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Abstract: Land surface processes can significantly influence weather and climate. The Common
Land Model version 2005 (CoLM2005) has been coupled to the Global Forecast System of the
Global/Regional Assimilation and Prediction System (GRAPES_GFS), which is independently devel-
oped by the China Meteorological Administration. Since a new version of CoLM has been developed
(CoLM2014) with updated soil basic data and parts of hydrological processes, we coupled CoLM2014
with GRAPES_GFS to investigate whether the land surface model can help to improve the prediction
skill of the weather forecast model. The forecast results were evaluated against global validation
datasets at different forecasting lengths and over various regions. The results demonstrate that
GRAPES_GFS coupled with CoLM2005 and CoLM2014 can both well reproduce the spatial patterns
and magnitude of atmospheric variables, and the effective predictable lengths of time are up to
3 days on the global scale and even up to 6 days on regional scales. Moreover, the GRAPES_GFS
coupled with CoLM2014 outperforms the original one in predicting atmospheric variables. In ad-
dition, GRAPES_GFS coupled with both versions of CoLM reproduce acceptably accurate spatial
distribution and magnitude of land variables. GRAPES_GFS coupled with CoLM2014 significantly
improves the forecast of land surface state variables compared to the one coupled with CoLM2005,
and the improvement signal is more notable than that in atmospheric variables. Overall, this study
shows that CoLM is suitable for coupling with GRAPES_GFS, and the improvement of the land
surface model in a weather forecast model can significantly improve the prediction skill of both
atmospheric and land variables.

Keywords: common land model; GRAPES model; land–atmosphere coupling; model evaluation

1. Introduction

The land surface is the lower boundary of atmospheric physical and dynamic pro-
cesses. The land surface processes include all physical, chemical, and biological processes
that occur on the land surface layer and the interactions between these processes and
atmosphere and ocean [1]. The land surface model (LSM) is developed to simulate these
complicated and interactive processes using mathematical physical equations and associ-
ated parameterization schemes, aiming at obtaining a better understanding of the evolution
of land states, water, energy and carbon exchange with the atmosphere and ocean, and
then regional and global climate.

In numerical weather and climate models, LSMs provide land surface boundary
conditions for atmosphere component models. Transported from land to atmosphere, the
vapor and heat fluxes control the development of convection and precipitation processes
in the troposphere, modulate the water and energy cycle in atmosphere layers and the
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whole earth system, and respond to atmospheric anomalies driven by natural and/or
anthropogenic factors. The carbon fluxes between land and atmosphere even determine
the degree of global warming and climate change, as the carbon budget on the land surface
directly regulates concentrations of greenhouse gases in the atmosphere.

The Global and Regional Assimilation and Prediction System (GRAPES) is a numerical
forecasting system developed independently by the China Meteorological Administration.
In recent years, research on the GRAPES model has emerged one after another. The research
on the GRAPES_GFS (GRAPES Global Forecast System) model mainly focuses on the
following parts: the error analysis and correction of the model itself [2,3], the improvement
of atmospheric physical schemes including radiation processes and planetary boundary
layer processes [4,5], and the improvement of the model dynamic framework [6]. However,
few works focus on the improvement of the land surface scheme in GRAPES_GFS, and
only simple case studies are currently available [7].

GRAPES_GFS adopts the Common Land Model version 2005 (CoLM2005) as the
default setup of the land surface module [8]. The CoLM is derived from a community effort.
It undergoes development in China in many areas, such as the two-big-leaf model for
calculating leaf temperatures and photosynthesis–stomatal resistance and the two-stream
approximation model for simulating canopy radiation [9]. To date, two versions of the
CoLM have been released: CoLM2005 [10] and CoLM2014 [11]. The updates of the latter
version concentrate mostly on the global land surface data (e.g., basic soil properties),
soil hydrological processes, and thermal processes of land water bodies. Studies have
shown that the latter version of the CoLM has greatly improved the simulation of global
land surface variables. For example, Li et al. [12] compared the simulation of the water
and energy budgets with The Community Land Model version 4.5 (CLM4.5), CoLM2005,
and CoLM2014 on a global scale, and demonstrated that CoLM2014 performs better than
CoLM2005, and is comparable to CLM4.5 in the simulation of global water and energy bud-
gets.

Previous studies seldom considered the impact of the land surface scheme on the
global forecast results of GRAPES_GFS, or only focused on their effects on near-surface
variables. There is a lack of specific assessments on the applicability of CoLM in the
GRAPES_GFS model, especially for the updated version of CoLM. Therefore, this paper
couples the CoLM2014 to GRAPES_GFS, and compares the forecasted results with those
from GRAPES_GFS coupled with CoLM2005 to evaluate the impact of the land surface
scheme on the forecast capacity of GRAPES_GFS. We first evaluate the impact of changes
in land surface scheme on the forecast of important atmospheric variables, and then we
analyze the changes in the forecast of land surface variable fields to attribute the changes
in forecasted atmospheric states.

2. Models, Experiments, Data, and Methods
2.1. Models
2.1.1. GRAPES

Developed by the China Meteorological Administration [13], the Global/Regional Data
Assimilation and Prediction System (GRAPES) has already been put into formal weather
forecast operation in China [8]. The GRAPES model has a global version (GRAPES_GFS) and
a mesoscale regional (GRAPES_Meso) version [14].

The GRAPES model used in this study is the global version, GRAPES_GFS-2-1-2-2
(hereinafter referred to as GRAPES). Currently, the highest horizontal resolution sup-
ported by GRAPES is 0.25◦ (longitude) × 0.25◦ (latitude), and the number of vertical
layers is 60. GRAPES adopts a semi-implicit-semi-Lagrangian dynamical framework
integration scheme [15]. As a weather forecast model, GRAPES also has a complete
framework of physical processes. Different physical processes are divided into different
modules, including Cumulus module for simulating large-scale precipitation processes,
the Microphysics Module for computing cloud microphysical processes, the planetary
boundary layer (PBL) module, the radiative transfer module, and the land surface module,
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each of which has several options. Currently, the default scheme of the land surface module
of GRAPES is CoLM2005. As shown in Figure 1, CoLM has been coupled with GRAPES by
transmitting variables with other physical modules.
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2.1.2. CoLM and Its Upgrade

CoLM was developed by Dai et al. [10] on the basis of combining BATS [16], IAP94 [17],
and LSM Version 1.0 [18]. CoLM has a special single-layer double-large-leaf model for
calculating vegetation photosynthesis, stomatal conductance, leaf temperature, and energy
flux [9], which can accurately simulate and describe global land surface processes. CoLM
has been widely used in land surface studies and Earth System Models such as the Chinese
Academy of Sciences Earth System Model (CAS-ESM) [19], the Beijing Normal University
Earth System Model (BNU-ESM) [20], the Climate-Weather Research and Forecasting Model
(CWRF) [21], etc. The current version of CoLM coupled in the GRAPES_GFS is CoLM2005,
and we refer to the original GRAPES model as GRAPES_ORI in this paper. The latest
version of CoLM is CoLM2014. We couple CoLM2014 with GRAPES which is referred to as
the GRAPES_NEW in this paper.

