extent of the area of Berlin with the coordinate reference system
(CRS) of European Petroleum Survey Group Geodesy (EPSG) 25833 (ETRS89/UTM zone
33N). This CRS is used as the default CRS for all the calculation of the zone properties. The
total number of grid tiles for the area of Berlin is 90517.

The sky view factor (SVF) is calculated by applying raster height data of building,
terrain, and vegetation patch derived from the DLR dataset with a resolution of 5 m. The
calculation is performed by employing the Urban Multi-scale Environmental Predictor
(UMEP) plugin in QGIS by Lindberg et al. [32]. The DLR rasters of building and vegetation
patch height with a resolution of 1 m are also used for the calculation of mean building
height (H) for urban classes and mean vegetation height (Hv) for natural classes, respec-
tively. The building surface fraction (BSF) is calculated to define the percentage of building
area in a grid tile. Because not all building areas in Berlin are covered by the DLR data,
additional building polygon data from OSM are used to define the BSF.

The impervious surface fraction (ISF) is the percentage of the area covered by imper-
vious (paved or rock) materials in a grid tile. The Copernicus Impervious Density (IMD)
raster is used for the calculation of the ISF by calculating the mean of the 20 m resolution
raster data over the grid tile; however, the IMD cannot be directly used to represent the ISF
needed by the LCZ framework since the IMD also includes building information. The ISF
as a zone property in the LCZ classification excludes the information of buildings since that
information is already covered by BSF. Thus, the BSF should be subtracted from the IMD in
order to obtain the ISF, which can be formulated as: ISF = IMD− BSF; however, when this
formula is implemented, it results in negative ISF values in several grid tiles. This can be
due to the fact that the IMD raster is not fully harmonized with the BSF value since they
are from different data sources and have different resolutions and acquisition methods. To
avoid negative values in the ISF, the IMD is corrected by taking the maximum between the
original IMD and the BSF which can be formulated as IMD = max(IMD, BSF).

The aspect ratio (H/W) is the ratio between mean building height (H) and building
spacing (or street width). The width of building spacing (W) is estimated by the equation
modified from Samsonov and Varentsov [33]:

W =
√

S0 · (1−
√

BSF)/NBLD (1)

S0 is the grid tile area, which, in our case, is 10.000 m2. NBLD is the number of buildings
that is obtained from building data of OSM and DLR. The resulting H/W calculation
contains outliers where the grid tiles have a mean building height H but either they have
no building width W or the value of it is small (less than 1 m). This results in incorrect
values of H/W. These outliers occur, for example, in the grid tiles covered mostly or
fully by buildings. To solve this issue, another H/W is calculated from the grid tiles of
250 m × 250 m to obtain a broader perspective of H/W. The new H/W is resampled to
100 m × 100 m grid tiles and assigned to the grid tiles that have incorrect H/W values or
having a mean width W of less than 1 m.

The anthropogenic heat flux (AHF) is obtained from the global AHF dataset with the
resolution of 1 km. The raster of AHF is resampled to 100 m × 100 m to be further used
to calculate the mean AHF in a grid tile. The roughness length (z0) is calculated from the
formula suggested by Oke (cited from Estacio et al. [23]):

z0 = f0 · z̄H (2)

f0 is 0.1, which is a constant value generally used for surfaces and z̄H is the average
difference of DSM and DTM, which is calculated as the addition of two rasters: building
and vegetation patch heights with their 1 m resolution. Water raster data from DLR with a
resolution of 1 m are also used in the classification of GIS-LCZ. The raster is applied directly
to classify grid tiles that contain mainly water into LCZ G. The calculation is performed in
QGIS by applying the Zonal Statistic tool. Table 1 summarizes the data sources and the
calculation method to derive the zone properties and LCZ G. The calculation result of the



Land 2022, 11, 747 7 of 19

zone properties, which are SVF, H, Hv, H/W, BSF, ISF, AHF, and z0, are shown in Figure 3.
The zone properties are visualized in QGIS with the equal count (quantile) of 5 categories.

Table 1. Data sources and calculation method of zone properties and LCZ G.

