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Abstract: Vegetation index time-series analysis of multitemporal satellite data is widely used to
study vegetation dynamics in the present climate change era. This paper proposes a systematic
methodology to predict the Normalized Difference Vegetation Index (NDVI) using time-series data
extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS). The key idea is to
obtain accurate NDVI predictions by combining the merits of two effective computational intelligence
techniques; namely, fuzzy clustering and long short-term memory (LSTM) neural networks under the
framework of dynamic time warping (DTW) similarity measure. The study area is the Lesvos Island,
located in the Aegean Sea, Greece, which is an insular environment in the Mediterranean coastal
region. The algorithmic steps and the main contributions of the current work are described as follows.
(1) A data reduction mechanism was applied to obtain a set of representative time series. (2) Since
DTW is a similarity measure and not a distance, a multidimensional scaling approach was applied to
transform the representative time series into points in a low-dimensional space, thus enabling the
use of the Euclidean distance. (3) An efficient optimal fuzzy clustering scheme was implemented
to obtain the optimal number of clusters that better described the underline distribution of the low-
dimensional points. (4) The center of each cluster was mapped into time series, which were the mean
of all representative time series that corresponded to the points belonging to that cluster. (5) Finally,
the time series obtained in the last step were further processed in terms of LSTM neural networks. In
particular, development and evaluation of the LSTM models was carried out considering a one-year
period, i.e., 12 monthly time steps. The results indicate that the method identified unique time-series
patterns of NDVI among different CORINE land-use/land-cover (LULC) types. The LSTM networks
predicted the NDVI with root mean squared error (RMSE) ranging from 0.017 to 0.079. For the
validation year of 2020, the difference between forecasted and actual NDVI was less than 0.1 in most
of the study area. This study indicates that the synergy of the optimal fuzzy clustering based on DTW
similarity of NDVI time-series data and the use of LSTM networks with clustered data can provide
useful results for monitoring vegetation dynamics in fragmented Mediterranean ecosystems.

Keywords: remote sensing; NDVI; machine learning; LSTM; spatiotemporal forecasting

1. Introduction

Monitoring vegetation changes in Mediterranean-type ecosystems is crucial in several
studies of climate change, hydrology, and ecology [1]. Remote sensing plays a key role
in ecological studies regarding environmental changes in an ecosystem context while the
usage of vegetation indices has been widely explored for such studies [2]. Forecasting vege-
tation indices over time is critical for decision-making to reduce losses from environmental
hazards such as land degradation and drought, especially in areas at risk of desertifica-
tion [3,4]. Moreover, drought affects agricultural production, so forecasting vegetation
indices provide information on vegetation health and allow the farmer to prepare for water
scarcity [5].
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Various studies have analyzed the spatiotemporal variations of the Normalized Dif-
ference Vegetation Index (NDVI) for the investigation of vegetation changes [6–9]. For
example, Bai et al. [10] investigated the vegetation change as depicted from the NDVI, and
the roles of climate change, CO2 fertilization and human activities. They applied their
research in a quite complex ecosystem including mountain, oasis and desert. According to
their results, the spatial heterogeneity in driving forces of vegetation change emphasizes the
need to distinguish between spatial and temporal environmental management in areas with
complex ecosystems. The NDVI has been also analyzed in a desert/grassland transition
zone [11]. In that research, from 1982–2015, the NDVI showed an increasing trend while
most of the vegetation in the transition zone showed a tendency towards recovery.