CoLM2005 and CoLM2014 share a same soil layer structure of which soil is divided
into ten layers vertically [10]. However, in order to facilitate matching with other land
surface schemes in the GRAPES_GFS and GRAPES_Meso regional model (in which Noah
is used as the land surface scheme), the soil temperature and moisture calculated by CoLM
are interpolated to the depths of 0–10 cm, 10–40 cm, 40–100 cm, and 100–200 cm as the
GRAPES forecast output.

Based on CoLM2014, we make a series of supplements and improvements relative
to CoLM2005, especially for the global soil texture data based on the Global Soil Dataset
for use in Earth System Models (GSDE, Shangguan et al., 2014), the improvement of the
parameterization scheme for surface and subsurface runoff, and a new version of lake
model (CoLM_Lake). The supplements and improvements are listed below.

1. Update of Global Soil Texture

The soil texture data used in CoLM for estimations of soil thermal and hydraulic
parameters include the mass percentage of the three types of soil particles (i.e., clay%,
silt%, and sand%). The Global Soil Dataset for use in Earth System Models (GSDE, [22]),
which provides soil information including soil particle-size distribution, organic carbon,
and nutrients with the global resolution of 1 km, has been widely used in land surface
models (CoLM 2014, Noah, Noah-MP, BCC_AVIM 1.1), Earth System Models (CAS_ESM,
BNU_ESM), and weather and climate models (WRF, CWRF, BCC_CSM) [23]. Therefore, we
updated the soil texture data of GRAPES based on the soil texture data of the GSDE dataset.

In CoLM, the change in soil texture data directly affects the changes in soil hydraulic
and thermal parameters, such as saturated soil volumetric water content θs, saturated
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soil water potential ψs, and saturated hydraulic conductivity Ks; the calculation of soil
hydraulic and thermal parameters adopts empirical formulas proposed by Cosby et al. [24].
These changes in soil hydraulic and thermal parameters then further affect the calculation
of soil water and thermal profiles.

2. Improvement of Parameterization Scheme for Surface and Subsurface Runoff

The surface and subsurface runoff parameterization scheme of CoLM2005 adopts
the runoff model from BATS [16], while CoLM2014 adopts the SIMTOP model [25]. Al-
though the above two schemes are improved based on the TOPMODEL [26], they have
significant differences.

In a model grid box, the effective rainfall Wg is

Wg= Pg+Mg (1)

where Pg is the precipitation that reaches the soil surface after being intercepted by the
vegetation canopy, and Mg is the melted snow water on the surface.

In CoLM2005, the groundwater level zw (Units: m) is described as

zw= fz ·
(

zbot − ∑j θj∆zj

)
(2)

where fz = 1 m−1 is the depth scale parameter of the groundwater table, zbot is the depth of
the bottom soil layer, ∆zj is the thickness of soil layer j, and θj is the soil volumetric water
content of soil layer j.

In CoLM2014, zw is diagnosed based on both effects of the groundwater recharge and
the subsurface runoff caused by topographic distribution. The groundwater table rises as
the groundwater is recharged by the outflow of soil water at the bottom layer, and declines
with the groundwater routing to river as base flow.

In CoLM2005, the calculation of surface runoff does not explicitly consider the soil
infiltration capacity, and the surface runoff Rs,ori is calculated as

Rs,ori= fs,ori · Wg + (1 − fs,ori) · ws
4 · Wg (3)

where ws is the soil layer thickness weighted soil wetness in the top three layers, while

fs,ori= fwet · exp(− zw) (4)

is the fraction of the saturated area in the grid box, and fwet = 0.3 is the proportion of the
area with higher groundwater table in the grid, which is determined by the distribution of
the topographic index.

The subsurface runoff can be described by Equation (5)

Rb,ori= KD · wb
(2B+3)+lb · exp(− zw) (5)

where KD = 4 × 10−2 mm·s−1 is the saturated soil hydraulic conductivity of the bottom
layer, wb is the soil layer thickness and hydraulic conductivity weighted soil wetness in
the bottom five layers, lb = 10−5 mm·s−1 is the saturated subsurface runoff coefficient
estimated from soil and topographic characteristics, and B is the parameter in the soil
retention relationship defined by Clapp and Hornberger [27].

In CoLM2014, all the effective rainfall in the saturated area in a grid box is converted
into runoff as in CoLM2005, and the effective rainfall in the unsaturated area is partially
converted into runoff based on the explicit consideration of soil infiltration capacity as fol-
lows:

Rs,new= fs,new · Wg + (1 − fs,new) · (W g − Qmax

)
(6)
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where Qmax is the soil maximum infiltration capacity, which is jointly determined by the
saturated hydraulic conductivity Ks,j and the volume fraction of ice particles in the soil
pores Vice,j of the top three soil layers:

Qmax= min
{

Ks,j · 10−6 · Vice,j
}

j = 1, 2, 3 (7)

The fraction of the saturated area in the grid box (i.e., fs,new) in Equation (6) are
presented by

fs,new= fwet · exp(− 0.5 · fff · zw) (8)

where fff is the decay factor for runoff.
As for the calculation of the subsurface runoff Rb,new, CoLM2014 comprehensively

considers the subsurface runoff caused by topographic distribution:

Rb,new= fice · Rdrai,max · exp(− fdrai · zw) (9)

where fice represents the resistance of ice to subsurface runoff, fdrai = 2.5 m−1 is the runoff
attenuation factor, and Rdrai,max is the maximum subsurface runoff value.

3. Update of CoLM Lake Model

The lake model of CoLM2005 adopts the lake scheme of the Bonan [28] LSM model. It
divides lakes into deep lakes and shallow lakes with a fixed depth, and only divides lakes
into six layers in one dimension, with some lake characteristics (e.g., extinction coefficient
and roughness) set to be constant. The physical process of the CoLM2005 lake model only
considers the molecular diffusion and eddy diffusion processes for energy transport, and
does not consider the vertical mixing and eddy diffusion processes of shallow lakes. The
lake temperature T is obtained by solving the following equation:

∂T
∂t

= − ∂

∂z

[
(km+ke)

∂T
∂z

]
+

1
cw

dΦ
dz

(10)

where t is the time, z is the depth of the lake, cw is the heat capacity of water, km= kw · cw
−1

is the molecular diffusion coefficient (where kw is the thermal conductivity of water), ke is
the eddy diffusion coefficient, and Φ is shortwave radiation absorbed by lakes.

Based on the eddy diffusion scheme of Hostetler and Bartlein [29], the stratification
scheme of Henderson-Sellers [30], and the lake–atmosphere feedback scheme of Bonan [28]
and Hostetler et al. [31,32], a new generation lake model CoLM_Lake, which is the lake
model of CoLM2014, has been developed by Dai et al. [33]. CoLM_Lake divides the lake
into 10 layers, with at most 5 snow layers and 10 mud layers above and below the lake
system, respectively.