Indicators Data Calculation Outlier Treatment

SVF DLR rasters of building and vegetation heights 5 m UMEP in QGIS
H DLR raster of building height 1 m QGIS
Hv DLR raster of vegetation height 1 m QGIS

BSF DLR raster of building height 1 m and rasterized OSM build-
ing data 1 m QGIS

H/W
H, W (obtained from BSF and NBLD), NBLD is from DLR
raster of building height 1 m and rasterized OSM building
data 1 m

QGIS, Python script
H/W calculated
from greater grid
tile of 250 m

z0 DLR rasters of building and vegetation heights 1 m QGIS
AHF Raster of AH4GUC 1 km QGIS
LCZ G DLR raster of water coverage 1 m QGIS

Figure 3. Zone properties of GIS-LCZ for Berlin.
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2.3. Classification to Local Climate Zones

The zone properties used in the classification of the GIS-LCZ method in this study
are simplified into 12 classes instead of 17 classes. LCZ 1 (compact high-rise), LCZ 7
(lightweight low-rise), LCZ C (bush and scrub), and LCZ F (soil/sand) are excluded due to
the quasi-nonexistence of these LCZ classes in Berlin. For the classification, the grid tiles
are divided into nine urban classes (LCZ 2, 3, 4, 5, 6, 8, 9, E) and three natural classes (LCZ
A, B, D). The natural classes are categorized as grid tiles having BSF ≤ 10 and ISF ≤ 10
or containing water. The rest of the grid tiles, which are not natural classes, are classified
as urban classes. Furthermore, the grid tiles are classified based on their zone properties
into LCZ classes based on the range of values adapted from the standard LCZ framework
of Stewart and Oke [7], which is shown in Table 2. In this study, LCZ E is considered as
an urban class; therefore, its aspect ratio H/W is modified from the standard framework,
where the W indicates building spacing instead of tree spacing. Its ISF range value is also
modified from ISF ≥ 90 to ISF ≥ 60, so that it can better detect bare rock or paved surfaces.

Table 2. Zone properties of LCZ classes (adapted from Stewart and Oke [7]).

LCZ SVF H/W BSF (%) ISF (%) H or Hv AHF z0

2 - 0.75–2 40–70 30–50 10–25 ≤75 -
3 - 0.75–1.5 40–70 20–50 3–10 ≤75 -
4 - 0.75–1.25 20–40 30–40 ≥25 ≤50 -
5 - 0.3–0.75 20–40 30–50 10–25 ≤25 -
6 - 0.3–0.75 20–40 20–50 3–10 ≤25 -
8 - 0.1–0.3 30–50 40–50 3–10 ≤50 -
9 - 0.1–0.25 10–20 ≤20 3–10 ≤10 -

10 - 0.2–0.5 20–30 20–40 5–15 ≥300 -
A ≤0.4 - ≤10 ≤10 3–30 - ≥2
B 0.5–0.8 - ≤10 ≤10 3–15 - 0.25–0.5
D ≤0.9 - ≤10 ≤10 ≤1 - 0.03–0.1
E - ≤0.1 ≤10 ≥60 ≤2 - -

The zone properties are classified into LCZ classes by applying fuzzy logic with a
trapezoidal membership function modified from Estacio et al. [23]. The membership of
every zone property for every LCZ class is determined as shown in Figure 4 (example case
of LCZ 2 and its ISF property). The property value which is in the specified range will have
a membership value of 1 and the membership value will linearly decrease from 1 to 0 when
the property value is out of the range.

To understand how this membership function works, an example from Figure 4 is
explained here. The zone property of the ISF of LCZ 2 has a range value from 30–50, which
implies 30 as the left bound (LB), 50 as the right bound (RB) and length L = RB− LB = 20.
When a grid tile has an ISF value, which is in this range (30–50), the membership value
will be 1. On the other hand, when a grid tile has an ISF which is not in this range, the
membership value will depend on how far it is away from the LB or RB. The membership
value will become 0 for ISF values of less than 100 and more than 70. These values will be
called as left zero bound (LZB) and right zero bound (RZB), respectively. The value of the
RZB and LZB are defined as LZB = LB− L = 10 and RZB = RB + L = 70.

