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Abstract: Open and high-temporal- and spatial-resolution global land use/land cover (LULC) map-
ping data form the foundation of global change research and cross-scale land management planning.
However, the consistency and reliability of the use of multisource LULC datasets in specific regions
need to be quantitatively assessed. In this study, we selected the Indochina Peninsula as the research
area; considered four datasets: LSV10, GLC_FCS30, ESRI10, and Globeland30; and analyzed them
from four dimensions: the similarity of composition type, the degree of category confusion, spatial
consistency, and data accuracy. The results show that: (1) the land composition descriptions of the
different datasets are consistent. The study area is dominated by forest and cropland, supplemented
by grassland, shrubland, and other land types. (2) The correlation coefficient between datasets is
between 0.905 and 0.972; the spatial consistency of datasets is good; and the high-consistency area
accounts for 77.87% of the total. (3) The overall accuracy of LSV10 is the highest (83.25%), and that of
GLC_FCS30 is the lowest (72.27%). The accuracy of cropland, forest, water area, and built-up land is
generally high (above 85%); the accuracy of grassland, shrubland, and bare land is low (below 60%).
Therefore, researchers must conduct validation for specific regions and specific land types before
using the above datasets. Our findings provide a basis for selecting LULC datasets in related research
on the Indochina Peninsula and a reference method for assessing the reliability of multisource LULC
datasets in other regions.

Keywords: land mapping; dataset quality; consistency; data accuracy; Southeast Asia

1. Introduction

Land use/land cover (LULC) is the result of a combination of natural and artificial
forces, reflecting the natural attributes of land and the impact of human activities [1]. The
spatial distribution pattern of and dynamic changes in LULC not only affect the regional
economic-social development but also regional environmental and climate change [2].
Satellite remote sensing technology provides strong technical support for the large-scale
and rapid acquisition of LULC information [3]. In 1995, the International Geosphere-
Biosphere Programme (IGBP) and the International Human Dimensions Programme on
Global Environmental Change (IHDP) jointly proposed the Land Use and Land Cover
Change project to evaluate the ecological and environmental effects of LULC change by
studying the mechanisms through which human society, the ecological environment, and
LULC change interact. Researchers are now paying more attention to LULC changes, which
have become a frontier and hot topic in current global change research [4–6].

Several medium- and high-resolution global-scale LULC datasets are available for
users to browse and download for free. Some well-known datasets include the IGBP
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DISCover product of the United States Geological Survey (https://daac.ornl.gov/, accessed
on 5 January 2022) [7], the UMD product of the University of Maryland (https://idn.
ceos.org/, accessed on 21 January 2022) [8], the GLC product of European Commission
Joint Research Centre (https://forobs.jrc.ec.europa.eu/, accessed on 21 January 2022) [9],
the MODIS LC product of Boston University (https://lpdaac.usgs.gov/, accessed on 21
January 2022) [10], and the GLOBCOVER product of the European Space Agency (ESA,
https://www.esa.int/, accessed on 22 January 2022). Most of them have a spatial resolution
of 300 m, 500 m, or 1 km, and the update frequency is 5 to 10 years. Since the early 2010s,
with the rapid increase in remote sensing observation platforms, the enhancement in remote
sensing cloud computing capabilities, and the improvement in LULC mapping technology,
increasing numbers of LULC datasets with a high spatial resolution (10 to 30 m) have
been constructed [11]. These LULC datasets include the Globeland30 dataset developed
by the National Geomatics Center of China (NGCC) [12], which provides global 30 m
resolution data in three issues of 2000, 2010, and 2020, which can be freely obtained by users
(http://www.globallandcover.com/, accessed on 31 January 2022); the GLC_FCS30 dataset
developed by the Aerospace Information Research Institute, Chinese Academy of Sciences
(AIR, CAS) [13–15], with an update cycle of 5 years, containing eight 30 m resolution global
data from 1985 to 2020, which can be freely obtained (https://data.casearth.cn/, accessed
on 31 January 2022); the LSV10 dataset developed by the European Space Agency (ESA) [16],
with a resolution of 10 m in 2020, which can be freely obtained (https://esa-worldcover.
org/, accessed on 31 January 2022); and the ESRI 2020 Land Cover 10 m (ESRI10) dataset
developed by the Environmental Systems Research Institute (ESRI) [17], with an update
cycle of one year and containing five phases of global 10 m resolution data from 2017
to 2021, which can be freely accessed online (https://www.arcgis.com/, accessed on 31
January 2022).

The above LULC datasets provide basic data support for scholars worldwide in
conducting research in the fields of nature, ecology, environment, and resources [18,19].
However, different LULC datasets are different in terms of the classification system, product
accuracy, etc. Therefore, their basic characteristics must be understood before conducting
research in a specific study area. Scholars have evaluated the authenticity of different LULC
datasets in different regions. Using field survey data as a reference, Heiskanen et al. tested
and evaluated the vegetation type data of GLC, MODIS LC, and MODIS VCF datasets in
northern Finland. The results showed that the overall accuracy of the first-level class of the
three products was high, but their fine-type accuracy was substantially lower [20]. Xu et al.
evaluated the accuracy and consistency of CGLS-LC100, ESA-S2-LC20, and FROM-GLC-
Africa30 datasets in Africa using measured sample data and statistics from the Food and
Agriculture Organization of the United Nations (FAO). The results show that the overall
accuracy of the three products was greater than 60%, and the CGLS-LC100 results were
most consistent with the FAO statistics, but they found significant differences in the spatial
details among the different products [21]. David et al. used the stratified sampling method
to evaluate the accuracy of the NLCD dataset in Alaska; the results showed that the overall
accuracy of the first- and second-level classes was 83.9% and 76.2%, respectively [22].