The updates of CoLM_Lake relative to the original model can be summarized as
follows: (1) the interaction between precipitation and lake surface is included, with a
detailed description of the precipitation effect on snow freeze–thaw processes; (2) the
settings of lake parameters are changed from constant to dynamic diagnosis based on
lake features and lake states, for example, the lake surface roughness length is determined
by both the air conditions above lakes and lake surface properties, and the extinction
coefficient η for lake absorption of solar radiation changes with the lake depth; (3) the lake
temperature for the first layer and at the surface is adjusted based on the thermal stability;
(4) the lake stratification is setting based on the lake depth instead of fixed stratification;
(5) the freezing–thawing process and the vertical mixing process of lake water depending
on the density and lake ice fractions are specifically described, in which the vertical mixing
process is driven by three factors: the liquid water molecular diffusion, the eddy diffusion
driven by lake surface wind, and other processes which can enhance mixing but cannot
expressed explicitly in the model; (6) the intensity of vertical mixing of the deep lake is
enhanced according to the lake depth.
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Dai et al. [33] evaluated CoLM_Lake using observation data from ten lakes, and found
that CoLM_Lake can accurately simulate the surface temperature and vertical thermal
structure of lakes, and reasonably describe the main characteristics of lakes such as seasonal
freeze–thaw cycles.

2.2. Experimental Design

GRAPES_ORI and GRAPES_NEW were run from 20 July 2016 to 1 September 2016
with the initial field coming from NCEP FNL reanalysis data [34], which are widely used
in the assessment of GRAPES_GFS [35]. The forecast started at 12:00 (universal time)
every day, with a forecast duration of 8 days. The model parameter settings for GRAPES
operation are shown in Table 1 below. All parameters adopted for the experiments were set
the same as the default setups for the current forecast operation of GRAPES_GFS, except
for the differences between the land surface schemes, which have been described in the
previous section.

Table 1. Model parameters used in GRAPES forecast run.

Model Parameters GRAPES_ORI GRAPES_NEW

Horizontal Resolution 0.25◦ × 0.25◦ 0.25◦ × 0.25◦

Vertical Layers 60 60
Integration Time Step 300 s 300 s
Microphysics Scheme WSM6 [36] WSM6

Cumulus Scheme Simplified Arakawa-Schubert
Scheme [37,38]

Simplified Arakawa-Schubert
Scheme

Radiation Scheme RRTMG [39,40] RRTMG
PBL Scheme MRF PBL Scheme [41] MRF PBL Scheme

Land Surface Scheme CoLM2005 CoLM2014

The global forecast outputs of GRAPES_ORI and GRAPES_NEW are on a resolution
of 0.25◦ (latitude) × 0.25◦ (longitude). Key atmospheric variables (i.e., geopotential height
at 500 hPa and 850 hPa, wind speed at 10 m, air temperature at 2 m, and precipitation)
and land variables (i.e., surface soil moisture, surface soil temperature, evapotranspiration,
and sensible heat flux) from the GRAPES_ORI and GRAPES_NEW forecast output are
evaluated in this paper.

2.3. Validation Datasets

Validation data used for geopotential height at 500 hPa and 850 hPa, wind speed at
10 m, and air temperature at 2 m data were obtained from the ERA5 datasets [42] provided
by the European Centre for Medium-range Weather Forecasts (ECMWF) at hourly reso-
lution on a global 0.25◦ × 0.25◦ spatial grid, and these data are from (https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form) (accessed on
20 May 2021) and (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5
-single-levels?tab=form) (accessed on 21 May 2021).

The precipitation validation data are from the 3rd level of Integrated Multi-satellite
Retrievals for Global Precipitation Measurement (GPM) Final Precipitation dataset at half-
hourly resolution (GPM_3IMERGHH). Developed by the National Aeronautics and Space
Administration (NASA), the GPM dataset uses both satellite microwave and microwave-
calibrated infrared (IR) estimates, together with gauge calibration to estimate the global
precipitation [43], and is widely used for global precipitation research [44]. The GPM
precipitation data are on a global 0.1◦ × 0.1◦ grid, which were acquired from (https:
//gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGHH.06/2016/) (accessed
on 16 September 2021).

The Global Land Data Assimilation System (GLDAS), also developed by NASA [45],
fusing remote sensing and ground-based observations, produces land surface variables,
such as soil moisture and evapotranspiration [46]. The GLDAS data are widely used in

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGHH.06/2016/
https://gpm1.gesdisc.eosdis.nasa.gov/data/GPM_L3/GPM_3IMERGHH.06/2016/
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land surface research [47–50] with an acceptable evaluation by researchers [51–54]. The
GLDAS data we used for validation are 3-hourly surface soil moisture, surface soil temper-
ature, evapotranspiration, and sensible heat flux data from GLDAS_NOAH025_3H (https:
//hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/GLDAS_NOAH025_3H.2.1/2016/) (ac-
cessed on 24 September 2021), which covered 60◦ S–90◦ N latitudes on a 0.25◦ × 0.25◦ grid.
All of the validation data cover from 27 July 2016 to 1 September 2016.

2.4. Data Processing and Evaluation Metrics

All validation data are interpolated into 0.25◦ × 0.25◦ by the local area-averaging
method. Due to the missing values of GPM precipitation data in the near-polar areas [55],
we used the 55◦ S–55◦ N latitudes as the study areas in precipitation evaluation, while
other variables cover from 60◦ S to 90◦ N. The spatial distributions of GRAPES forecast
outputs are evaluated against daily fields from the validation data.

In this paper, the anomaly correlation coefficient (ACC) [56] is used to characterize
the similarity of the anomaly distributions of the two fields. ACC is commonly used in the
evaluation of model prediction capacity [57,58]. The closer the ACC value is to 1, the higher
the similarity of the two-variable field anomaly distribution is. In forecast verification,
when the ACC is greater than 0.6, the forecast is usually considered to be successful, or the
variable is predictable by the model [58,59]. We also introduce the root mean square error
(RMSE) [60] in this paper to evaluate the average closeness of the forecast results to the
validation datasets. Smaller values of RMSE mean smaller deviation between the forecast
field and the validation field. The calculation of ACC and RMSE can be expressed by:

ACC =
∑i

(
yip − yip

)
(yiv − yiv)

N

√
1
N ∑i

(
yip − yip

)2√ 1
N ∑i(yiv − yiv)

2
(11)

RMSE =

√
1
N ∑

i

(
yip − yiv

)2
(12)

where yip is the predicting result at grid point i, yiv is the corresponding validation field,
and N stands for the total number of prediction times corresponding to the grid point.