A problem arose for the zone properties that do not imply the RB, for example, the
property value of H for LCZ 4, which is bigger than 25 m. The LB is 2 and the RB goes to
infinity. It will not be a problem for defining the RZB because it can be set to infinity as well;
however, it will be a problem for defining the LZB. The LZB cannot go to negative infinity,
as it will overestimate the membership value of the zone property, which is less than LB.
For this case, Estacio et al. [23] chose a value of 0 as the LZB; however, when choosing 0
as the LZB, it will still overestimate the membership value of H/W that is less than 25,
because the H will obtain membership values from all the urban classes of LCZs which
ranges from 0 (LZB) to 25 (LB). This is not desirable since the purpose of the classification is
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to obtain a relatively distinct classification outcome. To tackle this issue, the LZB is chosen
from the second highest RB value of the range values of H defined in Table 2, which is
15 m. The other zone properties, which do not define LB or RB, are SVF, BSF, and ISF. The
common value is chosen as the LB or RB. For SVF, the LB would be 0 and the RB would be
1. For BSF and ISF, the LB would be 0 and the RB would be 100.

Figure 4. Trapezoidal membership function of fuzzy logic for ISF of LCZ 2 (adapted from
Estacio et al. [23]).

The membership value for every property in every class of LCZ is calculated, and
then the membership values of the zone properties for every class are summed up so that,
at the end, for a grid tile of urban class, there are nine total membership values from the
nine urban LCZ classes. On the other hand, for a grid tile of natural class, there are three
total membership values from the three natural LCZ classes. These membership values
are normalized by the number of zone properties available for the respective grid tile.
From these normalized membership values, for a grid tile, maximum value is chosen and
assigned as the LCZ class of the grid tile. The Python libraries used for the classification
are NumPy, SciKit-Fuzzy, Pandas, and GeoPandas.

2.4. Filtering

The classification result is further processed by applying a post-processing step. As
summarized by Quan and Bansal [17], previous GIS-LCZ studies carry out post-processing
steps for two main reasons: diminishing unnecessary heterogeneity of the LCZ classes and
maintaining their minimum area requirement.

In this study, during post-processing, a filtering was applied to obtain more homoge-
neous LCZ areas. The filter is a majority filter and it is applied using SAGA with a filter
radius of one pixel and the search mode of square. These parameters yield a window filter
of 3 × 3 pixels. The majority filter is also used by the WUDAPT L0 approach but with a
greater size of the window filter, which is 5 × 5 pixels. We reduced the window size to
retain more details of the GIS-LCZ classification.

2.5. New Training Areas

In generating WUDAPT L0 map, training areas (TAs) are digitized by the local experts
who know the overview of the urban morphology of the city. Based on its guidelines [34],
the WUDAPT L0 approach specifies TAs of LCZ classes in the respective city based on
the view on Google Earth imagery. This implies that the approach relies only on the 2D
perspective, which is inconsistent with the guidelines of the original framework of LCZ.
Stewart and Oke [7] indicate that the geometric properties of the LCZ (mean building
height, aspect ratio, and sky view factor) need building height information.

Therefore, in this study, new TAs are generated to improve the TAs of WUDAPT by
considering the geometric properties calculated from the GIS-LCZ mapping method. The
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new TAs are digitized in QGIS by the aid of satellite imagery and, at the same time, by
considering the calculated zone properties. Figure 2 shows the new TAs, which are later
used for the evaluation of the resulting GIS-LCZ map and the existing WUDAPT L0 map,
as well as to derive a new LCZ map from the LCZ generator.

2.6. Custom Classification Using k-Means-Clustering

The classification of LCZ based on the standard framework is very general, as it was
developed to fit a majority of cities around the world; however, it does not fit any specific
city perfectly well and it may be that some classes of the standard framework do not exist in
a city, or the city has specific classes not found in the standard framework. As summarized
by Quan and Bansal [17], some studies modified the original LCZ classes by removing,
mixing, and adding the standard LCZ classes. In the reviewed studies, not all the standard
LCZ classes are found and the classified zones do not have zone properties that fit to the
range values defined by the standard.

In this study, a custom classification to derive LCZs is introduced, where range values
of the zone properties do not have to be defined. Instead, the grid tiles are clustered
according to their zone properties into a number of custom classes, for which the average
zone properties can be calculated to define the classes. This will give a result of distinct
clusters, specific to the city, which contain grid tiles of similar zone properties. From this
result, a custom land use/land cover map can be derived, and, together with the average
zone properties, the urban morphology of a specific city may be described more accurately.
This may also improve the accuracy of mesoscale climate simulation models that need
highly resolved and accurate LULC maps.