Analyzing the consistency of multisource LULC datasets is also important to explore
the characteristics and application potential of LULC datasets, which is basic work required
to improve and optimize existing datasets [23,24]. In this direction, Hu et al. proposed a
basic process of analyzing the consistency of multisource LULC datasets, summarizing
specific models of the similarity of the composition type, degree of category confusion, spa-
tial consistency, and reference accuracy [25,26]. Yang et al. applied index methods such as
statistical area, distribution pattern, and spatial analysis to compare the application poten-
tial of the IGBP DISCover, UMD, GLC, MODIS LC, GLCNMO, CCI-LC, and GlobeLand30
datasets in China [27]. McCallum et al. set up test sites in South America, North America,
Europe, Africa, Australia, Russia, and Asia, and compared the accuracy and consistency of
GLC, UMD, MODIS LC, and IGBP DISCover datasets in these different regions using clas-
sification merging and grid-by-kilometer statistical area methods [28]. Although different
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LULC datasets credibly describe the overall pattern of a region, their spatial consistency
may widely vary in different study areas, spatial scales, and land types [23–28]. In addition,
previous researchers mostly focused on the comparative analysis of multisource LULC
datasets with coarse resolution. No comparative study of high-precision LULC datasets
with 10 and 30 m resolution emerging since 2017 has yet been conducted.

The Indochina Peninsula is a key region connecting East Asia, South Asia, and Europe,
and its geopolitical and economic statuses are important. In the Indochina Peninsula, except
for Vietnam and Thailand, the remainder of the countries (Laos, Cambodia, and Myanmar)
are the world’s least developed countries, as determined by the United Nations. Due
to the underdevelopment of the regional economy and society, the Indochina Peninsula
generally lacks national-scale LULC datasets developed for each country, and enough
human and material resources to conduct ground truth tests on the global LULC datasets.
However, the Indochina Peninsula serves as a bridge linking developed regions such
as East Asia and Western Europe. Especially in the context of China’s Belt and Road
initiative, the Indochina Peninsula has become an important area for China’s ambitious “six
corridors and six channels serving multiple countries and ports” infrastructure planning.
Therefore, the latest LULC status in the Indochina Peninsula must be understood, the
dynamic history and future changes of LULC in this region need to be analyzed, and the
economic, environmental, and climate change effects that may be caused by infrastructure
construction must be explored. This has become an important issue of concern to scholars
both in and outside the region. In this context, fully using the current internationally
renowned LULC datasets to conduct analysis provides convenient source for researchers in
the field.

To this end, in this study, we selected the LSV10, GLC_FCS30, ESRI10, and Globeland30
data products, and conducted accuracy and spatial consistency analyses in Myanmar,
Vietnam, Thailand, Cambodia, and Laos, which are located on the Indochina Peninsula. To
evaluate the degree of agreement and reliability between different datasets, we aimed to
achieve three objectives:

(1) To reveal the law of land use/land cover composition on the Indochina Peninsula;
(2) To test the spatial consistency of the four LULC datasets on the Indochina Peninsula;
(3) To evaluate the overall and classification accuracies of the four LULC datasets to

provide a basis for data selection in subsequent studies.

2. Study Area and Data
2.1. Study Area

The Indochina Peninsula is located between China and the South Asian subcontinent;
it borders China’s Guangxi, Yunnan, and Tibet regions to the north; the Bay of Bengal and
the Andaman Sea on the northern edge of the Indian Ocean to the west; Malaysia to the
south; and the South China Sea on the western edge of the Pacific Ocean to the east. The
area ranges from approximately 92.0 to 109.5◦ E and 5.5 to 28.5◦ N. The study area included
all the territories of Vietnam, Thailand, Laos, Cambodia, and Myanmar on the Indochina
Peninsula, having a total area of 2.065 × 106 km2 (Figure 1).

The Indochina Peninsula has a tropical monsoon climate, experiencing high tem-
peratures throughout the year, with the year divided into two seasons: dry and rainy.
June–October is the rainy season, when the southwest monsoon prevails, and precipitation
is abundant; November–May is the dry season, with the northeast monsoon prevailing and
little rainfall. On the Indochina Peninsula, many mountains, rivers, and valleys are located
in the north and south. The main mountain ranges are the Arakan Yoma in the west, a
series of mountain ranges extending southward from the Shan Plateau in the middle, and
the Truong Son Ra in the east. The main rivers are the Irrawaddy, Salween, Red, Mekong,
and Chao Phraya Rivers. The overall terrain of the Indochina Peninsula is high in the north
and low in the south. The northern mountains are high and the valleys are deep, being
mostly plateau canyons and hills. The southern river valleys are open and the terrain is
flat, with many estuary deltas and alluvial plains.
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Figure 1. The location and topography of the study area.