The study areas contain global (60◦ S–90◦ N, 180◦ W–180◦ E), Northern Hemisphere
(0◦–90◦ N, 180◦ W–180◦ E), Southern Hemisphere (60◦ S–0◦, 180◦ W–180◦ E), and East Asia
(15◦–55◦ N, 70◦–140◦ E) when calculating regional averaged values, except for precipitation
whose study areas are set to Global (55◦ S–55◦ N, 180◦ W–180◦ E), Northern Hemisphere
(0◦–55◦ N, 180◦ W–180◦ E), Southern Hemisphere (55◦ S–0◦, 180◦ W–180◦ E), and East Asia
(15◦–55◦ N, 70◦–140◦ E), respectively.

In particular, the verification of precipitation forecasting includes some special meth-
ods. In the contingency table for precipitation (Table 2), Nh is the number of accurate
forecasts of events that happened (hits), Nf is the number of forecasts of events that did not
happen (false alarms), Nm is the number of events that happened but were not forecasted
(missing alarms), and Ncn is the number of correct forecasts of events that did not happen
(correct negatives).

Table 2. A 2 × 2 contingency table for precipitation.

Precipitation Events Events Happened
Yes No

Events Forecasted
Yes Nh Nf
No Nm Ncn

Threat score (TS) [61], bias score (BIAS) [62], probability of false alarms (POFA) [63],
and probability of missing alarms (POMA) are commonly used for precipitation forecast

https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/GLDAS_NOAH025_3H.2.1/2016/
https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/GLDAS_NOAH025_3H.2.1/2016/
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verification by the National Meteorological Center of China [64], and could be described
as follows:

TS =
Nh

Nh +Nf+Nm
(13)

BIAS =
Nh+Nf
Nh+Nm

(14)

POFA =
Nf

Nh+Nf
(15)

POMA =
Nm

Nh+Nm
(16)

A closer value of TS to 1 indicates the higher proportion of accurate forecasts. The
closer the BIAS is to 1, the more stable the forecast is presented. POFA represents the
model’s over-prediction of precipitation, and POMA is often used with POFA, which
reflects the model’s underestimation of precipitation.

The TS, BIAS, POFA, and POMA of precipitation were calculated towards different
regions at different rain levels (i.e., light rain ranges 0.1–9.9 mm, moderate rain ranges
10.0–24.9 mm, heavy rain ranges 25.0–49.9 mm, and extreme rainfall ranges over 50.0 mm
within 24 h).

3. Results
3.1. Atmospheric Variables
3.1.1. Geopotential Height

The spatial distribution of the geopotential height at 500 hPa (H500) indicates the
large-scale circulation pattern, and also influences the regional weather and climate [65–67].
H500 represents the vital weather systems such as the position of ridge and trough [68], the
pattern of summer monsoon precipitation [69], and the strength and position of western
Pacific subtropical high (WPSH) [70]. Therefore, the accuracy and stability of H500 is a
good criterion for evaluating the performance of weather and climate models.

The predicted results of H500 are shown in Figure 2. Compared with the ERA5 reanal-
ysis dataset, the 24 h forecasting results from GRAPES_ORI and GRAPES_NEW models
can both reproduce the spatial patterns of H500 field (Figure 2(a1–a3)). The high values
spread from northeast America to the Middle East through the western Pacific along the
30◦ N latitudinal band, while the low values mainly locate over polar zones. The middle
column of Figure 2 shows the differences in H500 between GRAPES_ORI results and ERA5
for different forecast lengths. In 24 h forecasting results, the GRAPES_ORI shows a relative
overestimation, with about 5 gpm over the western part of North America, the eastern
part of the Pacific Ocean, southwestern China, and India, while over the eastern part of
North America, Africa, and northern Eurasia, H500 is slightly underestimated, with about
6 gpm (Figure 2(b1)). The 72 h and 120 h forecasting results show similar spatial patterns
with a larger magnitude of differences. The right column of Figure 2 shows the differ-
ences between GRAPES_ORI and GRAPES_NEW forecasts. The GRAPES_NEW results
show a higher value over the northern Eurasian continent, which correct the low biases
in GRAPES_ORI. Similarly, over western North America, North Africa, and central Asia,
the GRAPES_NEW also corrects the results from GRAPES_ORI by reducing the overesti-
mation in GRAPES_ORI. With the growing of forecasting hours, the prediction errors of
GRAPES_ORI increase, especially over the mid–high latitude. The corresponding errors in
GRAPES_NEW also increase gradually. Overall, results of H500 from GRAPES_NEW cor-
rect the prediction error in GRAPES_ORI over most regions, revealing a better performance
of GRAPES_NEW.
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Figure 2. Spatial distribution of time-averaged 500 hPa geopotential height (GPH) derived from (a1)
ERA5 reanalysis dataset, (a2) GRAPES_ORI 24 h forecast results, and (a3) GRAPES_NEW 24 h forecast
results; difference in time-averaged 500 hPa GPH between (b1) GRAPES_ORI 24 h forecast results,
(b2) GRAPES_ORI 72 h forecast results, (b3) GRAPES_ORI 120 h forecast results and ERA5; difference
in time-averaged 500 hPa GPH between (c1) GRAPES_NEW 24 h forecast results, (c2) GRAPES_NEW
72 h forecast results, (c3) GRAPES_NEW 120 h forecast results and GRAPES_ORI forecast results at
the corresponding forecast lengths (units: gpm).

The spatial distribution of ACC for H500 between GRAPES_NEW and ERA5 is given
by Figure 3. The higher ACC values, the more similar of the anomalies in GRAPES_NEW to
that in ERA5. The global-averaged ACC is greater than 0.6 for the prediction within 6 days.
When the prediction time comes to 5 or 6 days, the area with low ACC values expands.

In one word, the GRAPES_NEW has good performance on H500 predictions, even
though the errors grow with prediction hours. Similar conclusions can also be obtained
from the analyses for geopotential height at 850 hPa (H850) predictions (not shown).

3.1.2. Wind Speed at 10 m

The surface wind influences the water/heat transfer and land–atmosphere coupling [71],
which is required to evaluate its performance in the model simulation. As seen from
Figure 4(a1–a3), the prediction result from GRAPES_ORI and GRAPES_NEW can reproduce
the general distribution of spatial patterns, including the overall differences in wind
speed between ocean and land surface. Compared with ERA5, GRAPES_ORI has an
overestimation (+1.2 m·s−1) on the global mean wind speed, especially over the Arabian Sea,
tropical Indian Ocean, central Pacific Ocean, and Tibetan Plateau region (Figure 4(b1–b3)).
The GRAPES_NEW has little improvement over oceans compared to GRAPES_ORI, but
over the land, GRAPES_NEW shows significantly decreased wind speed, especially over
central Africa, the Amazon, and the mid–high latitudes over the Northern Hemisphere
(Figure 4(c1–c3)). Moreover, unlike the H500 and H850 field, the prediction error of 10 m
wind speed shows insignificant changes as the forecasting hour grows in both GRAPES_ORI
(Figure 4(b1–b3)) and GRAPES_NEW (Figure 4(c1–c3)).
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Figure 5 is given by the spatial distribution of ACC for 10 m wind speed in different
forecasting hours. The subtropical region shows a large ACC value greater than 0.6 while
the tropical region shows a smaller ACC value, which indicates that the 10 m wind speed
retains a better performance in the mid–high latitudes but a poor performance in the
tropical regions.