For the clustering purpose, the k-means clustering method is applied. k-means cluster-
ing is one of the most popular methods in cluster analysis. It uses the vector quantization
method to partition N observations into k clusters, in which each observation belongs to
the cluster with the nearest mean (cluster centers or cluster centroid). k-means clustering
minimizes within-cluster variances (squared Euclidean distances) and optimizes squared
errors. This method has been widely used in the classification of land use/land cover [35].

We use the k-means clustering method to find clusters of grid tiles according to their
zone properties. The clustering is only performed for the urban classes. In cases where
H/W is null because of no building height information, the zone property is set to 0. The
five zone properties of urban classes are normalized and clustered applying the k-means
clustering package of scikit-learn in Python. The number of clusters are set to be the same
as the number of GIS-LCZ classes. The clustering result are compared to the GIS-LCZ
classification result to investigate their relationship.

3. Results and Discussion
3.1. Local Climate Zones Classification from GIS Data

The GIS-LCZ of Berlin is shown in Figure 5. In general, the LCZ classes in Berlin
comprise 61.13% urban classes and the rest are distributed over natural classes. Out of the
urban classes, LCZ 6 (open low-rise) dominates the distribution with 25.70% followed by
LCZ A (dense trees) with 21.68%. On the other hand, LCZ 5 (open midrise), LCZ 9 (sparsely
built), LCZ 2 (compact midrise), and LCZ E (bare rock or paved) occupy 15.1%, 7.25%,
7.2%, and 4.81%, respectively. Moreover, the proportion of LCZ 3 (compact low-rise), LCZ
4 (open high-rise), and LCZ 8 (large low-rise) are only 0.37%, 0.64%, and 0.1%, respectively.
These statistics imply that the urban classes in Berlin are dominated by LCZs with open
areas. The other natural classes, which are LCZ B (scattered trees), LCZ D (low plants), and
LCZ G (water), have proportions of 5.1%, 6.05%, and 6.04%, respectively.

The result of the GIS-LCZ method is compared to the new training areas generated
for Berlin, which are shown in Figure 2. The comparison is performed using the confusion
matrix calculation in SAGA. Using a confusion matrix is a common method to assess the
accuracy of a classification, where the classification result is compared with the reference
or ground truth data. AccProd or producer accuracy implies the map accuracy from the
perspective of the producer (map maker) or the probability that the reference class is
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correctly classified in the classification result. On the other hand, the AccUser or user
accuracy is the probability that the classified class is correctly classified in the reference
class. This accuracy specifies map accuracy from the perspective of a map user. Moreover,
the overall accuracy value is the number of sites correctly classified divided by the total
number of sites. The kappa coefficient can also be calculated. This value describes how
well the classification was executed in comparison to just a random classification. The
value ranges from 0 to 1, where 1 represents a perfect match between the classification
result and the reference data, and 0 is the other way around where the classification result
is considered completely random [36].

Figure 5. GIS-LCZ classification of Berlin.

The confusion matrix of GIS-LCZ compared to the TAs is tabulated in Table 3. The
overall accuracy and kappa values (resp. 92.47% and 0.91) are excellent; however, the LCZ
8 does not have a good producer accuracy value since the training areas of LCZ 8 do not
detect any LCZ 8 in the classification result. Nevertheless, LCZ 8 only corresponds to only
0.1% of GIS-LCZ, which is also the lowest proportion of the LCZ classes in the GIS-LCZ
result. Moreover, the TA for LCZ 3 could not be created, because insufficient training areas
were identified.

The WUDAPT L0 is also compared with the TAs in a confusion matrix shown in
Table 4. The overall accuracy and kappa values are 74.95% and and 0.69, respectively,
which are lower than that of GIS-LCZ. Generally the producer accuracy of each LCZ classes
is lower than that of GIS-LCZ. The producer accuracies of WUDAPT L0 of LCZ 5 and 9
have significant discrepancies compared to that of GIS-LCZ; however, the WUDAPT L0
detects the LCZ 8 far better compared to GIS-LCZ. Moreover, LCZ 3 and E are not classified
in WUDAPT L0.
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Table 3. Confusion Matrix of GIS-LCZ vs. TA.