An extensive literature has been developed on crop prediction based on vegetation
indices [12–15]. Usually the vegetation indices derived from remote sensing data are used
in conjunction with other independent variables, including climate data, air-temperature,
total precipitation, isolation, as well as soil characteristics [16]. Besides yield estimation,
forecasted vegetation indices have been used for other applications as well, including
natural hazards [17–19], tree mortality [20,21], and lake surface fluctuations [22]. Most of
the previous studies have developed empirical models using statistical methods. Recently,
more advanced approaches have been explored based on machine learning. In a recent
study, Wang et al. [23] used machine learning approaches to develop prediction models
for winter wheat farming yield. They compared two linear regression methods and four
machine learning methods, including support vector machine (SVM), random forest (RF),
adaptive boosting (AdaBoost), and deep neural network (DNN), for estimation of winter
wheat yield within the growing season for their study area. Based on their results, the
machine learning methods seem to perform better than linear regression models. In [24],
Karateke et al. employed an optimized adaptive neural-fuzzy inference system (ANFIS)
and hybrid wavelet−ANFIS (WANFIS) model to estimate NDVI variation. The comparison
between the forecasted and the actual NDVI values from MODIS obtained a mean absolute
percentage error as high as 1.5%.

Early studies as well as the current work focus on deep learning approaches [3]. Non-
stationary NDVI time-series data are used for forecasting while one of the well documented
approaches is the use of long short-term memory (LSTM) neural networks. Several works
have found that LSTM outperforms the traditional regression-based methods, hence it is
beyond our scope to prove the superiority of LSTM over traditional regression methods.
For example, Cui et al. [25] claim that auto-regressive integrated moving average (ARIMA)
assumptions about linearity and stationarity cannot be applied in NDVI time series while
the abnormal changes due to various disturbances cannot be accurately predicted. Further-
more, Wang et al. [26] argue that LSTM is suitable for NDVI time-series forecasting due to
its ability to store internally information gained from a long period of the past. In other ap-
proaches, [27,28] authors combined LSTM and wavelet transform (WT). The WT was used
for the time-series decomposition into different components while the LSTM was used for
forecasting and the synergy of both methods provided trustworthy results. The LSTM was
also applied for NDVI and fraction of photosynthetically active radiation (fPAR) time-series
modeling. The problem was formulated as a dynamic sequence-to-sequence modeling task
incorporating meteorological variables as dynamic predictors [29]. As predictor variables,
some authors used a number of static variables representing soil characteristics and land
cover types with climate time series [30]. Their aim was to identify memory effects and
gain a better understanding of the scales on which they operate in various environments.
According to their findings, memory effects are important on a global scale, while the global
NDVI was predicted with an RMSE of 0.056. Finally, other studies used modified LSTM
approaches such as bidirectional LSTM [27] and convolutional long short-term memory
(ConvLSTM) [31]. A more extensive systematic literature review on deep learning-based
approaches for vegetation forecasting can be found in [3].

One of the fundamental problems of time-series data mining is the representation of
the data [32]. Hence, time-series data forecasting without any data clustering requires that
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one model to be built for each pixel. This requires significant computational effort and
validation of a substantial number of models. The low spatial resolution of MODIS NDVI
products (i.e., 1000 m by 1000 m) does not represent the homogeneous pixels required to
take into account the large variability in phenology signals found in a fragmented Mediter-
ranean landscape. To deal with the above representation problem, different dimensionality
reduction mechanisms were proposed for time-series transformation. One of the proposed
methods is the similarity measure between time series [32]. Based on this measure, the time-
series data can be clustered to a higher-level abstraction [33]. One of the most commonly
used similarity measures for time-series data is the dynamic time warping (DTW) [34–37]
applied also in remote sensing time-series data [38–41].

The goals of this paper were threefold: (1) to cluster the NDVI time-series data based on
the DTW similarity algorithm into an optimal number of clusters; (2) to correlate the clusters
with the land-use/land-cover types of the study area; and (3) to develop and evaluate an
LSTM model for each identified cluster and apply it for one year; i.e., 12 monthly time
steps. The analysis was applied to an insular environment of the Mediterranean coastal
region and to the best of our knowledge, the combination of DTW and LSTM for NDVI
forecasting has not been examined for this type of mixed and fragmented ecosystem.