In 2018, the total population of the five countries was 0.242× 109, accounting for 3.10%
of the world’s total population; the regional GDP was USD 0.864 × 1012, accounting for
1.01% of the global economic total. The contribution of the added value of the primary,
secondary, and tertiary industries to the regional GDP was roughly 12.1%, 52.0%, and 35.9%,
respectively. Compared with the GDP proportion per population of the world, that of the
Indochina Peninsula lags considerably behind. Compared with the industrial structure of
developed countries, Indochina Peninsula is still in the initial stage of industrialization,
which is reflected in the high contributions of primary and secondary industries to the total
GDP. With economic globalization, especially the industrial restructuring and industrial
transfer from neighboring China, the economy of the Indochina Peninsula grew rapidly
from 2000 to 2020, with an average annual GDP growth rate of 9.32%, which has led to
considerable improvements in the economic and social quality of the countries.

2.2. LULC Datasets

International academic institutions have released several global LULC datasets based
on satellite remote sensing images. Due to the differences in satellite platforms and sensors,
land classification systems, LULC mapping methods, and LULC dataset release times,
the LULC datasets differ in terms of the current situation, spatial resolution, and product
accuracy. In this study, we selected 4 LULC datasets that were the most current (2020), had
the highest resolution (10–30 m), and had high precision (overall accuracy between 74%
and 86%) for consistency evaluation: LSV10 [16], GLC_FCS30 [13–15], ESRI10 [17], and
Globeland30 [12]. A brief summary of the datasets is provided in Table 1.
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Table 1. Brief summary of the 4 LULC datasets.

Dataset Institution Remote Sensing Image Date Range Classification
System

Classification
Quantity

Classification
Method

Spatial
Resolution (m)

Overall
Accuracy (%) Source Website

LSV10 ESA Sentinel-2 multispectral
image, Sentinel-1 SAR image

January–December
2020 LCCS 11 Decision tree 10 74.4

https:
//esa-worldcover.org/,

accessed on 31 January 2022

GLC_FCS30 AIR, CAS Landsat image, Sentinel-1
SAR image 2019–2020 GLC_FCS30-

2020 30 Random forest 30 81.4 https://data.casearth.cn/,
accessed on 31 January 2022

ESRI10 ESRI Sentinel-2 image January–December
2020 / 10 Deep learning 10 85.96 https://www.arcgis.com/,

accessed on 31 January 2022

Globeland30 NGCC Landsat8-OLI image, GF-1
multispectral image

Vegetation growth
season within two

years before and after
2020

/ 10 POK 30 85.72
http://www.

globallandcover.com/,
accessed on 31 January 2022

https://esa-worldcover.org/
https://esa-worldcover.org/
https://data.casearth.cn/
https://www.arcgis.com/
http://www.globallandcover.com/
http://www.globallandcover.com/


Land 2022, 11, 758 6 of 19

2.3. Data Preprocessing

Before consistency analysis, we preprocessed the 4 LULC datasets, which included
image stitching and cropping, projection transformation, upscaling transformation, and
classification system merging.

First, we stitched together 38 LSV10, 16 GLC_FCS30, 10 ESRI10, and 16 Globeland30
datasets. Then, we converted the coordinate system of the stitched data to the WGS_1984_
UTM_Zone_47N coordinate system (the central meridian was 99◦ E and the longitude
range was 96–102◦ E). Then, we used the unified study area boundary data to cut them
down and finally obtain 4 study-area LULC datasets.

As these 4 LULC datasets have different resolutions (10 or 30 m), we used the maxi-
mum area aggregation method to convert the 10 m resolution LSV10 and ESRI10 data to
30 m to be consistent with GLC_FCS30 and Globeland30.

Because the 4 LULC datasets use different LULC classification systems (Table 2), we
needed to reclassify them to the unified LULC classification system. Drawing on previous
research experience [25–28], we identified 9 common LULC types (Table 3).

Table 2. Classification system of 4 LULC datasets.

LSV10 GLC_FCS30 ESRI10 Globeland30

Code Definition Code Definition Code Definition Code Definition Code Definition Code Definition

10 Tree cover 10 Rainfed cropland 82
Closed deciduous

needle-leaved forest
(fc > 0.4)

180 Wetlands 1 Water 10 Cultivated
land

20 Shrubland 11 Herbaceous cover 91
Open mixed leaf

forest (broad-leaved
and needle-leaved)

190 Impervious
surfaces 2 Trees 20 Forest

30 Grassland 12 Tree or shrub cover
(Orchard) 92

Closed mixed leaf
forest (broad-leaved
and needle-leaved)

200 Bare areas 3 Grass 30 Grassland

40 Cropland 20 Irrigated cropland 120 Shrubland 201
Consoli-

dated
bare areas

4
Flooded
vegeta-

tion
40 Shrubland

50 Built-up 51 Open evergreen
broadleaved forest 121 Evergreen shrubland 202

Unconsoli-
dated

bare areas
5 Crops 50 Wetland

60 Bare/sparse
vegetation 52 Closed evergreen

broadleaved forest 122 Deciduous shrubland 210 Water
body 6 Scrub/shrub 60 Water

bodies

70 Snow and ice 61
Open deciduous

broadleaved forest
(0.15 < fc < 0.4)

130 Grassland 220
Permanent

ice and
snow

7 Built Area 70 Tundra

80 Permanent
water bodies 62

Closed deciduous
broadleaved forest

(fc > 0.4)
140 Lichens and mosses 250 Filled

value 8 Bare
ground 80 Artificial

surfaces

90 Herbaceous
wetland 71

Open evergreen
needle-leaved forest

(0.15 < fc < 0.4)
150 Sparse vegetation

(fc < 0.15) 9 Snow/I\ice 90 Bare land

95 Mangroves 72
Closed evergreen

needle-leaved forest
(fc >0.4)

152 Sparse shrubland
(fc < 0.15) 10 Clouds 100

Permanent
snow and

ice

100 Moss and
lichen 81

Open deciduous
needle-leaved forest

(0.15 < fc < 0.4)
153 Sparse herbaceous

(fc < 0.15)

Note: fc = forest cover.