To further evaluate the surface wind speed performance over different regions, we
calculated the area-averaged ACC, as shown in Table 3. It is clear that ACC decreases
rapidly as the forecasting hours grow. The ACC is mostly greater than 0.6 when the fore-
casting hours are less than 72 h, which indicates that the surface wind speed is predictable
on continental scales within 3 days. The ACC of the Northern Hemisphere is worse than
the Southern Hemisphere, which may relate to the rapid change in surface wind due to
strong convective activities in the boreal summer. Additionally, the ACC derived from
GRAPES_NEW is larger than that from GRAPES_ORI in most regions and forecast lengths,
which shows an improvement of surface wind speed prediction in GRAPES_NEW.
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Table 3. ACC of wind speed at 10 m between GRAPES forecast and ERA5 over different regions.

Forecast Length (Units: h)
Global Southern

Hemisphere
Northern

Hemisphere East Asia

ORI NEW ORI NEW ORI NEW ORI NEW

24 0.7521 0.7532 0.7295 0.7312 0.7861 0.7863 0.5978 0.5997
48 0.6662 0.6672 0.6397 0.6411 0.7061 0.7064 0.5307 0.5333
72 0.5636 0.5644 0.5291 0.5303 0.6154 0.6155 0.4467 0.4478
96 0.4631 0.4651 0.4245 0.4273 0.5210 0.5218 0.3596 0.3602

120 0.3664 0.3660 0.3284 0.3279 0.4233 0.4230 0.2780 0.2793
144 0.2748 0.2740 0.2361 0.2348 0.3328 0.3329 0.2191 0.2143
168 0.2078 0.2052 0.1820 0.1791 0.2467 0.2444 0.1766 0.1696
192 0.1474 0.1485 0.1295 0.1303 0.1743 0.1758 0.1328 0.1314

3.1.3. Air Temperature at 2 m

The surface air temperature is crucial for ecosystem and human activities [72]. The
results show that both GRAPES_ORI and GRAPES_NEW can reproduce the spatial dis-
tribution of surface air temperature (Figure 6(a1–a3)). Compared to ERA5, GRAPES_ORI
shows significant underestimation over land and overestimation over tropical oceans
(Figure 6(b1–b3)). The cold bias exists over the Northern Hemisphere with about 2 K. The
GRAPES_NEW shows improvements over land, especially over the mid–high latitudes
of the Northern Hemisphere, the Tibetan Plateau, and Australia, while the sea surface
temperature has little change compared to GRAPES_ORI (Figure 6(c1–c3)). With the in-
crease in forecasting hours, the prediction skill varies insignificantly in both GRAPES_ORI
(Figure 6(b1–b3)) and GRAPES_NEW (Figure 6(c1–c3)).
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The spatial distribution of ACC in 2 m temperature derived from GRAPES_NEW
shows high skills over the extratropical region and low skills over the tropical regions,
which is consistent with the relatively high prediction errors in tropical oceans. The global
mean ACC values are close to or larger than 0.6 for the forecasts within 72 h, which indicates
that GRAPES_NEW shows great prediction skill on 2 m air temperature within 3 days
(Figure 7(a–c)). As the forecasting hours increase, the ACC remains 0.6 over part of regions
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such as North America, the Eurasian continent, and Australia, where the effective forecast
length can reach 6 days.
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In addition, we further calculate the area-averaged ACC over global, Northern Hemi-
sphere, Southern Hemisphere, and eastern Asia, respectively. As shown in Table 4, the
ACC of 2 m air temperature decreases rapidly as the forecasting hours increase, and the
predictable duration is about 3 days on a global scale. The ACC over eastern Asia is
generally higher than other regions, with the values ranging from 0.6726 to 0.3422, which
denotes a more stable prediction result for eastern Asia. The ACC values derived from
GRAPES_NEW show improvements of forecasts within 5 days compared to GRAPES_ORI,
and the similar results can also be obtained from the analysis for RMSE (not shown).

Table 4. ACC of 2 m air temperature between GRAPES forecast and ERA5 over different regions.

Forecast Length (Units: h)
Global Southern

Hemisphere
Northern

Hemisphere East Asia

ORI NEW ORI NEW ORI NEW ORI NEW

24 0.6666 0.6665 0.6259 0.6260 0.7275 0.7274 0.6719 0.6726
48 0.6293 0.6293 0.5868 0.5867 0.6930 0.6931 0.6263 0.6287
72 0.5802 0.5803 0.5391 0.5394 0.6417 0.6416 0.5680 0.5718
96 0.5176 0.5182 0.4790 0.4799 0.5756 0.5755 0.5041 0.5099

120 0.4513 0.4518 0.4191 0.4195 0.4996 0.5002 0.4533 0.4525
144 0.3832 0.3837 0.3640 0.3638 0.4119 0.4135 0.4151 0.4141
168 0.3236 0.3224 0.3192 0.3181 0.3303 0.3288 0.3795 0.3769
192 0.2660 0.2636 0.2714 0.2680 0.2578 0.2569 0.3422 0.3430
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3.1.4. Precipitation

The precipitation forecasting performance of numerical weather prediction models
is an important factor affecting the quantitative forecast quality of precipitation by fore-
casters [54]. The precipitation prediction of GRAPES has been evaluated by both case
studies [73] and regional predictions [74], but the influences of land processes on precip-
itation predictions are few to be considered. Here, we quantify the prediction skill of
precipitation by analyzing the climatology mean and adopting a series of indexes applied
by the National Meteorological Center [64] such as threat score (TS), bias score (BIAS),
probability of false alarm (POFA), and probability of missing alarm (POMA) to evaluate
the forecasting results.

GRAPES can reproduce the global precipitation distribution with three main rain belts
lying over the extratropical region of the Northern Hemisphere, the tropical region, and
the mid–high latitude of the Southern Hemisphere (Figure 8(a1–a3)). GRAPES_ORI shows
obvious overestimation in the tropical oceans, and the prediction error grows with longer
forecasting hours (Figure 8(b1–b3)). Compared to GRAPES_ORI, GRAPES_NEW shows a
relatively small improvement in tropical precipitation (Figure 8(c1–c3)).
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Figure 8. Spatial distribution of time-averaged 24 h net precipitation derived from (a1) GPM
dataset, (a2) GRAPES_ORI 24 h forecast results, and (a3) GRAPES_NEW 24 h forecast results; dif-
ference in time-averaged 24 h net precipitation between (b1) GRAPES_ORI 24 h forecast results,
(b2) GRAPES_ORI 72 h forecast results, (b3) GRAPES_ORI 120 h forecast results and GPM at the
corresponding time; difference in time-averaged 24 h net precipitation between (c1) GRAPES_NEW
24 h forecast results, (c2) GRAPES_NEW 72 h forecast results, (c3) GRAPES_NEW 120 h forecast
results and GRAPES_ORI forecast results at the corresponding forecast lengths (units: mm).