LCZ 2 3 4 5 6 8 9 A B D E G AccUser (%)

2 426 0 0 0 0 2 0 0 0 0 0 0 99.5
3 0 0 0 0 0 3 0 0 0 0 0 0 0
4 0 0 60 4 0 0 0 0 0 0 0 0 93.8
5 0 0 7 624 0 6 0 0 0 0 4 0 97.4
6 0 0 1 16 969 12 27 0 0 0 0 0 94.5
8 0 0 0 0 0 0 2 0 0 0 0 0 0
9 0 0 0 2 32 13 184 0 0 0 1 0 79.3
A 0 0 0 0 0 0 3 252 16 0 0 0 93.0
B 0 0 2 3 0 0 11 0 18 5 0 0 46.2
D 0 0 0 0 0 0 2 0 0 60 4 0 90.9
E 0 0 0 0 2 5 56 0 0 0 19 0 23.2
G 0 0 0 0 0 0 0 0 1 0 0 361 99.7

AccProd (%) 100 - 85.7 96.2 96.6 0.0 64.6 100 51.4 92.3 67.9 100

Overall acc. 92.5%
Kappa 0.91

Table 4. Confusion Matrix of WUDAPT L0 vs. TA.

LCZ 2 4 5 6 8 9 A B D E G AccUser (%)

2 406 0 1 0 2 0 0 0 0 0 0 99.8
4 0 56 340 0 0 0 0 0 0 0 0 14.1
5 20 13 217 20 4 1 0 0 0 0 0 78.9
6 0 0 81 980 2 234 0 6 0 0 0 75.2
8 0 1 9 3 35 2 0 0 0 0 20 50.0
9 0 0 0 0 0 33 0 0 0 0 0 100
A 0 0 0 0 0 0 252 3 0 0 1 96.6
B 0 0 1 0 0 10 0 21 7 0 0 53.9
D 0 0 0 0 0 0 0 5 67 8 0 83.8
E 0 0 0 0 0 0 0 0 0 0 0 -
G 0 0 0 0 0 0 0 0 0 0 386 100

AccProd (%) 95.3 80.0 33.4 97.7 85.4 11.6 100 60.0 69.1 0.0 99.7

Overall acc. 74.6%
Kappa 0.69

It is observed that WUDAPT L0 is not effective at detecting the zone properties related
to building geometry (H, H/W, and BSF), which leads to misclassification of some LCZs.
This situation is observed in WUDAPT L0 for LCZ 2, LCZ 4, and particularly LCZ 5 as
implied in the confusion matrix of Table 4. LCZ 5 has a very low producer accuracy since
it classifies most of the TAs of LCZ 5 into LCZ 4. WUDAPT L0 also gives a completely
random classification result on LCZ 6 and 9. It is found that the tiles classified in these
classes are in reality natural classes instead of urban classes, based on the zone properties
and the view from the satellite imagery as shown in Figure 6.

On the other hand, GIS-LCZ considers the building geometry, which enables it to
correctly detect LCZs that are misclassified by WUDAPT L0: LCZ 2 instead of LCZ 5, LCZ
5 instead of LCZ 2 and LCZ 4, and LCZ 6 instead of LCZ 5 as indicated in the confusion
matrix of Table 3. Figure 7 shows misclassification in WUDAPT L0, where the method
classified the tiles as LCZ 4, but the mean building height values of these tiles are actually
in the range of LCZ 5. The GIS-LCZ method addresses this shortcoming effectively.

One shortcoming of the GIS-LCZ method is its strong dependency on the availability
of input data. It is observed that some tiles cannot be classified correctly due to the
inadequacy of the data to calculate the zone properties. GIS-LCZ also does not manage
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to detect LCZ 8, which is probably due to the unavailability of pervious surface fraction
property or the small extent of the grid tile, which is insufficient for defining LCZ 8. The
majority filter applied can remove the granular view and produce more homogeneous
LCZ classes; however, this filter can also diminish the correctly classified GIS-LCZ classes.
Some tiles of GIS-LCZ are found to belong partially to LCZ 6 or 8, which implies that the
combination of two LCZs is possible to represent a local climate zone as it was also noted
by other researchers [37]. The airport areas are classified as LCZ 5 in GIS-LCZ (rather than
LCZ 8) because the building height property suits this class. This highlights a limitation of
the LCZ framework, showing that its implementation cannot always be ideal for every city.