Table 3. Correspondence between old and new LULC systems.

New System LSV10 GLC_FCS30 ESRI10 Globeland30

1 Cropland 40 10, 20 5 10
2 Forest 10 51–92 2 20
3 Grassland 30, 100 11, 130–150, 153 3 30
4 Shrubland 20, 95 12, 120–122, 152 6 40
5 Wetland 90 180 4 50
6 Water area 80 210 1 60
7 Built-up land 50 190 7 80
8 Bare land 60 200–202 8 90
9 Snow and ice 70 220 9 100



Land 2022, 11, 758 7 of 19

After the above operations, the LULC data obtained in the four study areas had a
small number of missing pixel values. We removed these pixels without including them in
the analysis. This avoided introducing new uncertainties.

3. Study Method

We analyzed the multisource LULC dataset consistency evaluation process and index
model proposed by Hu et al. [26]. We focused on evaluating the LULC datasets from
four aspects: the similarity of composition type, the degree of category confusion, spatial
consistency, and accuracy.

3.1. Similarity of Composition Type

For different LULC datasets, we counted the areas corresponding to LULC types
to from multiple area sequences. From this, we calculated the correlation coefficient
between the area series values of different LULC datasets to evaluate the similarity of the
regional land composition of different LULC datasets [26]. The formula for calculating the
correlation coefficient is:

RXY =
∑9

k=1
(
Xk − X

)(
Yk −Y

)√
∑9

k=1
(
Xk − X

)2
∑9

k=1
(
Yk −Y

)2
(1)

where RXY is the correlation coefficient of the land cover area series of the two LULC
datasets (X and Y); k is the land cover type; Xk and Yk are the areas of k in LULC datasets X
and Y, respectively, in km2; and X and Y are the average of the area of 9 land cover types in
LULC datasets X and Y, respectively, in km2.

3.2. Degree of Category Confusion

From the correlation analysis results obtained based on the area series, we evaluated
the similarity of the regional land composition of different LULC datasets, but using this
method, we could not describe the spatial confusion of each land type. As such, we further
adopted spatial overlapping, judging the pixel confusion state, and counting the number
of confused pixels to analyze the degree of category confusion.

Our specific method was as follows: first, we obtained the corresponding relationship
of any two LULC datasets at the pixel scale by the spatial stacking method; second, accord-
ing to the land type one-by-one, we counted the same area and the changed area per the
land type attribute. We compared them with the total study area to obtain the degree of
confusion for a particular LULC type. Before and after stacking, the pixels with the same
land type were pure pixels; the pixels with changed land types were confused pixels. For
each land type, the more pure pixels there were and the larger the area ratio, the easier it
was to accurately extract this type of land; otherwise, this type of land was easily confused
with other land types. The formulas for calculating the purity degree and confusion degree
are as follows:

DPAB(k) =
S(kk)
S(k)

(2)

DCAB(kp) =
S(kp)
S(k)

(3)

where k and p are the LULC types; DPAB(k) and DCAB(kp) are the purity degree of k and
the confusion degree of k and p in the combination of the A/B LULC datasets, respectively;
S(k) is the area of k in A, in km2; S(kk) is the area of k identified by A and B, in km2; and
S(kp) is the area identified as k in A and as p in B.

3.3. Spatial Consistency

Although the category confusion analysis can quantitatively describe the degree
of confusion of each category between different datasets, the results are statistical, not
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intuitive, and direct. To visualize the degree of agreement between different LULC datasets,
a spatially consistent mapping method is required.

Our specific method was as follows: first, we used the spatial stacking method to
obtain the spatial correspondence of the LULC datasets at the pixel scale. Second, we
determined whether the land cover types that they indicated were the same pixel-by-pixel.
Third, according to the number of LULC datasets judged to be the same type, we sorted
them to form a thematic map. In this study, we divided the spatial consistency into 4 levels:
full agreement (spatial consistency of 100%, that is, the pixel was recognized as the same
land type by the 4 datasets), high agreement (spatial consistency of 75%, that is, the pixel
was recognized as the same land type by the 4 datasets), low agreement (spatial consistency
of 50%, that is, only two datasets recognized the pixel as the same land type), and no
agreement (spatial consistency of 0% to 25%, that is, the recognized types of the pixel of the
4 datasets were completely different). The formula for calculating spatial consistency is:

Nc(k) =
∑4

L=1(cL == k)
4

(4)

where Nc(k) is the spatial consistency of LULC type k on pixel c; cL is the LULC type of c
recognized by LULC dataset L.

