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Abstract: Monitoring human activities in border areas is challenging due to the complex geographical
environment and diverse people. China has the longest terrestrial boundary and the highest number
of neighboring countries in the world. In this study, a human activity intensity index (HAI) was
proposed based on land cover, population density, and satellite-based nighttime light for a long-term
macroscopic study. The HAI was calculated at 1 km resolution within the 50 km buffer zone of
China’s land boundary on each side in 1992, 2000, 2010, and 2020, respectively. Results show that
human activity is low in about 90% of the study area. Overall, the HAI on the Chinese side is higher
than that on the neighboring side, and the intensity of land use on the Chinese side has increased
significantly from 1992 to 2020. Among China’s neighbors, India has the highest HAI with the fastest
growth. With the changes in the HAI between China and its neighboring countries, four regional
evolution patterns are found in the study area: Sino-Russian HAI decline; Sino-Kazakhstan HAI
unilateral growth; Indian HAI continuous growth; China and Indochina HAI synchronized growth.
Hotspot analysis reveals three spatial evolution patterns, which are unilateral expansion, bilateral
expansion, and cross-border fusion. Both the “border effect” and “agglomeration effect” exist in
border areas. The HAI changes in border areas not only impact the eco-environment but also affect
geopolitics and geoeconomics. The HAI can be used as an instrument for decision-making and
cooperation between China and neighboring countries in such areas as ecological protection, border
security, and border trade.

Keywords: human activity; border areas; land use change; nighttime light; population density;
human behavior; NDVI; China

1. Introduction

Human activities are disrupting biogeochemical cycles at an unprecedented scale and
intensity, with profound and drastic impacts on terrestrial ecosystems [1,2]. The science on
human contributions to global warming is quite clear. Human emissions and activities also
pose extremely high risks to planetary boundaries, such as biosphere integrity, nitrogen
and phosphorus cycles, and land systems, and are becoming a major factor driving global
environmental change [3,4]. The proposed United Nations 2030 Agenda and the Sustainable
Development Goals (SDGs) aim to reduce the impact of human activities on the ecosystem
and improve human well-being [5]. Therefore, human activity mapping is crucial for
understanding humanity’s role in shaping Earth’s patterns and processes [6]. In addition,
understanding the spatial-temporal evolution of human activity intensity on a fine scale is
critical to infrastructure and local governance [7,8].

Border areas, as frontiers of geo-cooperation and geo-conflict, are experiencing rapid
and extensive changes in human activity [9]. Approximately one-fifth of global WorldPop-
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based population growth has occurred in the borderlands since the 1990s, leading to more
than one-third of forest loss, as estimated by the European Space Agency Climate Change
Initiative [9]. Globally, more than half of all terrestrial birds, mammals, and amphibians
cross international borders. In addition to being threatened by deforestation and hunting,
these species may be harmed by border infrastructure building and lack of conversation
activity coordination on both sides of the border [10]. Spatially, human activities in border
areas have mainly occurred at ports and cities. Border ports are international transportation
hubs and transit points for passengers and freight, and border cities are the main areas for
residents to settle and forge a national cultural identity. Under the integrated development
of bilateral border cities, a spatial pattern called Twin Cities has been formed [11]. As a
result of geopolitics, border trade, ethnic integration, and other factors, the global border
areas present complex and diverse forms of human activities. Moreover, there has been
a long-standing security dilemma in disputed border areas, and the increase in human
activities on both sides of a border may be for military or political purposes. Therefore,
due to their complex interweaving of elements, human activities in border areas require
in-depth analysis.

Research related to human activities, including the human footprint [6,12], human
pressure [13,14], environmental footprint [15], and anthropogenic disturbances [16,17],
reveals human impact on natural environments from different perspectives. Quantitative
assessments of human activities are mainly based on global and regional scales, using indi-
cators such as population density, land transformation, human accessibility, infrastructure,
and grazing density [18]. For example, Williams et al. mapped the human footprint on the
global land surface and found that 1.9 million square kilometers of relatively undisturbed
land have been changed significantly from 2000 to 2013 [6]. Venter et al. used infrastructure,
land cover, and human accessibility to measure the cumulative human footprint on the
Earth’s surface from 1993 to 2009 and found that human footprint growth is much lower
than population and economic growth [19]. However, global-scale datasets are not suitable
for regional analysis. Many studies have been conducted to measure the human footprint
at the regional or city scale with a modified method and local data [20]. However, there are
few quantitative measures of human activities in border areas.