2. Materials and Methods
2.1. Study Area and Data

Lesvos island is in the northeast part of the Aegean Sea (Greece), with a total area
of 1636 km2 and seashore of about 382 km. It includes a variety of geological formations,
a number of climatic conditions and substantial number of vegetation types (Figure 1).
Climate conditions of the island could be categorized as Mediterranean, including warm
and dry summer periods along with a mild and moderately rainy winter season. Annual
average precipitation is about 710 mm while annual average air temperature is about
17 ◦C with high daily fluctuations. Terrain is somewhat hilly and rough (highest peak of
960 m a.s.l). Dominant slopes have values of greater than 20%, covering about two-thirds
of the island.

Since 1950, agricultural areas have been abandoned due to low productivity, result-
ing in shrub regeneration and wildfires [42]. Soil types on the island are widely culti-
vated, mostly producing rain-fed crops such as cereals, vines and olives. Other vegetation
types include phrygana or garrigue-type shrubs in grasslands, evergreen-sclerophylous
or maquis-type shrubs, pine forests, deciduous oaks, olive groves and other agricultural
lands.

We obtained the NDVI (MOD13A3 product—Version 6 of MODIS Terra sensor) by
submitting the extent of the study areas through the Application for Extracting and Ex-
ploring Analysis Ready Samples (AppEEARS) platform [43]. This is a monthly maximum
value composite (MVC) NDVI product with a spatial resolution of 1000 m. We retrieved
the complete database, i.e., from 2000 till end of 2020. More specifically, 239 images for
the period 2000−2019 were used for training of the models while 12 images from 2020
were used for the spatial validation of the resultant models. The final database included
2704 time series of 239 time steps as training data and 12 time steps as validation data. Dur-
ing quality control, a certain number of null values within each time series were replaced
with interpolated values.
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ing method was based on the dynamic time warping (DTW) similarity algorithm [44]. This 
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Figure 1. The land cover of Lesvos Island in the northeast Aegean sea according to the corine land
cover (CLC) database 2018, version 2020_20u1 (https://land.copernicus.eu/pan-european/corine-
land-cover/clc2018 accessed on 10 June 2021).

2.2. Methodology
2.2.1. Optimal Fuzzy Clustering of the DTW Distances

The NDVI is a nonlinear, nonstationary and seasonal time series, thus the analysis should
be performed for each pixel independently. Based on a nonlinear autoregressive model (NAR),
the future value y(t) is forecasted using d past values according to Equation (1).

y(t) = f (yt−1, yt−2, . . . , yt−d) (1)

where f is a nonlinear known function that will be estimated through the proposed method.
To avoid building a separate model for each pixel, all time-series data were clustered into an
optimal number of clusters based on a fuzzy clustering method. The clustering method was
based on the dynamic time warping (DTW) similarity algorithm [44]. This technique can
be used to determine the best alignment between two time series by dealing with temporal
deformations and speeds in time-varying data (Figure 2). In addition, DTW accounts for
the misalignment of peaks and dips between two sequences. A detailed description of the
calculation of DTW can be found in [41].

The clustering procedure consisted of three steps and used tools already existing in the
literature (Figure 3). The first step concerned data reduction, where a set of representative
time series was selected. In the second step, a multidimensional scaling procedure mapped
the representative times series to points in the <p Euclidean space. Finally, the third step
applied an optimal fuzzy clustering to the points obtained in the previous step. These steps
are analyzed in the next paragraphs.

https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
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Figure 3. The basic steps of the optimal clustering algorithm: (i) the data reduction process generates
several representative time series, where each time series from the original set is assigned to a
representative times series; (ii) the multidimensional scaling transforms the representative time series
into points within a low-dimensional feature space; (iii) the fuzzy c-means algorithm is applied
several times with a different number of clusters; (iv) for each number of clusters the corresponding
validity index is calculated; (v) the fuzzy partition with the minimum validity index is finally selected.