3.4. Accuracy Analysis

By checking the consistency of all the pixels of the LULC datasets through analysis,
we revealed their differences in terms of number and spatial distribution. However, the
findings did not indicate which LULC dataset had higher overall accuracy, not which
land types in the dataset had higher accuracy [29–31]. Therefore, we first referred to the
high-resolution images on Google Earth and, based on constructing a 0.5◦ × 0.5◦ regular
grid and central sampling points (556 in total, as shown in Figure 2), we established the
LULC validation sample dataset for 2020 in the study area by means of visual interpretation.
Then, we calculated the accuracy of the four sets of LULC data with the above validation
sample data as the reference.

To evaluate the accuracy of the LULC datasets, we relied on constructing an error
matrix. According to the error matrix, we further calculated the user, producer, and overall
accuracies of the LULC datasets [25,26]. The formulas are as follows:

UA(k) =
S(kk)

∑9
p=1 S(kp)

(5)

PA(k) =
S(kk)

∑9
p=1 S(pk)

(6)

OA =
∑9

p=1 S(pp)

∑9
k=1 ∑9

p=1 S(kp)
(7)

where UA(k) and PA(k) are the user and producer accuracies of LULC k in the LULC
dataset, respectively; OA is the overall accuracy of the LULC dataset; S(kk) is the area of
correctly classified k, in km2; and S(kp) is the area of k that is wrongly classified into the
land cover type p, in km2.
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Figure 2. Distribution of LULC samples.

4. Result Analysis
4.1. Regional Land Composition

From the four LULC datasets, the LULC composition of the Indochina Peninsula is
shown in Figure 3. In general, different LULC products provided consistent descriptions of
the land composition of the Indochina Peninsula: mainly dominated by forest, followed by
cropland, shrubland and grassland, then built-up land and water area; the areas of wetland,
bare land, and snow and ice were small.

In the four LULC datasets, forest is the land type with the largest area (44.3–63.6%),
followed by cropland. The proportion of cropland in the LSV10 and ESRI10 datasets
is smaller (21.7–22.4%); the proportion of cropland in the GLC_FCS30 and Globeland30
datasets is larger (29.2–33.6%). In the GLC_FCS30 and Globeland30 datasets, the propor-
tions of grassland are similar (about 5.3%); the proportion of grassland in the LSV10 dataset
exceeds 9.3%; and the proportion of grassland in the ESRI10 dataset is only 0.3%. The area
of shrubland differed the most among the four LULC datasets (coefficient of variation is
104.4%). The shrubland areas in the GLC_FCS30 and ESRI10 datasets account for a similar
proportion (about 17%), while they only account for 1% in the LSV10 dataset, and the least
in the Globeland30 dataset (0.7%).

By conducting correlation analysis on the land area series of the four LULC products
(Table 4), we found that the correlation coefficients between different LULC products are
all above 0.9, which is a high correlation. The correlation between GLC_FCS30 and ESRI10
is the highest, at 0.972; the correlation between LSV10 and Globeland30 is next, at 0.969;
the correlations between GLC_FCS30 and Globeland30, LSV10, and ESRI10, and ESRI10
and Globeland30 are in the middle, ranging from 0.929 to 0.943; the correlation between
LSV10 and GLC_FCS30 is the lowest, but also above 0.9.
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Table 4. Correlation between different LULC datasets.

Dataset LSV10 GLC_FCS30 ESRI10 Globeland30

LSV10 1.000 0.905 0.931 0.969
GLC_FCS30 0.905 1.000 0.972 0.943

ESRI10 0.931 0.972 1.000 0.929
Globeland30 0.969 0.943 0.929 1.000

4.2. Confusion of Land Type

We analyzed the degree of land type confusion for the different LULC datasets, and
the results are shown in Figure 4a. When the LULC type on the abscissa is the same as the
land type on the ordinate, the pixels are pure; otherwise, the pixel type is confused.

The correct pixel identification of cropland, forest, water area, and built-up land
is high; the degree of confusion with other land types is low. The proportion of these
land types that were consistent in the pairwise comparison of the multisource LULC
datasets is mostly above 70%. Among them, the LSV10/GLC_FCS30 (Figure 4a) and the
ESRI10/Globeland30 combinations (Figure 4f) have the highest accuracy of cropland, reach-
ing over 89%. The GLC_FCS30/Globeland30 (Figure 4e) and the ESRI10/Globeland30
combinations (Figure 4f) have the highest forest identification accuracy, reaching over
86%. The LSV10/ESRI10 combination (Figure 4b) and the GLC_FCS30/ESRI10 combi-
nation (Figure 4d) have the highest purity degree of water area, reaching over 95%. The
LSV10/ESRI10 (Figure 4b) and the GLC_FCS30/ESRI10 combinations (Figure 4d) have
the highest identification degree of built-up land, reaching over 97%. Conversely, the
pixel identification of grassland, shrubland, and wetland is low; the degree of confusion
with other land types is high. The proportion of these land types that were consistent in
the pairwise comparison of the multisource LULC datasets is mostly less than 30% and
even less than 10%. Among them, the LSV10/Globeland30 combination (Figure 4c) has
the highest purity degree of grassland, at 16%; the LSV10/ESRI10 (Figure 4b) and the
GLC_FCS30/ESRI10 combinations (Figure 4d) have the lowest purity degree of grassland,
at only 1%. The LSV10/ESRI10 combination (Figure 4b) has the highest identification
degree of shrubland, at 22%; the GLC_FCS30/Globeland30 combination (Figure 4e) has
the lowest, less than 1%. The GLC_FCS30/Globeland30 combination (Figure 4e) has the
highest-accuracy identification of wetland, at 66%; the LSV10/GLC_FCS30 combination
(Figure 4a) has the lowest, at 13%.
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In conclusion, from the analysis of the confusion of land types, we found that the four
LULC datasets have a high pixel identification accuracy and good consistency of cropland,
forest, water area, and built-up land. This partly reflects the high accuracy of different LULC
datasets for these land types. The four LULC datasets have low identification accuracy
and poor consistency for grassland, shrubland, and wetland, reflecting that the accuracy of
different LULC datasets in these land types is inconsistent, so further verification is needed.