Currently, border research mainly concentrates on the micro-scale and single activities,
including infrastructure and building [21,22], border trade and cooperation [23], agriculture
and animal husbandry practice [24], cross-border population migration [25], and armed
conflict [26]. Most studies focus on border activities’ impacts on ecosystems and biodiversity
but pay less attention to the overall pattern of human activities. Macro-scale patterning of
human activity characteristics in border areas is ignored. At the same time, the existing
global-scale human activity datasets cannot be used for border research because of problems
such as low resolution, short research periods, and inconsistent statistical calibers on both
sides of the border. In general, there is a lack of long-term studies on human activity in
border areas around the world.

China’s border areas are representative due to the country’s 22,800 km long terrestrial
boundary—the longest in the world—with 14 contiguous countries, more than any other
in the world. China’s border areas are unstable, accompanied by local conflicts and the
intertwined forces of major powers. In recent years, Sino–Indian border disputes and the
construction of “Belt and Road” cross-border economic corridors have attracted increasing
attention [27–30]. Since China’s border areas fully opened up in 1992, the government
has increased support for border development through a series of preferential policies for
cross-border cooperation, which have resulted in rapid agriculturalization, urbanization,
and industrialization in some border areas. The border areas have played a key role in
the “Belt and Road” initiative, especially the construction of six cross-border economic
corridors [31]. As a result of the “Belt and Road” initiative, COVID-19, and local military
conflicts, China’s border area has entered a period of rapid adjustment.

Currently, research on China’s border area mainly focuses on specific activities such as
land use change [32,33] and cross-border infrastructure [28,34], as well as dynamic activities
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such as cross-border trade [35–37] and cross-border population flows [38,39]. For example,
changes in vegetation greenness in China’s border areas were analyzed by Wang et al. in
2017 [40]. They found that an increasing trend in vegetation greenness occurred on China’s
side along the border with North Korea and South Asian countries. In 2016, Liu et al.
analyzed the temporal and spatial changes in land use and land cover in Luang Namtha
Province, Laos, from 1990 to 2010 [41]. Song et al. recorded the recent transformation of
Ruili from a “small” and “ordinary” border city to a hub for China–Myanmar cooperation
since the beginning of the “Belt and Road” initiative [42]. Nevertheless, these studies are
mainly based on regional levels, such as the Himalayan region and the southwestern border
areas of China, from sources such as census data and questionnaires. In addition, there are
very few studies on the temporal and spatial evolution of human activities in the areas on
both sides of China’s border on a fine scale.

This paper aims to quantitatively characterize and summarize the pattern of human
activities in China’s border areas. To undertake this research, we proposed a human
activity intensity index (HAI) to conduct a long-term macroscopic study of the HAI at
1 km resolution within the 50 km buffer zone of China’s land boundary on each side from
1992 to 2020. The HAI was constructed based on three datasets: land cover, population
density, and satellite-based nighttime lights. The characteristics of HAI changes in the
entire border areas were analyzed country-by-country and region-by-region. According
to the distribution of the HAI, the hotspots were then identified, and three temporal and
spatial evolution patterns of high HAI regions were found. Based on our results, we discuss
the ecological, geopolitical, and geoeconomic impacts of the HAI in border areas.

2. Data and Methodology
2.1. Study Area

Generally speaking, the range of about 50 km from the international boundary has
obvious border characteristics [43]. In this study, a buffer zone of 50 km around China’s
land boundary is used as the study area (Figure 1), which is identified as China’s border
area in this paper. China’s terrestrial boundary is 22,000 km long, from the estuary of
the Yalu River in the east to the estuary of Fangchenggang in Guangxi. The study area is
1,642,600 square kilometers, with diverse landform types such as virgin forests, deserts,
and alpine plateau. China did not fully open its border until 1992, which is why this study
started at that point. Based on data availability, the time interval was about every 10 years,
and 4 years, 1992, 2000, 2010, and 2020, were selected for long-term data analysis.