Let us assume that we are given N times series T = {T1, T2, . . . , TN} and their pairwise
distances DTWij(1 ≤ i ≤ N; 1 ≤ j ≤ N). The similarity degree between the i-th and j-th
time series is defined as:

Simij = exp
(
−αDTWij

)
(2)
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where α ∈ (0, 1). The i-th and j-th time series are considered similar if exp
(
−αDTWij

)
≥ β,

with β ∈ (0, 1). The target of the reduction process is to obtain a set of groups, where each
group includes a number of similar time series. Moreover, each group is described by a
representative times series. Based on Equation (2), the potential of the i-th time series is
calculated in terms of the subsequent formula [45,46]:

Pi =
N

∑
j=1

Simij =
N

∑
j=1

exp
(
−αDTWij

)
(1 ≤ i ≤ N) (3)

A high value of Pi directly implies that many time series are close to Ti. Therefore,
a time series with a high potential value is a good nominee to be a representative time
series. Thus, the key idea of the data reduction process is to determine a specific time
series and use it to represent the corresponding group of time series. The number of
the representative time series (and therefore the number of groups) is denoted as n with
n << N. Consequently, instead of taking account of the N time series, we finally consider
the n representative time series, obtaining a smaller (i.e., reduced) amount of data. The
algorithm to generate the representative time series and the corresponding groups is given
below:

The values for the parameters used in this paper are: α = −log(0.5)/DTWmean, where
DTWmean is the mean DTW distance, and β = 0.75. Algorithm 1 selects n representative
times series {g1, g2, . . . , gn} from the set T, with n << N. To each gk(1 ≤ k ≤ n) there are
assigned several time series from the set T, according to the Step 5, forming the k-th time
series group.

Algorithm 1: Data Reduction Process [45,46]

1: Select values for the parameters α, β ∈ (0, 1) and set n = 0.
2: Using Equation (2) calculate the values of the potential of all the N time series.
3: Set n = n + 1.
4: Calculate Pmax

Ti∈T
{Pi}max. Select the time series that corresponds to the Pmax as the n-th

representative time series: gn =

{
Ti0 ∈ T : Pi0 = Pmax

Ti∈T
{Pi}max

}
.

5: Remove from the set T all times series for which exp
(
−αDTWnj

)
≥ β, and assign them to the

n-th group, the representative element of which is the gn time series.
6: If T is empty stop; else turn the algorithm to Step 2.

In the next step, multidimensional scaling (MS) [47,48] is used to transform the time se-
ries {g1, g2, . . . , gn} into the points {x1, x2, . . . , xn} lying in a lower p-dimensional Euclidean
space <p. Thus, xk =

[
xk1xk2 . . . xkp

]
. The DTWks (1 ≤ k ≤ n; 1 ≤ s ≤ n) between the time

series gk and gs is transformed into the Euclidean distance ‖xk − xs‖ between two points
xk and xs. An effective way to do this is to minimize the differences |‖xk − xs‖ − DTWks|,
using the following objective function [41]:

JMS =
1

∑s<k DTWks
∑
s<k

(‖xk − xs‖ − DTWks)
2

DTWks
(4)

The above function is minimized using the standard gradient-descent optimization
approach. The interested reader is referred to [41,47,48] for further details. To satisfy
visualization, a typical value for the parameter p, also used in this paper, is p = 2.

In the final step, as shown in Figure 3, we use the well-known fuzzy c-means [49,50]
to perform optimal fuzzy clustering. The fuzzy c-means obtains a partition of the set points
{x1, x2, . . . , xn} into a number of c clusters C1, C2, . . . , Cc with cluster centers {v1, v2, . . . , vc},
with vi ∈ <p(1 ≤ i ≤ c), where the membership degree of the data vector xk to the i-th
cluster is ui(xk). The optimal fuzzy clustering concerns the determination of the optimal
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number of clusters which derives a fuzzy partition of the set {x1, x2, . . . , xn}, such that the
resulting clusters are well separated and compact [49–51]. Specifically, the FcM runs for
c = 2, 3, . . . , cmax, where cmax is the maximum number of tested fuzzy clusters. Each time,
the value of a validity index is calculated. The final partition corresponds to the minimum
of the obtained values of the validity index.