4.3. Spatial Consistency

To analyze the spatial differentiation characteristics of the consistency of land cover
type identification, we selected four land types (cropland, forest, grassland, and shrubland),
which account for the largest proportion of the study area, and conducted a pixel-by-pixel
comparative analysis. The results (Figure 5) show that the four LULC datasets have the
highest spatial consistency for forest and cropland, and most of the pixels are identified as
the same land type by three to four LULC datasets. The spatial consistency of grassland
identification is lower, and that of shrubland is lowest: only a few pixels are identified as
the same land type by two LULC datasets, and very few pixels are identified as the same
land type by three to four LULC datasets.
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 Figure 5. Spatial consistency of different LULC types.

Cropland (Figure 5a–e) is an important land type on the Indochina Peninsula and
is widely distributed throughout the region. For the four LULC datasets, the cropland
spatial distribution pattern is the same. In the GLC_FCS30 and Globeland30 datasets,
the cropland pixels are denser and the cropland area is larger. Conversely, in the LSV10
and ESRI10 datasets, the cropland area is smaller. To analyze the consistency of cropland
identification, the proportion of cropland identified by three to four LULC datasets is
56.27%; that identified by one to two LULC datasets is 43.73%. The spatial distribution
of cropland is the most concentrated in the northwest (the middle and lower reaches of
the Irrawaddy River), the middle (the middle and lower reaches of the Chao Phraya and
Mekong Rivers), and the eastern and southern coastal areas. In these areas, we found
that the spatial consistency of cropland is the highest, and three to four LULC datasets
generally identify these pixels as cropland. The distribution of cropland is fragmented
in the southeast (south of Truong Son Ra), the northeast (the area of the Red River basin,
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excluding the delta), and the south (the southernmost peninsula of Vietnam). In these areas,
the spatial consistency of multisource LULC datasets is low, and one to two LULC datasets
generally identify these pixels as cropland.

Forest (Figure 5f,g) is the most important land type on the Indochina Peninsula, having
the largest area and the widest spatial distribution. In the LSV10, ESRI10, and Globeland30
datasets, the forest spatial distribution pattern and quantity are similar. In the GLC_FCS30
dataset (Figure 5j), the forest pixels are sparse, and their number is low. To analyze the
consistency of forest identification, we found that the proportion of forest identified by
three to four LULC datasets is 71.60% and that identified by one to two LULC datasets
is 28.40%. From the perspective of spatial distribution, forest is most concentrated in the
northwest (the upper reaches of the Irrawaddy River, the Arakan Yoma, and the Shan
Plateau), the vast area in the north-central region (the upper reaches of the Chao Phraya
River and the Mekong River), the east (Truong Son Ra), the southwest (Mountains in
southern Myanmar). In these areas, the spatial consistency of multisource LULC datasets is
the highest, and three to four LULC datasets generally identify these pixels as forest. In
the southeast (Mekong Delta and southern Truong Son Ra), the forest distribution is more
fragmented. In these areas, the spatial consistency of the four LULC datasets is low, and
one to two LULC datasets generally identify these pixels as forest.

The spatial consistency of the identification of grassland (Figure 5k–o) is poor in the
four LULC datasets. The spatial distribution and quantity of grassland identified by the
datasets widely vary. The grassland area in the LSV10 dataset is the largest, and most
of the pixels are located in the northeastern half of the study area. The grassland areas
in the GLC_FCS30 and Globeland30 datasets are similar, but most of the pixels in the
GLC_FCS30 dataset are located in the southwest half of the region and most of the pixels in
the Globeland30 dataset are located in the northern half. The grassland area in the LSV10
dataset is the smallest, being much less than in the other three. As shown in Figure 5l, the
grassland area is barely visible. From analyzing the consistency of grassland identification,
we found that 88.81% of the pixels are identified as grassland by only one LULC dataset,
10.69% of the pixels are identified as grassland by two LULC datasets, and only 0.49% of
the pixels are identified as grassland by three to four LULC datasets.