2.2. Data Sources and Preprocessing
2.2.1. Land Cover

Land cover change is an important manifestation of human activities, and land-
scape changes represented by agricultural expansion and forest degradation have become
dynamic features of land use in border areas [9]. The land cover data comes from the
global land cover database from 1992 to 2020 produced by the European Space Agency
(https://cds.climate.copernicus.eu/, accessed on 1 May 2022), with a horizontal resolution
of 300 m. We resampled it to 1 km resolution by Majority Rule. This dataset classified the
land surface into 22 types using the United Nations Food and Agriculture Organization’s
(UN FAO) Land Cover Classification System (LCCS). Each land type was scored based on
the degree of human activity [44–46]. Based on the method of Sanderson et al. [18], we
assigned a score for each layer ranging from 0 (no human activity) to 10 (maximum human
activity) (Table 1). Among them, settlement was most affected by human activities, with
the highest score of 10, followed by agricultural land and grassland, with water having a
lower score of 1. Other land cover types were unaffected by humans and were assigned a
value of 0 (Table 1).

https://cds.climate.copernicus.eu/
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Figure 1. Study area.

Table 1. Land cover datasets and sub-HAI scores.

Land Type Description Sub-HAI Score

Settlement Urban areas 10

Agricultural land

Cropland, rainfed 6
Cropland, irrigated or post-flooding 4
Cropland, rainfed, herbaceous cover 3

Cropland, rainfed, tree, or shrub cover 3
Mosaic cropland (>50%)/natural vegetation

(tree, shrub, herbaceous cover) (<50%) 3

Grassland
Grassland 2

Mosaic herbaceous cover (>50%)/tree and
shrub (<50%) 2

Water Water bodies 1

Others Others 0

2.2.2. Population Density

The population density data were derived from the Socioeconomic Data and Appli-
cations Center, NASA. The population density data in 1992 was replaced with data from
1990 because it was lacking, using its Gridded Population of the World (GPW) data(v3)
with 2.5 arcmin resolution. We resampled it to 1 km resolution (30 arc seconds). Population
density data from 2000 to 2020 were adopted from UN World Population Prospects (WPP)-
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Adjusted Population Density (v4.10) with 1 km resolution. The normalization formula of
population density of 1 km resolution is as follows:

Popunor(n,t) = (popu(n,t)/max(popu(n′,t′))) × 10 (1)

where Popunor(n,t) is the normalized population density of raster n for year t and ranges
from 0 to 10, popu(n,t) is the population density of raster n for year t. popu(n′,t′) is the
population density of any raster n′ for any year t′ in 1992, 2000, 2010, and 2020. Therefore,
max (popu (n′,t′)) is the maximum raster value among these four years.

2.2.3. Nighttime Light

Nighttime light is often used to reflect differences in the spatial distribution of eco-
nomic activities, urbanization, carbon emissions, infrastructure, and other factors [47–49].
The night light sensor carried by the satellite has a high photoelectric amplification ability,
which can detect low-intensity light emitted by the city’s night lights, firelight, and even
traffic flow. In this study, night light reflects the degree of social and economic develop-
ment [50]. We adopted the global nighttime light intensity dataset processed by Li et al. [51],
which harmonized DMSP and VIIRS nighttime light data from 1992 to 2018 on a global
scale, including temporally calibrated DMSP-OLS NTL time series data from 1992 to 2013
and converted NTL time series from the VIIRS data (2014–2018). The dataset values range
from 0 to 63 with a spatial resolution of 1 km. Nighttime light data in 2020 are replaced
by 2018 data because of lacking. The normalization formula of nighttime light of 1 km
resolution is as follow:

Lightnor(n,t) = (light(n,t)/max(light(n′,t′))) × 10 (2)

where Lightnor(n,t) is the normalized nighttime light intensity of raster n for year t and
ranges from 0 to 10; and light (n,t) is the nighttime light intensity of raster n for year t.
light(n′,t′) is the nighttime light intensity of any raster n′ for any year t′ in 1992, 2000, 2010,
and 2020. Therefore, max (light (n′,t′)) is the maximum nighttime light value among these
four years.

2.3. Methodology

Based on the existing literature and data availability, three datasets, land cover, popu-
lation density, and nighttime lights, were selected to construct the HAI. Due to the grazing
activities taking place on grasslands and built-up land, including all kinds of artificial infras-
tructure, there is no need to add grazing and infrastructure data. The processing flowchart
for calculating HAI is illustrated in Figure 2. First, the three sets of data were checked to
eliminate outliers, and all data were resampled to a resolution of 1 km × 1 km. Second,
since they represented different kinds of data, population density and nighttime light data
were standardized based on their maximum and minimum values (Equations (1) and (2)).
The land cover was assigned scores based on the standard used in previous studies (Table 1).
Third, the values of these three types of data were added and averaged to obtain the HAI.
The formula is as follows.