Figure 6. Misclassification in WUDAPT L0: LCZ 6 and 9 instead of LCZ A (Google Earth image
in QGIS).

Figure 7. Misclassification in WUDAPT L0: LCZ 4 instead of LCZ 5 (Google Earth image in QGIS).

3.2. LCZ Generator

The new TAs based on GIS-LCZ data, see Figure 2, were also submitted to the LCZ
generator and the result of the new LCZ map gives an accuracy value of 84% (see Figure 8).
The previous (WUDAPT) submission for Berlin to the LCZ generator obtained a lower
accuracy value of 61% (see Figure 9). The accuracy evaluation of the LCZ Generator refers
to five indexes [38]: overall accuracy (OA), overall accuracy for the urban LCZ classes
only (OAu), overall accuracy of the built vs. natural LCZ classes only (OAbu), a weighted
accuracy (OAw), and the class-wise metric F1. The accuracy indexes OA, OAu, OAbu, and
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OAw of the new LCZ map are 84%, 82%, 98%, and 97%, respectively. The relevant indexes
of WUDAPT are 61%, 59%, 94%, and 92%, respectively. The class-wise metric F1 evaluation
also shows that in the new LCZ map, except for LCZ 8 and LCZ B, the accuracy of the other
eight LCZ classes are better than that of the previous submission.

Figure 8. Boxplot accuracy of the LCZ generator map for the new training areas of Berlin; data
from [39] (see also [15]).

Figure 9. Boxplot accuracy of the LCZ generator map for the previous WUDAPT training areas of
Berlin; data from [40] (see also [15]).



Land 2022, 11, 747 15 of 19

3.3. k-Means Clustering and Comparison to GIS-LCZ Classes

First, we compare the result of the k-means clustering to the previously determined
GIS-LCZ classes using average cluster properties. The average of the zone properties for
each cluster is shown in Table 5.

Table 5. Mean and standard deviation (SD) of properties for different clusters.

Clusters
H (m) H/W BSF (%) ISF (%) AHF (W/m2)

Mean SD Mean SD Mean SD Mean SD Mean SD

0 10.2 5.6 0.45 0.24 17.1 8.6 20.1 10.3 15.6 3.4
1 19.8 7.9 0.68 0.26 20.3 7.7 28.5 10.5 7.4 2.9
2 13.5 7.6 0.52 0.33 19.1 9.7 56.0 12.0 16.1 3.8
3 8.5 6.4 0.28 0.24 13.1 10.1 66.7 12.4 5.4 3.1
4 18.5 5.1 1.13 0.57 42.7 11.0 39.0 10.5 17.5 4.0
5 6.7 3.9 0.32 0.19 13.7 8.2 9.7 7.3 3.8 2.4
6 5.8 3.2 0.32 0.18 14.6 7.6 33.8 7.4 4.6 2.6
7 13.6 5.5 0.94 0.82 45.6 13.4 39.5 12.3 6.4 3.0

If we analyze each average cluster property separately, we can make the following
observations. The clusters 0, 1, 2, 4 and 7 with building height between 10 m and 20 m may
be middle-rise areas, the clusters 3, 5, 6 having building heights between 5 m and 10 m may
be low-rise or sparsely built areas. The clusters 4 and 7 with H/W greater than 0.75 may be
compact, open high-rise or lightweight areas. The cluster 3 with an H/W value of 0.28, may
indicate large low-rise or heavy industry areas. The other clusters with H/W between 0.3
and 0.75 may indicate open middle-rise or open low-rise areas. The BSF values of clusters
4 and 7 are greater than 40%. These areas may be compact, lightweight low-rise or large
low-rise areas. The BSF values of the other clusters are between 10% and 20%, buildings in
these areas are sparsely built. This shows that the BSF of most clusters in Berlin is small.
The ISF value of cluster 3 is 66.7%, which may correspond to bare rock or paved areas. The
ISF value of cluster 2 is 56.0%, which may correspond to compact areas. The ISF values
of clusters 0, 1, 4, and 7 are between 20% and 40% indicating open or sparsely built areas.
The cluster 5 with an ISF value of 9.7% may belong to sparsely built areas. The clusters 2, 4,
and 7 with an AHF more than 10 W m−2 may indicate compact, open or lightweight areas.
On the other hand, the other clusters with an AHF less than 10 W m−2 may correspond to
sparsely built or paved areas.