The spatial consistency of shrubland in the Indochina Peninsula (Figure 5p–t) was
the worst in the multisource LULC datasets. The amount of shrubland identified in the
datasets widely varies, as do the spatial distribution patterns. The GLC_FCS30 and ESRI10
datasets identify the largest shrubland area, reporting similar values. The pixels in the
GLC_FCS30 dataset are the densest in the northeast area, followed by the southwest area,
and the middle area is sparse. Conversely, the shrubland pixels in the ESRI10 dataset
are less distributed in the northeast and southwest regions, and more distributed in the
middle. The shrubland area in the LSV10 and Globeland30 datasets is small: Figure 5q,t
show that the shrubland distribution is sporadic. From our analysis of the consistency
of shrubland identification, we found that 92.85% of the pixels are correctly identified as
shrubland by only one LULC dataset, 6.42% of the pixels are identified as shrubland by two
LULC datasets, and only 0.06% of the pixels are identified as shrubland by three to four
LULC datasets. From a spatial point of view, the shrubland and forest distribution patterns
are highly consistent across the datasets, and the grassland and shrubland patterns are
generally consistent. Shrubland and grassland are mainly distributed in the low mountain
and hilly areas, and distribution relationship with forest and cropland shows a mosaic
pattern. Due to the complexity of the spatial distribution, the fragmentation of the spatial
form, and the spectral characteristics of the same object with different spectra, we expected
the spatial consistency of the above two land types to be low.

We analyzed the overall consistency of the identification of various types of land
among the datasets, and the results are shown in Figure 6. In the Shan Plateau, Arakan
Yoma, Truong Son Ra, the upper reaches of the three rivers (Mekong, Chao Phraya, and
Irrawaddy Rivers), where forest is concentrated, and in the middle and lower reaches of
the three rivers, and the eastern and southern coastal areas, where cropland is concentrated,
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the spatial consistency of the multisource LULC datasets is the highest. Most datasets reach
full agreement on all pixels. In southern Truong Son Ra, the lower Mekong River basin,
and the Mekong Delta, where cropland, forest, grassland, and shrubland are mixed, the
spatial consistency of the multisource LULC datasets is the least accurate, and with low or
no agreement on many pixels.
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We also calculated additional statistics on various types of land. The results show that
the area of full agreement on land types of the four LULC datasets accounts for 48.88% of
the total area of the Indochina Peninsula; the area with high agreement accounts for 28.99%
of the region; the area with low agreement accounts for 20.02% of the region; and the area
with no agreement accounts for 2.11% of the region. Considering a reliability of 75% (that
is, of the four LULC datasets, at least three identify pixels as the same land type), 77.87% of
the land type information in the Indochina Peninsula is reliable; the other 22.13% of the
land type information is uncertain.

4.4. Data Accuracy

On the Indochina Peninsula (Table 5), the overall accuracy of the four LULC datasets
is between 72% and 83%, as follows: LSV10 (83.25%) > ESRI10 (77.27%) > Globeland30
(73.88%) > GLC_FCS30 (72.27%).

For the LSV10 dataset, the accuracy of cropland, forest, water area, and built-up land
identification is highest. Their user and producer accuracies are all above 86%. The accuracy
of grassland identification is at a medium level, but the dataset considerably overestimated
the grassland area. The identification accuracy is the worst for shrubland, wetland, and
bare land.



Land 2022, 11, 758 15 of 19

Table 5. Validation accuracy of the multisource LULC dataset (%).

LSV10 GLC_FCS30 ESRI10 Globeland30

Land Type UA PA UA PA UA PA UA PA

Cropland 92.72 89.41 88.26 65.01 82.30 86.74 90.14 72.56
Forest 96.76 86.81 88.06 82.83 97.84 84.99 90.67 77.80

Grassland 90.36 53.17 17.01 23.18 26.78 65.12 52.66 42.39
Shrubland 36.25 96.75 41.62 43.20 29.80 31.68 14.90 94.98
Wetland 23.89 65.81 19.67 86.60 31.62 94.41 26.23 41.79

Water area 90.75 90.03 92.63 92.88 98.39 70.92 81.23 88.34
Built-up land 90.24 94.69 79.02 91.42 70.34 94.65 77.76 94.92

Bare land 47.10 57.96 11.78 80.26 56.76 61.64 44.02 57.72
OA 83.25 72.27 77.27 73.88

For the GLC_FCS30 dataset, the identification accuracy of forest, water area, and
built-up land was highest. Their user and producer accuracies are all above 79%. The iden-
tification accuracy of cropland is in the middle, but the dataset substantially overestimated
the cropland area. Wetland, grassland, shrubland, and bare land identification accuracies
are the lowest.

For the ESRI10 dataset, the cropland and forest identification accuracies are highest,
and their user and producer accuracies are above 82%. The identification accuracy of water
area, built-up land, and bare land is in the middle, but water area is considerably overesti-
mated, built-up land is substantially underestimated, and bare land is underestimated. The
identification accuracies of grassland, shrubland, and wetland are the lowest.

For the Globeland30 dataset, the cropland, forest, built-up land, and water area
identification accuracies are the highest. The user and producer accuracies are above
72% in general. The dataset remarkably overestimates cropland and forest and notably
underestimates built-up land. The identification accuracy of bare land is in the middle,
whereas those of grassland, shrubland, and wetland are the lowest.

In conclusion, the LSV10 dataset has the highest overall accuracy. In four LULC
datasets, the accuracy of cropland, forest, water area, and built-up land is generally high.
For grassland, shrubland, and wetland, the accuracy of the four datasets is not ideal.