HAI(n,t) = (Land(n,t) +Popunor(n,t) + Lightnor(n,t))/3 (3)

where HAI(n,t) is the human activity intensity of raster n for year t, ranging from 0 to 10;
Land(n,t) is the score of land cover of raster n for year t; Popunor(n,t) is the standardized
population density intensity value of raster n for year t; Lightnor(n,t) is the standardized
nighttime light intensity value of raster n for year t.
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Figure 2. Flowchart of the methodology.

Based on the calculated score, the HAI is divided into five categories by Geometric
Interval: high, relatively high, relatively low, low, and very low, which shows relative
degrees rather than absolute comparisons (Table 2). Then we analyzed spatial and temporal
patterns in the whole border areas and some specific regions. Finally, the implications of
the HAI for geopolitics, geoeconomics, and the ecological environment were discussed. We
used ArcGIS 10.8 to generate the maps in the article.

Table 2. The classification and description of HAI.

HAI Types HAI Ranging Description

High >4 Area with dense population, relatively
developed economy, and urban landscape.

Relatively high 3–4 Distributed in suburban areas, scattered towns,
rural areas, industrial and mining areas.

Relatively low 1–3 There are traces of human cultivation, mainly
farmland and grassland.

Low 0.1–1
It is basically the same as the natural coverage of
forests, lakes, alpine meadows, etc., but there are

occasional human activities.

Very Low <0.1
Consistent with exposed areas such as plateaus
and deserts, they are extremely difficult to reach

or unsuitable areas for human habitation.

3. Results
3.1. Evolution of HAI in the Whole Border Area

The mean HAI values on the Chinese side in 1992, 2000, 2010, and 2020 are 0.31, 0.32,
0.35, and 0.38, respectively (Figure 3). The minimum is 0, which is located in the virgin
forest area of the Greater Khingan, Inner Mongolia desert Gobi area, Qinghai-Tibet Plateau,
and Pamir Plateau area. The maximum is 9.97, located in the urban area of Yanji City in
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2020. Another finding is that 93% of raster cells have HAI < 1, whereas the number of
raster cells with HAI < HAImean account for 60%. This implies that the border area has a
relatively low level of HAI from 1992 to 2020. Most of the buffer areas have high altitudes
and high latitudes, and the natural conditions are relatively harsh, making them unsuitable
for human activities. The mean HAI values on the neighboring side for 1992, 2000, 2010,
and 2020 are 0.29, 0.3, 0.31, and 0.35, respectively (Figure 3), while the minimum is 0, which
is located in the Mongolia desert Gobi area and Pamir Plateau area. The maximum is
6.78, which is located in the urban area of Khabarovsk City, Russia, in 2020. Here, 91% of
raster cells have HAI < 1, implying that most border areas on the neighboring sides also
have a relatively low HAI. Overall, the HAI on the Chinese side is higher than that on the
neighboring side.
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China’s border area has undergone a process of rapid land use transformation. China
established free trade zones in 1992, such as the “Border Development and Opening Pilot
Zone” and the “Border Economic Cooperation Zone”, resulting in rapid urbanization and
industrialization. In 2001, China acceded to the World Trade Organization (WTO), which
actively promoted economic globalization, accelerating development, and constructing
border ports and cities serving import and export trade. In the 21st century, there have
been 20 years of China’s economic take-off, including the rapid development of China’s
border areas.