Overall, it seems difficult to establish a clear relationship between the clusters and
the LCZ classes using only average cluster properties, because, depending on the property
analyzed, the most likely LCZ class corresponding to each cluster differs.

Next, we performed a cross-analysis of the average zone-properties between the
custom clusters and the GIS-LCZ classification. The resulting agreement values in percent
are shown in Table 6. Percentages greater than 20 are marked to identify GIS-LCZ classes
that are similar to the k-means clusters.

It can be seen from Table 6 that 71.8% of cluster 1 belong to GIS-LCZ 5, 67.9% of cluster
6 belong to GIS-LCZ 6, and 69.3% of cluster 4 belong to GIS-LCZ 2. Most of the members
of cluster 0, 2, and 3 belong to GIS-LCZ 5 and 6. Relatively speaking, the mean building
height of cluster 2 is closer to that of a midrise area, while the mean building height of
cluster 0 and 3 are closer to that of a low-rise area. In addition, there may be a large number
of paved areas in cluster 3. Moreover, cluster 5 is mainly composed of GIS-LCZs 6 and 9,
and cluster 7 is distributed among GIS-LCZs 2, 5 and 6.
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Table 6. Crosstab between GIS-LCZ classes and k-mean clusters (numbers in bold font are
above 20%).

k-Means Clusters
Total

0 1 2 3 4 5 6 7

GIS-LCZ

2 4.7% 7.8% 17.4% 3.6% 69.3% 0.4% 0.2% 37.6% 11.7%
3 0.0% 0.1% 0.4% 0.7% 1.2% 0.1% 0.1% 5.5% 0.6%
4 0.5% 7.6% 1.5% 0.8% 0.5% 0.2% 0.2% 0.2% 1.0%
5 33.8% 71.8% 44.7% 26.4% 22.7% 9.7% 8.9% 25.7% 24.7%
6 52.5% 11.0% 28.3% 34.8% 6.0% 46.2% 67.9% 25.7% 42.0%
8 0.1% 0.0% 0.1% 0.4% 0.0% 0.0% 0.3% 0.5% 0.2%
9 3.5% 1.2% 0.5% 9.2% 0.1% 35.7% 10.8% 2.9% 11.9%
15 4.9% 0.6% 7.0% 24.1% 0.1% 7.6% 11.6% 2.0% 7.9%

Total 100% 100% 100% 100% 100% 100% 100% 100% 100%

After the cross analysis of the GIS-LCZ classification and the k-means clustering, it
can be considered that clusters 1, 6, and 4 represent open midrise areas, open low-rise areas
and compact midrise areas, respectively. On the other hand, clusters 0, 2, and 3 could be
transition areas from open midrise to open low-rise. Moreover, cluster 5 can be assumed to
be a transition class between open low-rise and sparsely built areas, and cluster 7 could be
a transition class between compact midrise and open midrise areas.

The classification of the GIS-LCZ method is based on the standard LCZ framework;
therefore, the GIS-LCZ method is not able to identify zone types outside of the standard
LCZ framework, in which the zone types have different range values than that defined
in the standard. On the other hand, k-means clustering is based entirely on quantitative
properties, which can effectively avoid the constraints of the standard LCZ framework
and may distinguish zone types other than that defined by the standard LCZ framework;
however, the resulting clusters do not correspond to clearly defined urban topologies, and
so the researchers need to name them according to the characteristics of each cluster on a
case by case basis.

4. Conclusions

In this study, it is shown that the GIS-LCZ method can improve the accuracy over the
remote sensing-based WUDAPT L0 approach in deriving an LCZ map of Berlin. When
compared to the new training areas, a high overall accuracy of 92.47% and a high kappa
value of 0.91 were found for the GIS-LCZ map. This indicates a highly accurate classification
result and a strong improvement over the previous WUDAPT L0 result with an overall
accuracy of 74.95% and a kappa value of 0.69.