Table 5 gives the TS of precipitation at different rainfall levels over eastern Asia. The
prediction skill of GRAPES_NEW for rainfall level above heavy rain improved slightly
within 48 forecasting hours, while for rainfall level at light rain and moderate rain, the
prediction skill of GRAPES_NEW shows a comparable skill level with GRAPES_ORI. The
bias score (BIAS) is given by Table 6, which also suggests that the prediction bias from
GRAPES_NEW decreases for rainfall levels above heavy rain compared to GRAPES_ORI,
which is consistent with the results from the TS table.
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Table 5. TS of precipitation at different rainfall levels over East Asia.

Rainfall Levels Light Rain Moderate Rain Heavy Rain Extreme Rainfall

Forecast Length (Units: h) ORI NEW ORI NEW ORI NEW ORI NEW

24 0.4582 0.4567 0.1268 0.1277 0.0975 0.0976 0.1375 0.1383
48 0.4411 0.4404 0.1148 0.1148 0.0798 0.0809 0.1250 0.1271
72 0.4221 0.4218 0.1025 0.1019 0.0674 0.0672 0.1079 0.1042
96 0.4062 0.4060 0.0924 0.0915 0.0553 0.0545 0.0805 0.0814

120 0.3900 0.3899 0.0842 0.0842 0.0488 0.0498 0.0630 0.0644
144 0.3846 0.3808 0.0826 0.0793 0.0445 0.0449 0.0523 0.0516
168 0.3735 0.3717 0.0751 0.0753 0.0369 0.0368 0.0354 0.0357
192 0.3732 0.3739 0.0729 0.0718 0.0332 0.0341 0.0276 0.0284

Table 6. BIAS of precipitation at different rainfall levels over East Asia.

Rainfall Levels Light Rain Moderate Rain Heavy Rain Extreme Rainfall

Forecast Length (Units: h) ORI NEW ORI NEW ORI NEW ORI NEW

24 1.0294 1.0270 1.2985 1.3081 1.0962 1.1100 0.7021 0.6949
48 1.0207 1.0244 1.3630 1.3811 1.1737 1.1681 0.8463 0.8364
72 1.0192 1.0232 1.3172 1.3317 1.1499 1.1447 0.8989 0.8787
96 1.0102 1.0143 1.2992 1.3112 1.1296 1.0992 0.8479 0.8346

120 1.0142 1.0145 1.3127 1.3178 1.1175 1.0926 0.8086 0.7947
144 1.0230 1.0178 1.3283 1.3284 1.0783 1.0764 0.8266 0.8070
168 1.0263 1.0193 1.3530 1.3591 1.0864 1.0743 0.7808 0.7427
192 1.0298 1.0238 1.3648 1.3532 1.0437 1.0146 0.6834 0.6194

In addition, the POFA (Table 7) and POMA (Table 8), which represent the false alarm
rate and missing ratio of model precipitation prediction with respect to the real precipi-
tation events, also denote that during the whole forecasting length, GRAPES_NEW has
a better performance on predictions of rainfall level above heavy rain, and a comparable
performance on predictions of rainfall level below heavy rain compared to GRAPES_ORI.

Table 7. POFA of precipitation at different rainfall levels over East Asia.

Rainfall Levels Light Rain Moderate Rain Heavy Rain Extreme Rainfall

Forecast Length (Units: h) ORI NEW ORI NEW ORI NEW ORI NEW

24 0.3787 0.3794 0.7998 0.7993 0.8283 0.8291 0.7077 0.7041
48 0.3929 0.3948 0.8204 0.8213 0.8609 0.8592 0.7475 0.7416
72 0.4107 0.4123 0.8355 0.8374 0.8803 0.8803 0.7904 0.7944
96 0.4243 0.4259 0.8489 0.8506 0.8996 0.8998 0.8362 0.8324

120 0.4411 0.4417 0.8617 0.8617 0.9084 0.9059 0.8565 0.8543
144 0.4490 0.4517 0.8642 0.8693 0.9156 0.9143 0.8831 0.8862
168 0.4613 0.4614 0.8766 0.8766 0.9286 0.9296 0.9161 0.9138
192 0.4635 0.4616 0.8799 0.8812 0.9354 0.9331 0.9317 0.9246

Overall, the GRAPES_NEW shows a more precise and stable prediction on rainfall
level above heavy rain over East Asia. We also evaluated the precipitation prediction skill
over other regions (not shown), and found that GRAPES_NEW shows a better performance
over the Southern Hemisphere than the Northern Hemisphere on the prediction skill of
rainfall level below heavy rain, while for the rainfall level above heavy rain, GRAPES_NEW
shows a better prediction skill over the Northern Hemisphere than that over the Southern
Hemisphere.

Therefore, the GRAPES model shows a considerable ability to reproduce the pre-
cipitation distribution, even though the prediction skill decreases with the increase in
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rainfall level and forecasting hours. Compared with GRAPES_ORI, GRAPES_NEW shows
improvements on rainfall levels above heavy rain in both accuracy and stability.

Table 8. POMA of precipitation at different rainfall levels over East Asia.

Rainfall Levels Light Rain Moderate Rain Heavy Rain Extreme Rainfall

Forecast Length (Units: h) ORI NEW ORI NEW ORI NEW ORI NEW

24 0.3624 0.3645 0.7428 0.7401 0.8135 0.8121 0.7992 0.7982
48 0.3815 0.3811 0.7583 0.7563 0.8395 0.8376 0.8018 0.8002
72 0.4009 0.4000 0.7853 0.7853 0.8629 0.8637 0.8191 0.8262
96 0.4196 0.4187 0.8071 0.8081 0.8878 0.8912 0.8626 0.8614

120 0.4349 0.4351 0.8222 0.8216 0.9021 0.9010 0.8952 0.8934
144 0.4380 0.4435 0.8239 0.8299 0.9113 0.9109 0.9098 0.9114
168 0.4491 0.4529 0.8367 0.8358 0.9263 0.9256 0.9395 0.9408
192 0.4485 0.4496 0.8405 0.8436 0.9333 0.9321 0.9534 0.9548

3.2. Land Variables

The surface soil layer is the interface of land and atmosphere for exchanging water and
energy [75]. The surface soil moisture and soil temperature have a significant impact on
precipitation [76] and other near-surface meteorology variables [77,78]. Evapotranspiration
is also a key factor that links the water, energy, and carbon cycles [79]. It determines
the water vapor exchange between land and atmosphere, and directly influences the
precipitation [80,81]. Sensible heat flux represents the heat transfer between land and
atmosphere. Therefore, it is necessary to evaluate the prediction skill of GRAPES on surface
soil moisture, surface soil temperature, evapotranspiration, and sensible heat flux.