Figure 4 shows the mean HAI spatial distribution from 1992 to 2020. The HAIs of
the China–Kazakhstan, China–India, and China–Russia border areas are relatively high.
There are high HAI clusters with concentrated and contiguous regions due to fertile land,
especially the Brahmaputra Valley Plain of India, located in the piedmont alluvial plain of
the Qinghai-Tibet Plateau. Furthermore, India proposed the “Border Action Development
Plan” in 2016, which promoted infrastructure construction in border areas and accelerated
the settlement of border residents. The China–Kazakhstan border region presents local high
HAI levels due to the good terrain conditions, mainly in the Ili River Valley. Since 2013,
Kazakhstan has become a key transit area along two important border crossings with China:
The Alashankou/Dostyk crossing and the Khorgos/Altynkol crossing [52]. International
cooperation, such as through the “Belt and Road” initiative, accelerates the growth of the
HAI in this region. The scattered border ports and cities with high HAI values include
Heihe, Dandong, Yanji, Ruili, and Hekou in China, and Khabarovsk, Blagoveshchensk
in Russia, Phuong in Vietnam, and Muse in Myanmar. The HAI is low in high latitude
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regions such as the China–Mongolia and China–Russia borders, where there are wildlife
nature reserves. For example, the desert ecosystem in the Inner Mongolia Urad Haloxylon-
Mongolia Wild Ass National Nature Reserve is extremely fragile. Shuanghe National
Nature Reserve, one of the most desolate places in China’s north, is also cold all year round
and is a protected fragile ecosystem due to being inconvenient for transportation.
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3.2. Interstate Comparison along the Boundary

Figure 5 shows China’s comparative HAI changes with its neighboring countries.
Among these neighbors, India has the highest HAI and most rapid growth. In particular,
the state of Assam in India has gone through a period of rapid population growth. Since
entering the 21st century, Assam has returned to peace and promoted development through
policies such as the North East Industrial and Investment Promotion Policy and Industrial
Policy of Assam, leading to improvements such as enhanced road connectivity. Mongolia
has the lowest HAI, with slow growth due to the uninhabitable conditions in border
areas. From 1992 to 2010, except for the slight decrease in the HAI in Pakistan, the HAI
in most neighboring countries remained stable. After 2010, the HAI in the study area
underwent great changes. Among them, countries with a fast-growing HAI include India,
Vietnam, North Korea, Bhutan, Myanmar, and Laos. The HAI in Tajikistan and Afghanistan
decreased slightly. From the perspective of time evolution, China and its neighboring
countries’ HAI grow simultaneously in many regions, including Nepal, Bhutan, Myanmar,
Laos, Vietnam, Mongolia, Afghanistan, and Kyrgyzstan. China has a significantly increased
HAI in border areas with North Korea and Kazakhstan.
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Figure 5. HAI changes between China and its neighboring countries.

Overall, about half of the 14 neighboring countries have a lower HAI than their
corresponding border areas in China, including Mongolia, Kazakhstan, Afghanistan, Nepal,
Bhutan, Myanmar, Laos, and Vietnam. Only two countries, India and Kyrgyzstan, have
a higher HAI than the Chinese side. The contrast in HAI between some countries and
China has changed significantly, such as Russia, North Korea, Tajikistan, and Pakistan. As
a result of Russia’s series of development plans in the Far East around land policy and Sino-
Russian trade policy, Russia’s HAI has grown relatively compared with China. However,
its corresponding border areas in China have faced difficulties such as insufficient economic
development momentum, population shrinkage, and resource traps, with the result that
border development has shown a backward trend in recent years. Apart from Russia, the
closed and planned economy in North Korea and its minimal opening to the outside world
have led to the slow development of human activities on its borders. Furthermore, the
phenomenon of land degradation in the plateau area is obvious. For example, Tajikistan
has experienced grassland degradation due to overgrazing, and its HAI decreased rapidly
after 2010. Similarly, a lot of alpine meadows have degraded in the northwest of the
Qinghai-Tibet Plateau, leading to regional grazing bans in China, resulting in the HAI
declining in China’s border area adjacent to Pakistan.
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3.3. Selected Regional Analysis

Taking 2020 minus 1992 in the HAI values as the HAI change, we found that about
80% of the raster changes were between −1 and 1. That is, the HAI in most areas remained
basically stable. To further analyze the regions with drastic changes in the HAI, we selected
four typical regions: the Sino-Russian border, the Sino-Indian border, the China–Kazakhstan
border, and the China and Indo-China Peninsula border areas (Figure 6). The HAI shows a
declining trend in the northeastern border area of China, especially along the Sino-Russian
border. The HAI in other border areas increased significantly, including the northwest,
south, and southwest, especially in the cities and port areas on the China–Kazakhstan and
China–India borders. The next four paragraphs characterize HAI changes in the following
main regions: Sino-Russian HAI decline; Sino-Kazakhstan HAI unilateral growth; Indian
HAI continuous growth; and China and Indo-China Peninsula HAI synchronous growth.
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Figure 6. HAI changes in selected regions, 1992–2020. (A). The Sino-Russian border area, including
the Fuyuan Delta, Heihe; (B). The east part of the Sino-Indian border area, including Assam in
India and Nyingchi in China; (C). China–Kazakhstan border area, including Bortala Mongolian
Autonomous Prefecture and Yining city in China, and the Almaty Region in Kazakhstan; (D). China
and the Indo-China Peninsula border area, including the cross-border regions between China and
Myan-mar, Laos, and Vietnam.