The validity index used here was developed in [51], and reads as:

VI =
∑c

i=1

(
∑n

k=1(ui(xk))
m‖xk−vi‖2

∑n
k=1 ui(xk)

)

∑c+1
i=1 ∑c+1

|j=1
|j 6=i



∑c+1
|`=1
|` 6=j

( ‖zj−zi‖
‖zj−z`‖

)2
−1


2

‖zj − zi‖2


(5)

with [z1z2 . . . zczc+1]
T = [v1v2 . . . vcx]T , and x = ∑n

k=1 xk
n is the mean vector of the set

{x1, x2, . . . , xn}. For a detailed description of the index, the interested reader is referred to
the referenced paper [51].

The implementation of the above validity index obtains an optimal fuzzy partition,
where the optimal number of clusters is denoted as copt. Thus, the points {x1, x2, . . . , xn}
are partitioned into the set of clusters

{
C1, C2, . . . , Ccopt

}
.

Since there is a one-to-one correspondence between the points {x1, x2, . . . , xn} and the
time series {g1, g2, . . . , gn}, the time series also are partitioned into the same number of
clusters

{
R1, R2, . . . , Rcopt

}
. The representatives (i.e., cluster centers) of the above clusters

are denoted as
{

r1, r2, . . . , rcopt

}
. Finally, each ri

(
1 ≤ i ≤ copt

)
is a time series calculated as

the mean of all elements of the set {g1, g2, . . . , gn} that belong to the cluster Ri.

2.2.2. LSTM Training and Validation

The optimal cluster centers described above were used for the time-series process-
ing. According to the literature, the architecture of recurrent neural networks (RNNs)
makes them suitable for time-series data processing including classification and prediction
tasks [52]. The training process of RNNs is usually based on gradient-based training al-
gorithms, i.e., the back propagation algorithm, hence they suffer from local minima and
the vanishing gradient problem [53,54]. LSTM networks are a special type of RNN that
can learn long-term dependencies and avoid the vanishing gradient problem of RNN [55].
The typical structure of an LSTM network includes the sequence input layer, a predefined
number of LSTM layers, a number of fully connected layers and the regression output layer
(Figure 4). With this structure, at the time step t the cell is fed with the input Xt and the
hidden state Ht−1. Then, the output state Ct and the hidden state Ht at time step t are given
by:

Ct = ft � Ct−1 + it � gt (6)

and
Ht = ot � σc(Ct) (7)

with the input gate it, the forget gate ft, the memory cell gt and the output gate ot respec-
tively:

it = σg(WiXt + Ri Ht−1 + bi) (8)

ft = σg
(

W f Xt + R f Ht−1 + b f

)
(9)

gt = σc
(
WgXt + Rg Ht−1 + bg

)
(10)

ot = σg(WoXt + Ro Ht−1 + bo) (11)

where W, R, b are the learnable parameters, σg the logistic function and σc the hyperbolic
tangent function.
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One of the drawbacks of maximum value composite vegetation indices from MODIS 
that may affect the analysis is cloud contamination. Based on previous studies [56], the 
cluster centers were smoothed by applying the Savitzky–Golay filter [57,58], fitting a 
third-degree polynomial based on the 10 neighboring data points. Then, input time-series 
data of the 239 time steps were split into two consecutive subsets (training and test), con-
taining 94% and 6% of the original dataset, respectively. Both datasets were used during 
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Figure 4. The typical structure of a long short-term memory (LSTM) cell including its fundamental
elements, i.e., the forget gate, the input gate, the output gate and the cell state.