It is observed that the WUDAPT L0 method misclassified some LCZs due to its
shortcoming in detecting the zone properties related to building geometry. On the other
hand, the GIS-LCZ approach calculated the zone properties from vector and raster datasets,
which correctly detects LCZs that were misclassified by WUDAPT L0. Nevertheless, the
GIS-LCZ approach strongly depends on the availability of the data to calculate the zone
properties. It can lead to a misclassification of LCZs when the zone properties are not
available. This study also shows the limitation of the LCZ framework in addressing the
finer variety of zone property values of the grid tiles in Berlin, where the LCZ classes from
the standard do not fit perfectly to the calculated zone properties.

The GIS-LCZ approach classified the zone properties using a fuzzy logic algorithm
that was adapted from Estacio et al. [23] and modified in order to solve the membership
value problem of the left zero bound of the trapezoidal function. The standard framework
for LCZ E is also modified by defining the impervious surface fraction bigger than or equal
to 60%, so that it can better detect paved surfaces in urban areas. The majority filter used in
the post-processing employs a window filter of 3 × 3 pixels instead of 5 × 5 pixels used in
the standard WUDAPT L0, in order to keep the details of the GIS-LCZ classification.
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This study also shows that the new training areas generated with the consideration of
building height information can increase the accuracy of the LCZ map produced by the
LCZ generator. Moreover, the k-means clustering result shows that the GIS-LCZ method
tends to divide regions into clearly differentiated LCZ types according to the standard
framework, while k-means clustering can identify regions with city-specific characteristics
or inter-LCZ transition types. From the cross analysis between the clusters and the GIS-LCZ
classes, it is found that some of the GIS-LCZ classes seem to be naturally distinguishable
but some are difficult to separate.

Future improvement of the methodology presented here could proceed in several
directions. Only seven of the zone properties were used here for the classification of GIS-
LCZ. It would be interesting to add other zone properties (pervious surface fraction, surface
albedo, and surface admittance) and to see whether the result improves. The WUDAPT
L0 map has been inefficient in detecting certain LCZs, where geometric zone properties,
such as H and H/W, are critical. The classification in WUDAPT L0 could be improved by
introducing building height information to the machine learning algorithm. Integration of
the GIS-LCZ and the WUDAPT L0 method could also be possible to obtain advantages from
both of these methods by replacing the post-processing step (majority filter) of WUDAPT
L0 with an aggregation step applied in GIS-LCZ method by Gál et al. [20].

Existing investigations [21,41–44] can be enhanced or reapplied by using the result
of the GIS-LCZ map of Berlin. This approach is particularly suitable for practitioners
attempting to characterize UHI via climate simulation as it can improve the accuracy
of the simulation results by reflecting terrain features more precisely and consistently.
This is especially valuable in the case of high horizontal grid resolution. The GIS-LCZ
classes can also be used in the evaluation of simulation results from microscale numerical
models, such as PALM-4U. Furthermore, studies that correlate UHI intensity with land
cover characteristics can be extended to establish a correlation with the more accurate
urban classification of the GIS-LCZ method. Another type of correlation can be carried
out directly between the GIS-LCZ classes and remotely sensed land surface temperature
(LST) or in situ measurements of near-surface air temperature. The GIS-LCZ classes can
also be applied to design urban temperature measurement networks for the purpose of
understanding spatial and temporal characteristics of urban climate. This network can be
further used to analyze the air temperature conditions within the GIS-LCZ classes.
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Abbreviations
The following abbreviations are used in this manuscript:

BSF Building Surface Fraction
CORINE Coordination of Information on Environment
DLR Deutsches Zentrum für Luft- und Raumfahrt
GIS Geographic Information System
IMD Imperviousness Density
ISF Impervious Surface Fraction
LCZ Local Climate Zone
OSM OpenStreeMap
UHI Urban Heat Island
UHII Urban Heat Island Intensity
SUHII Surface Urban Heat Island Intensity
SVF Sky View Factor
WRF Weather Research and Forecasting
WUDAPT World Urban Database and Access Portal Tools
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