The HAI in the northeastern border of China faces recessionary predicaments (Figure 6A),
where energy and mining, agriculture and forestry development, and machinery and house-
hold appliances are developed between China and Russia and China and North Korea. In
the 1960s and 1970s, the northeast region was at the forefront of China’s economic devel-
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opment, with heavy industry leading, and the northeast border dominated by interstate
trade. Since the 1980s, the overall development of northeast China has been slow, and the
population has decreased. At the same time, the Russian far east area is sparsely populated,
and North Korea has limited opening to the outside world, resulting in a gradual decrease
in northeast border trade activities. The HAI decline areas are mainly located around
cities, farms, and nature reserves, such as Khabarovsk’s surrounding areas and Heihe’s
western part.

The China–Kazakhstan border shows a trend of unilateral growth on the Chinese side
(Figure 6C). The Kazakh side has an average increase of 0.04, while the Chinese side has an
average increase of 0.18, which is 4.5 times that of the Kazakh side. There are important
inland export hubs, such as Khorgos and Alashankou, along the Sino-Kazakhstan border.
China’s border policy supports the establishment of border economic cooperation zones
in Yining, Bole, Tacheng, and other places. Meanwhile, Xinjiang is the core area for the
construction of the “Belt and Road” initiative, and the northwestern border has become a
hub for China’s westward opening and border trade. Bole City and Horgos City have grown
significantly with the support of China’s policies. However, in Kazakhstan’s comprehensive
opening to the outside world, the strategic position of the Sino-Kazakh border is relatively
weak, and the growth of the HAI on the Kazakh side is relatively slow.

In the eastern Sino-Indian border area, the average growth rate of China was 0.09 while
India’s was 0.34, which was 3.8 times that of China (Figure 6B). This may be due to different
natural conditions in the two areas. Along the Sino-Indian border, the Brahmaputra Valley
Plain on the Indian side has a milder climate and more abundant rainfall, making it more
suitable for human activities. Moreover, a large Bengali-speaking population in Assam
tends to retain the traditional habits of large families, resulting in greater population
growth. The Chinese side is located at the foot of the eastern Himalayas, where the plateau
ecosystem limits HAI growth. Furthermore, there is a disputed area between China and
India here.

The HAI in the southwest study area shows a synchronous growth (Figure 6D). The
average HAI border growth of Myanmar, Laos, and Vietnam was 0.12, while on the Chinese
side, it was 0.14. There was little difference between the two. Due to favorable climatic
conditions, the development of bilateral trade, and frequent cross-border activities, both
sides have some degree of HAI growth.

3.4. Hotspot Analysis

We further observed some hotspots with high HAI and dramatic changes. Most
of these hotspots are border towns, where construction land has expanded significantly.
Changing patterns of high HAI (>4) in some hotspot areas from 1992 to 2020 can be
expressed as three spatial models, namely unilateral expansion, bilateral expansion, and
cross-border integration.