One of the drawbacks of maximum value composite vegetation indices from MODIS
that may affect the analysis is cloud contamination. Based on previous studies [56], the
cluster centers were smoothed by applying the Savitzky–Golay filter [57,58], fitting a third-
degree polynomial based on the 10 neighboring data points. Then, input time-series data
of the 239 time steps were split into two consecutive subsets (training and test), containing
94% and 6% of the original dataset, respectively. Both datasets were used during the
training procedure. Various numbers of networks were tested including a variable number
of LSTM cells based on the “Adam” optimizer [59] and the best network according to the
root mean square error was saved for further validation. During the validation phase, the
saved networks were used for the prediction of the next 12 forecasted steps (year 2020) for
each pixel according to their cluster assignment. The produced forecasted NDVI rasters
were compared with the NDVI rasters retrieved from USGS for the year 2020. The overall
workflow is summarized in Figure 5.
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based on long short-term memory (LSTM) neural networks.

3. Results and Discussion
3.1. Optimal Data Clustering and CORINE Cross Correlation

Applying Algorithm 1 using the abovementioned parameter values, we obtained
n = 245 representative time series {g1, g2, . . . , g245}. Based on their DTW distances, the
application of the multidimensional scaling results in the n = 245 points lying on the two-
dimensional Euclidean space, which are depicted in Figure 6 (see blue dots). To implement
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the optimal fuzzy clustering, we selected c =
⌊√

245
⌋

max
, where b
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function (i.e., integer part). The result of the optimal fuzzy clustering process is reported in
Figure 7. In that figure it is clear that the optimal number of clusters is equal to copt = 9.
The resulting cluster centers are illustrated in Figure 6 as red rectangles. Thus, the final
partition consists of nine clusters {R1, . . . , R9} with cluster centers {r1, . . . , r9}.
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corresponds to the minimum value of the validity index, which is equal to 9.

Figure 8 shows the spatial distribution of the clusters. The comparison with the actual
CORINE land-use/land-cover (LULC) data, presented in Figure 1, reveals that there is
some evidence about the correlation between clusters and land cover types. To explore the
coexistence of cluster classes and LULC, we compared the frequencies of coexistence in
the data. Overall, we have 22 LULC types distributed in 9 clusters. Table 1 presents the
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number and the frequency of different LULC types belong to each cluster. Clusters 4, 8, 3,
7, 1, 2 and 9 seem to have more than 10 distinct LULC types. This suggests that most of the
clusters represent a quite diverse landscape.
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Table 1. Length of distinct LULC for each class.

Cluster 4 8 3 7 1 2 9 6 5

No. of LULC types 16 15 14 13 12 11 11 7 3
% of LULC types 69.6 65.5 60.9 56.5 52.2 47.8 47.8 30.4 13

However, even better results can be achieved when applying a cross tabulation be-
tween clusters and CORINE LULC types (Figure 9). It is obvious that LULC “321” (natural
grassland) is by far the LULC type which is overrepresented in all clusters. Secondly, LULC
types “112” (discontinuous urban fabric), “211” (non-irrigated arable land), “223” (olive
groves) and “242” (complex cultivation patterns) are very well represented in the majority
of clusters. As can be seen in Figure 9, agricultural areas (LULC: 211, 223, 242 and 243)
seem to appear in clusters 1, 2, 3, 4 and 7, 8, 9. This grouping is somehow clearer than
others in the same figure. Another finding is that clusters 5 and 6 seems to have a somehow
limited number of observations compared to all other clusters in the study area.

Furthermore, we evaluated all possible cross-tabulations for each cluster separately.
We wanted to explore what was the most dominant LULC type in each cluster. The LULC
type “223” is dominant in 4 clusters, followed by LULC type “321”, which is dominant in
3 clusters. It is more than clear that the initial dataset of the study area includes a greater
percentage of olive groves (“223”) and a mix of natural grassland (“321”). This is why the
above two LULC types are present as well as dominant in a relatively higher number of
clusters.
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3.2. LSTM Training and Validation

Figure 10 shows the results of the NDVI time-series training for the nine clusters. The
testing datasets were the last 14 time steps/months of the training series. The RMSE for the
testing datasets were fairly low for all clusters, meaning the networks were successfully
trained with an RMS error ranging from 0.017 to 0.079. From the visual interpretation
it is clear that there is an agreement between the observed and predicted series. More
specifically, for all networks the difference between the predicted and the forecasted NDVI
is less than 0.1 for the first 12 time steps. The difference is greater for clusters 4, 5 and 6
during the last two time steps.