5. Discussion

In this study, we found that the overall accuracy of the four LULC datasets in the
Indochina Peninsula is ranked from high to low as LSV10 (83.25%) > ESRI10 (77.27%) > Glo-
beland30 (73.88%) > GLC_FCS30 (72.27%). These are ±10% deviations from the accuracy
claimed by the original authors (74.4%, 85.96%, 85.72%, and 81.4%, respectively) [12–17].
As the assessment of the accuracy by LULC dataset makers is based on the global validation
sample base, our accuracy assessment was limited to the Indochina Peninsula, which is a
region with specific LULC types. Moreover, the Indochina Peninsula is in the tropics, with
lush vegetation and more complex surface cover. Therefore, their results would differ from
those we obtained in this study. This also shows that quantitatively analyzing the actual
accuracy of each LULC dataset is necessary before conducting land science research in a
specific area.

Our findings show that the four LULC datasets have high identification accuracy of
cropland, forest, water area, and built-up land. LSV10 has the highest cropland identifi-
cation accuracy, whereas the difference between user accuracy and producer accuracy is
less than 3%, indicating that the dataset is suitable for research and applications based on
cropland, such as grain production potential and cultivated land protection policy. LSV10
and ESRI10 have the highest forest identification accuracies, both exceeding 95%, and so
are suitable for forest-based research and applications, such as wildlife conservation, forest
resource assessment, and forest ecological services research. GLC_FCS30 has the highest
water area identification accuracy, and so is suitable for natural hydrology-related studies,
such as fishery production evaluation, hydropower generation evaluation, and water area
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ecological protection. LSV10 has the highest built-up land identification accuracy, and so is
suitable for research and applications based on built-up land, such as urban heat island,
urban dynamic expansion, and urban and rural development planning research.

Our findings show that the identification accuracy of the four datasets for grassland,
shrubland, and wetland is low, so they are unsuitable for scientific research and land
management planning of these land types. The classification error of these land types is
an important factor that reduces the overall accuracy of LULC datasets. On the one hand,
the spectral characteristics and texture characteristics of these land types are similar, and
their spatial distributions are fragmented. On the other hand, we found differences in the
definition of grassland-shrubland and wetland-grassland in the different datasets, which
could have led to confusion in the construction of the training samples and final mapping
results of the LULC datasets [32]. Therefore, grassland-shrubland, wetland-grassland, and
wetland-water area must be more scientifically defined, and more accurate training samples
must be built to provide an appropriate foundation for improving the classification accuracy
of grassland, shrubland, and wetland in the future. In addition, the classification accuracies
of grassland, shrubland, and wetland must be improved to enable the development of
process monitoring methods based on time series image data by integrating laser tree
height data and radar water retrieval data [33].

We evaluated the multisource LULC datasets from two dimensions: consistency and
accuracy. Consistency analysis does not introduce validation samples: LULC datasets
were used as a reference to analyze the similarity of land composition, degree of category
confusion, and spatial consistency. The advantage of this method is that all pixels of the
datasets can be included in the analysis to reveal the difference. The disadvantage is that
the results are relative and cannot be absolutely evaluated [34]. The accuracy test method
introduces verification samples as close to reality as possible, and calculates the accuracy
parameters of each dataset. The advantage is that it can evaluate the overall accuracy of
each LULC dataset and the classification accuracy of each land class. The disadvantages
are that the representativeness of sample data is limited [35], and that the validation of
samples produces new uncertainties [36].

In this study, scaling up and reclassification provided the basis for follow-up eval-
uation, and were important sources of uncertainty [37]. Scaling has little effect on large
areas of forest, large areas of cropland, and water that have higher spatial continuity.
However, with mixed land types, scaling leads to changes in fine spatial information and
quantity [38,39]. The classification systems of LSV10, ESRI10, and Globeland30 show high
correspondence with the merging system, and the subjective factors have little influence on
the reclassification process. GLC_FCS30 has 30 fine classes, so the reclassification is easily
affected by the knowledge level of the researchers [40,41]. In addition, due to their similar
morphology (forest, shrubland, grassland, wetland, etc.), mixed distribution and limited
image resolution, sampling methods based on Google Earth and visual interpretation are
uncertain, and thereby affect the accuracy verification results [42,43].

6. Conclusions

In this study, we converted four well-known LULC datasets (LSV10, GLC_FCS30,
ESRI10, and Globeland30, with a spatial resolution of 10 or 30 m) into a unified and compa-
rable benchmark through scaling up and classification merging. We analyzed the similarity
of composition type, degree of LULC confusion, spatial consistency, and validation accu-
racy in detail. In this study, we are the first to evaluate the spatial consistency and accuracy
of LULC datasets in the Indochina Peninsula. Our findings provide a quantitative basis
for people in various countries and fields in selecting LULC data and provide a reference
method for assessing the accuracy of multisource LULC datasets in other regions.

Our findings show that forest is the main land type on the Indochina Peninsula,
followed by cropland, shrubland, grassland, built-up land, and water. The overall accuracy
of different LULC datasets is between 72% and 83%. LSV10 has the highest overall accuracy.
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The accuracy and consistency of each LULC dataset are higher for cropland, forest, water,
and built-up land and lower for grassland, shrubland, and wetland.

Based on the above analysis results, we provided clear suggestions for countries in the
Indochina Peninsula countries for relevant researchers when selecting LULC datasets for
agriculture, fisheries, forest, and ecological protection, and urban and rural development.
We provided some recommendations to improve some land mapping methods that have a
low spatial consistency and accuracy. In future research, strengthening field investigation,
scientifically defining classification systems, and integrating multisource data such as laser
detection and radar inversion will be important for improving the accuracy and availability
of LULC datasets.
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