Unilateral expansion. There is a high HAI on one side of the international boundary
and a low HAI on the other, forming a single-center development model within the border
buffer zone. Moreover, there is no obvious interaction between the areas on either side
of the international boundary. Meanwhile, the single-center region continues to expand
toward the international boundary, resulting in the stark contrast between prosperity on
one side and desolation on the other. They include Khabarovsk in Russia (Figure 7A),
Assam in India (Figure 7B), Mongla in Myanmar, Tacheng in China (Figure 7C), as well as
others such as Manzhouli, Erenhot, and Jinghong in China. Such areas are generally the
capitals of border states and undertake the important responsibilities of maintaining and
guarding borders. Alternatively, they are essential external transportation hubs, serving
as transit platforms and stations for the country to realize foreign trade through land
borders. This unilateral expansion was due to a number of historical factors. For example,
Khabarovsk is the administrative center of the Russian Far Eastern Federal District, the
capital of the Khabarovsk Territory, and the largest city in the Russian Far East. During the
Ming and Qing Dynasties of China (1643–1858), Khabarovsk, named Boli, was established
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here. Due to Sino-Russian border negotiations, Khabarovsk was formed as a border city in
Russia. Apart from historical factors, the huge difference in the natural environment leads
to inconsistent development of bilateral HAI. For example, Medog County is located on
the southeastern edge of the Qinghai-Tibet Plateau in China, with a maximum altitude of
7787 m, where the landscape is dominated by ravines that hinder transportation. On the
other side, the state of Assam in India is located in the Brahmaputra River Valley Plain, with
flat terrain and fertile water and soil, where Dibrugarh, Tinsukia, Chabua, and other cities
formed. As well, the difference in national policy support between the countries further
deepened the contrast in the HAI. For example, China’s Tacheng Baketu Port has a history
of trade in the Qing Dynasty and is a major transfer point from western China to Central
Asia and Europe. Tacheng was set up as an open city along the border in 1992, and key
developments as an opening-up area were established here in 2020. Therefore, it has long
been an opening-up area supported by Chinese policies. In contrast, the Kazakh border
on the other side was developing more slowly than the Chinese side due to Kazakhstan’s
constant changes in national strategy.
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Bilateral expansion. Some high HAI areas formed near the international boundary
and continued to spread towards the boundary on both sides due to some degree of
interaction between the countries. These areas are China Khorgos–Kazakhstan Khorgos
(Figure 7D), China Zhenkang–Myanmar Laukkaing (Figure 7E), and China Pingxiang–
Vietnam Lang Son (Figure 7F). Border trade is the main reason for this phenomenon.
These areas on both sides continue to have an active trade relationship and cross-border
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population movement, which is more common in southwest China. Secondly, national-level
trade policies have promoted bilateral interaction. For example, the China–Kazakhstan
Horgos Cross-border Cooperation Center proposed in 2006 has been jointly constructed by
China and Kazakhstan. As a result, since then, the HAI in the Horgos region of China has
rapidly increased.

Cross-border integration. Composed of parts of China and neighboring countries,
some cross-border areas break through the international boundary to form integrated
wholes. These twin cities are characterized by deep social and economic integration and
gradual outward expansion [53,54]. Examples are China Ruili–Myanmar Muse (Figure 7G),
China Heihe–Russia Blagoveshchensk (Figure 7H), China Hekou–Vietnam Lao Cai, China
Dongxing–Vietnam Mong Cai, and China Dandong–North Korea Sinuiju. The first common
factor shaping such twin cities is natural conditions. Such cities are generally found in flat
areas without a major natural obstacle. The second factor is historical. For example, Ruili
in China and Muse across the border in Myanmar were originally in the same country and
had the same ethnic culture. However, due to historical border evolution, this area was
divided between the two countries. Border trade and cross-border transportation further
promoted the integrated development of the twin cities. For example, Sinuiju is a special
economic zone in North Korea. On the opposite side is Dandong, and it undertakes 80%
of the trade volume between China and North Korea. Therefore, Dandong in China and
Sinuiju in North Korea have formed closely linked twin cities. In addition, Hekou and
Lao Cai, the largest border ports between China and Vietnam, have also formed integrated
spaces as twin cities.

In general, there seems to be a paradox about an international boundary. On the
one hand, it has a “border effect”, which artificially separates areas with the same natural
attributes, and restricts the free flow of population and materials. On the other hand, it
has a special attraction—an agglomeration effect. In the context of globalization, human
activities continue to gather at the boundary frontier based on different needs. For example,
countries deploy military forces in border areas for security and to demonstrate national
strength. Border residents settle along the boundary to facilitate border trade for a living.
Transportation facilities, such as ports, are directly connected with neighboring countries,
which can facilitate the inspection and safe arrival of goods. The international boundary
not only has mediating effects but also serves as a symbol of power and strategic interest
in the border area. The barrier function of the international boundary divides power and
institutional space between countries, while its intermediary function brings about the
exchange of resources and markets.