Within the validation phase, the trained network of each cluster was applied for
each pixel based on its assigned cluster in order to estimate the next 12 time steps, i.e.,
the year 2020. The comparison of forecasted and actual values of the NDVI for the next
12 months may provide useful insight on the underlying spatial distribution of the NDVI
values as well as the quality of the LSTM analysis. Figure 11 depicts the monthly differences
between estimated and observed NDVI values based on all pixels regardless of the LULC
types.

The average estimated NDVI values for the study area were greater in the first
9 months of the year while this was reversed for the last 3 months of the year. Further-
more, we evaluated the relationship between the two values (observed versus predicted)
on a monthly basis to gain a better understanding of the deviation of predicted values
(Appendix A). A scatterplot and a histogram were produced for each month depicting the
relationship between predicted (Y axis) and observed (X axis) NDVI values. According
to these figures, February (Figure A2) seems to be the month with the greater deviation
between the two values while September (Figure A9) seems to be the month with the
smaller deviation. These results tie in well with previous studies where authors predicted
the vegetation dynamics by using LSTM and MODIS (MOD13Q1) NDVI data but with a
higher temporal resolution than in our approach [1].
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Finally, twelve maps were produced for the predicted NDVI for each month of 2020
(Figure 12). The spatial comparison between the actual and the predicted maps revealed
that there is a similarity between the two spatial distributions. Furthermore, the time
variation in relation to space shows an agreement between observed and predicted values.
It should be noted that the absolute differences were less than 0.1 for most of the part of the
study area for the entire study year (Figure 13). The highest differences were observed at
the western part where natural grasslands exist and especially during the winter−spring
period. One possible cause might be the different precipitation and temperature between
the training period and the validation year 2020 given the interannual variation of the
NDVI, precipitation and temperature [60–63]. Additionally, some great differences are
observed in some of the coastal pixels, probably due to water−land mixture.
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4. Conclusions

Understanding vegetation dynamics and taking necessary protective measures is
crucial for Mediterranean ecosystems, given the number of major disturbances such as
wildfires and droughts, as a result of man-made activities in the areas affected, limiting the
ecosystem’s regeneration. In the present study, we forecasted the Normalized Difference
Vegetation Index (NDVI) based on NDVI time-series data derived from the Moderate
Resolution Imaging Spectroradiometer (MODIS). The proposed approach combines the
DTW technique, optimal fuzzy clustering and long short-term memory (LSTM) neural
networks. The results indicate that the above synergy can provide useful insights for
monitoring vegetation dynamics in fragmented Mediterranean ecosystems.

Machine learning methods and semi-empirical models have been proven quite suc-
cessful in identifying climatic influences both in terms of spatial and temporal grounds.
Evaluation of their results as well as recalibration of their properties in terms of sensitivity,
are two of the most notable aspects for further research. Recalibration of machine learning
model properties, based on spatial characteristics and spatial representation of classes,
is also a topic for further research as it has a substantial impact on results’ quality. On
these grounds, “representation” of all classes as well as measures for handling unbalanced
or skewed samples would definitely contribute towards more robust results of machine
learning approaches in general. To this end, in the recent literature there are some ap-
proaches for auto algorithm selection and hyperparameter optimization based on data
variability and composition [64–67]. Nevertheless, recent computational approaches have
been proven to be quite promising in estimating environmental variables and incorporating
spatiotemporal values in prediction and clustering.

Future research steps could take place regarding the subsequent issues. First, the
method could be applied to a larger amount of the data retained for testing the predictions.
Second, since fuzzy systems have been proven to be very effective tools in handling un-
certainties in data, improved approximation capabilities could be obtained by considering
sophisticated polynomial neural-fuzzy networks. Moreover, investigating prediction of
vegetation disturbances might prove important for mapping forest degradation due to
logging, wildfires, livestock grazing and other human activities [68].
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