3.2.1. Surface Soil Moisture

The results derived from the 24 h forecast display a reasonable dry–wet distribution
at a global scale (Figure 9(a1–a3)), with a relatively high soil moisture content over the
tropical and mid-latitude region, and a relatively low soil moisture content over the desert
and semi-arid regions. GRAPES_ORI shows an overestimation (+0.09 m3·m−3) of surface
soil moisture over the arid and semi-arid regions such as western America, the Sahara
Desert, and northeastern Eurasia, and an underestimation (−0.07 m3·m−3) over humid
regions such as eastern America, central Africa, and Southeast Asia (Figure 9(b1–b3)). The
prediction results from GRAPES_NEW correct these errors to some degree (Figure 9(c1–c3)),
with about −0.03 m3·m−3 over the overestimation regions and about +0.02 m3·m−3 over
the underestimation regions.

The RMSE of surface soil moisture between GRAPES prediction results and GLDAS in
different regions is shown in Table 9. Firstly, RMSE increases slightly with longer forecasting
hours in both GRAPES_ORI and GRAPES_NEW. Secondly, the RMSE of GRAPES_NEW
decreases remarkably at most forecasting lengths over each individual region compared to
GRAPES_ORI, with the global mean RMSE reduced by 10.6%. The growth in forecasting
hours shows small impacts on the prediction skills. Overall, the GRAPES_NEW shows
better performance on surface soil moisture prediction than that in GRAPES_ORI.
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Figure 9. Spatial distribution of time-averaged surface soil moisture derived from (a1) GLDAS
dataset, (a2) GRAPES_ORI 24 h forecast results, and (a3) GRAPES_NEW 24 h forecast results; differ-
ence in time-averaged surface soil moisture between (b1) GRAPES_ORI 24 h forecast results, (b2)
GRAPES_ORI 72 h forecast results, (b3) GRAPES_ORI 120 h forecast results and GLDAS at the
corresponding time; difference in time-averaged surface soil moisture between (c1) GRAPES_NEW
24 h forecast results, (c2) GRAPES_NEW 72 h forecast results, (c3) GRAPES_NEW 120 h forecast
results and GRAPES_ORI forecast results at the corresponding forecast lengths (units: m3·m−3).

Table 9. RMSE of surface soil moisture between GRAPES forecast and GLDAS over different regions
(units: m3·m−3).

Forecast Length (Units: h)
Global Southern

Hemisphere
Northern

Hemisphere East Asia

ORI NEW ORI NEW ORI NEW ORI NEW

24 0.0632 0.0562 0.0677 0.0593 0.0459 0.0444 0.0512 0.0480
48 0.0633 0.0563 0.0677 0.0592 0.0463 0.0450 0.0515 0.0489
72 0.0634 0.0565 0.0678 0.0593 0.0467 0.0458 0.0521 0.0498
96 0.0636 0.0568 0.0680 0.0595 0.0469 0.0463 0.0527 0.0506

120 0.0640 0.0573 0.0683 0.0599 0.0474 0.0470 0.0536 0.0516
144 0.0645 0.0578 0.0688 0.0604 0.0480 0.0478 0.0547 0.0528
168 0.0650 0.0583 0.0692 0.0608 0.0486 0.0487 0.0553 0.0534
192 0.0654 0.0589 0.0696 0.0613 0.0493 0.0496 0.0559 0.0543

3.2.2. Surface Soil Temperature

As for surface soil temperature, the prediction skill of GRAPES_NEW also improves
significantly.

Figure 10(a1–a3) shows that GRAPES can reproduce the spatial distribution of surface
soil temperature at a relatively short prediction length. The distribution is quite like 2 m
temperature, which indicates the close coupling between land and near-surface atmosphere.
The prediction errors, however, display a strong overestimation over large areas, especially
over the Americas, Africa, and central and eastern Eurasian continent (Figure 10(b1–b3)).
The GRAPES_NEW shows great improvements on these overestimated regions with respect
to GRAPES_ORI (Figure 10(c1–c3)).
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The ACC spatial distribution of surface soil temperature (Figure 11) shows a good
prediction skill within 3 days over the Eurasian continent, North America, southern Africa,
and Australia. However, the ACC values decrease in most regions for the prediction lengths
longer than 3 days.

Table 10 summarizes the area-averaged ACC values in different regions. We can see
that even though the ACC values decrease rapidly with the increase in forecasting hours,
the ACC values of each individual region still remain greater than 0.6 within 96 forecasting
hours, which suggests that the surface soil temperature is predictable in 4 days at a global
scale. Moreover, surface soil temperature over East Asia shows the highest ACC, followed
by the Southern Hemisphere and the Northern Hemisphere. GRAPES_NEW gives higher
ACC regional values than that of GRAPES_ORI. The results from Table 11, which displays
the RMSE of surface soil temperature between GRAPES and validation, also gives similar
conclusions.

Table 10. ACC of surface soil temperature between GRAPES forecast and GLDAS over different regions.

Forecast Length (Units: h)
Global Southern

Hemisphere
Northern

Hemisphere East Asia

ORI NEW ORI NEW ORI NEW ORI NEW

24 0.7171 0.7258 0.7301 0.7372 0.6672 0.6821 0.7624 0.7746
48 0.6969 0.7055 0.7082 0.7143 0.6534 0.6718 0.7286 0.7393
72 0.6581 0.6655 0.6648 0.6694 0.6323 0.6504 0.6819 0.6893
96 0.6125 0.6180 0.6139 0.6174 0.6072 0.6206 0.6337 0.6405

120 0.5549 0.5599 0.5538 0.5567 0.5590 0.5721 0.5803 0.5855
144 0.5072 0.5118 0.5012 0.5035 0.5302 0.5435 0.5287 0.5322
168 0.4573 0.4582 0.4483 0.4471 0.4921 0.5011 0.4917 0.4956
192 0.3948 0.3968 0.3918 0.3913 0.4062 0.4183 0.4416 0.4484
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Table 11. RMSE of surface soil temperature between GRAPES forecast and GLDAS over different
regions (units: K).

Forecast Length (Units: h)
Global Southern

Hemisphere
Northern

Hemisphere East Asia

ORI NEW ORI NEW ORI NEW ORI NEW

24 2.9772 2.8431 2.8367 2.7501 3.5198 3.2014 2.8377 2.9193
48 3.0622 2.8949 2.9525 2.8300 3.4857 3.1448 2.9930 2.9701
72 3.1799 3.0136 3.0972 2.9747 3.4993 3.1632 3.1539 3.0972
96 3.3104 3.1535 3.2610 3.1456 3.5012 3.1838 3.3218 3.2636

120 3.4578 3.3115 3.4331 3.3264 3.5528 3.2540 3.4944 3.4377
144 3.5887 3.4558 3.5834 3.4913 3.6088 3.3194 3.6020 3.5513
168 3.7313 3.6082 3.7395 3.6578 3.6997 3.4174 3.6751 3.6230
192 3.8565 3.7439 3.8659 3.7967 3.8203 3.5405 3.7628 3.7276
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Figure 11. Spatial distribution of anomaly correlation coefficient (ACC) of surface soil temperature
between GRAPES_NEW (a) 24 h forecast; (b) 48 h forecast; (c) 72 h forecast; (d) 96 h forecast; (e) 120 h
forecast; (f) 144 h forecast results and GLDAS at the corresponding time.

Overall, after updating CoLM schemes, GRAPES_NEW shows a smaller RMSE and a
larger ACC on surface soil moisture and soil temperature than GRAPES_ORI.
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3.2.3. Evapotranspiration

The results from 24 h forecasts by GRAPES models show a similar distribution and
magnitude with validation (Figure 12(a1–a3)), with higher evapotranspiration over eastern
North America, tropical Africa, and South Asia, and lower evapotranspiration over the
desert and semi-arid region. GRAPES_ORI (2.51 mm) and GRAPES_NEW (2.59 mm)
tend to overestimate the evapotranspiration on the global mean value with respect to
GLDAS (1.95 mm). The spatial distribution of overestimation in GRAPES_ORI is shown in
Figure 12(b1 –b3). The prediction error does not change significantly with the increase in
forecasting hours. Results from GRAPES_NEW show limited changes, but with notable
improvements over humid areas such as the Amazon Rain Forest, tropical Africa, South
Asia, and northern Eurasia continent (Figure 12(c1–c3)), which is consistent with the results
found by Li et al. [12] which claimed that the surface latent heat flux has been corrected over
the tropical Africa and Amazon Rain Forest in CoLM2014 when compared to CoLM2005.
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We further calculate the area-averaged ACC (not shown) and RMSE (Table 12) of
GRAPES_ORI and GRAPES_NEW in different regions. They share a same conclusion that
GRAPES_NEW has advantages on the prediction skill of evapotranspiration relative to
GRAPES_ORI.

Table 12. RMSE of 24 h net evapotranspiration between GRAPES forecast and GLDAS in different
regions (units: mm).

Forecast Length (Units: h)
Global Southern

Hemisphere
Northern

Hemisphere East Asia

ORI NEW ORI NEW ORI NEW ORI NEW

24 2.9772 2.8431 2.8367 2.7501 3.5198 3.2014 2.8377 2.9193
48 3.0622 2.8949 2.9525 2.8300 3.4857 3.1448 2.9930 2.9701
72 3.1799 3.0136 3.0972 2.9747 3.4993 3.1632 3.1539 3.0972
96 3.3104 3.1535 3.2610 3.1456 3.5012 3.1838 3.3218 3.2636

120 3.4578 3.3115 3.4331 3.3264 3.5528 3.2540 3.4944 3.4377
144 3.5887 3.4558 3.5834 3.4913 3.6088 3.3194 3.6020 3.5513
168 3.7313 3.6082 3.7395 3.6578 3.6997 3.4174 3.6751 3.6230
192 3.8565 3.7439 3.8659 3.7967 3.8203 3.5405 3.7628 3.7276
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3.2.4. Sensible Heat Flux

The spatial distribution of 24 h forecasted sensible heat flux from GRAPES is sim-
ilar to that from the validation (Figure 13(a1–a3)), with the high-value areas located in
arid and semi-arid regions and low-value areas located in humid regions. GRAPES_ORI
shows overestimated predictions over East China and underestimated predictions over
the Middle East, Tibetan Plateau, northern America, and northern Eurasia continent
(Figure 13(b1–b3)). GRAPES_NEW has corrected the underestimation of surface sensi-
ble heat flux in GRAPES_ORI, resulting in a closer result with validation (Figure 13(c1–c3)).
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We also analyzed the areal mean ACC in different regions for multiple forecasting
hours in both GRAPES_ORI and GRAPES_NEW (not shown). It is indicated that the South-
ern Hemisphere displays the best performances compared to the Northern Hemisphere
and East Asia. In addition, GRAPES_NEW has a better performance in the prediction of
surface sensible heat flux than that in GRAPES_ORI.

In conclusion, after updating CoLM schemes, the prediction skills of GRAPES have im-
proved with respect to both atmospheric variables and land fields. It is noted that GRAPES
with updated schemes still has systematic biases, which inspires us for further studies.

4. Conclusions

This study evaluates the performance of GRAPES coupled with the updated schemes
of CoLM. We conducted two experiments. One (GRAPES_ORI) is GRAPES coupled with the
older version of CoLM (CoLM2005), and the other (GRAPES_NEW) is GRAPES coupled
with the newer version of CoLM (CoLM2014). Each experiment ran from 20 July to 1
September 2016, and validation datasets covered from 27 July to 1 September 2016. For
each day during the validation period, we obtained forecast results from 1 day to 8 days.
Based on these data, we evaluated the forecast results of some key atmospheric variables
and land variables at different forecasting lengths and various regions, and the conclusions
are as follows:

For atmospheric variables, both GRAPES_ORI and GRAPES_NEW can well reproduce
their spatial patterns and magnitude for 24 h forecasts. The effective predictable lengths
for most variables are up to 3 days at a global scale and can reach up to 6 days for parts of
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regions. The H500 and H850 are predictable for 6 days. Moreover, GRAPES_NEW has a
better performance on the prediction skill of each individual variable than GRAPES_ORI
by analyzing the spatial distribution of ACC and area-averaged ACC values and RMSE at
different regions.

For land variables, we evaluated the prediction skill on surface soil moisture and
soil temperature, evapotranspiration, and sensible heat flux. Both GRAPES_ORI and
GRAPES_NEW can reproduce their spatial patterns and magnitude compared to the
corresponding validation data. Furthermore, the GRAPES_NEW has greater improve-
ments for predictions of land variables than atmospheric variables when compared with
GRAPES_ORI, especially for the surface soil moisture and soil temperature, which could
be attributed to the updated schemes of hydrological processes in CoLM.

Furthermore, the improvement of GRAPES_NEW in eastern Asia is larger than that of
other regions, especially for the improvement of the geopotential height field, precipitation,
near-surface wind and temperature, and surface soil moisture and temperature, which
indicate a great potential of GRAPES_NEW for the weather forecast in eastern Asia.

Though the improvements are limited, GRAPES_NEW shows better performance on
prediction skills in both atmospheric variables and land variables than that of GRAPES_ORI.
However, there still exist systematic biases in both GRAPES_NEW and GRAPES_ORI,
such as the overestimation of surface sensible heat flux over the Congo Rain Forest and
the underestimation of evapotranspiration over the Great Lakes. In the future, more
parameterization schemes of land processes in GRAPES should be added or updated for a
better performance of the whole coupling model.
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