4. Discussion
4.1. Comparisons with Previous Studies

Most border research uses population and land use data for analysis. You et al.
analyzed population changes within a 200 km buffer zone inside and outside China’s
borders [55], finding that the population density on the neighboring side was twice as high
as on the Chinese side. The comparison of population densities we found is consistent with
this, but with a higher HAI on the Chinese side than on the neighboring side. Therefore,
using population density data alone cannot represent comprehensive HAI in border areas.
Land cover has significantly changed in some sparsely populated areas, such as Khorgos.
However, some densely populated areas, such as Dandong, have stagnated. Huang et al.
used census data to analyze the population distribution of 131 border counties in China
from 1982 to 2010 [56]. However, the demographic analysis based on administrative units
has coarsened the spatial differences in population density. In fact, the border population is
mainly distributed in the plains, oases, and along the transportation lines [55]. Therefore,
using a single datum to identify human activities will produce large deviations. Stokes et al.
used three types of data in urban infrastructure research, including population, land use
and nighttime light, and proved that comprehensive data can better reflect the diversity of
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human activities [57]. Hence, we integrated those three types of data to reflect the HAI in
border areas comprehensively.

Taking the 50 km buffer zone of the boundary as the study area is also an innovation
of this paper. The area of the 200 km buffer zone adopted by You et al. [55] was too broad,
and the entire regions of Nepal and Bhutan were included in their study, which was not
representative of a typical border area. According to our survey, areas beyond 100 km
from the international boundary have few border features. The international boundary
has a greater impact on the HAI in areas within 50 km. At the same time, existing studies
have focused more on units such as provinces [41] and cities [42] in local areas, which
lack multi-scale spatial comparison of raster data. We took the buffer zone of China’s
international boundary as the study area and conducted a multi-scale comparative analysis
to comprehensively understand the evolutionary characteristics of human activities in the
areas on both sides of China’s border. In addition, compared with short-term research
in previous studies [55,58,59], the dynamic evaluation of the HAI in this study used a
long-term time series from 1990 to 2020, which is helpful in understanding the temporal
and spatial evolution of the border area in the past 30 years.

4.2. Geopolitical and Geoeconomic Implications of HAI Changes in Border Areas

Human activities in border areas have geopolitical overtones. Sovereign consciousness
and national culture impact human activities. The nature of cooperation and conflict of
human activities in border areas is a major factor affecting geopolitics. The rapid growth of
the HAI in disputed areas will exacerbate geopolitical tensions between the two countries
and push the bilateral countries further into a “security dilemma”. In Arunachal Pradesh,
the disputed area between China and India, India actively moves human settlements to this
area, or strengthens human activities in existing areas, to gain greater strategic initiative
and public opinion in the geopolitical competition. India’s HAI near the disputed area
increased by 0.34 from 1992 to 2020, while the Chinese counterpart increased by only
0.09. India also continues to ramp up human activities in disputed areas like Itanagar and
Pasighat, establishing administrative capitals and undertaking infrastructure projects to
consolidate territorial control [60]. It can also be seen from Figure 5 that India’s HAI in
border areas has risen rapidly; it is becoming the country with the highest HAI among
China’s land neighbors.

On the other hand, in a friendly international context, establishing a cross-border
economic cooperation zone is a means of expanding human activities, which will further
stabilize bilateral relations that promote border geoeconomics. The cross-border economic
cooperation zone takes cross-border industrial cooperation and port logistics as its main
functions. For example, the Heilongjiang Cross-border Economic Cooperation Pilot Zone
has established three areas, Heihe, Suifenhe, and Dongning, and is committed to building
a pilot area for comprehensive strategic cooperation between China and Russia and a
regional cross-border industrial cooperation base for Northeast Asia. The China Dongxing–
Vietnam Mong Cai Cross-Border Economic Cooperation Zone, an upgraded version of
the China-ASEAN Free Trade Area, is an important carrier and platform for the “Belt and
Road” initiative. The cooperation zone is spatially manifested in the expansion of industrial
land near the boundary and the growth of economic activities, transforming the border
area’s function from security and defense to economic. However, human activities in the
Sino-Russian border areas show a partial contraction. With the resolution of boundary
issues related to disputed areas in the early 21st century, the geopolitical importance of the
Sino-Russian border areas has decreased, leading to a decline in the HAI.

4.3. Implications of the HAI for Ecosystem Services and Biodiversity

The rapid expansion of human activities, including urbanization, agricultural reclama-
tion, and grazing, on both sides of China’s international boundary greatly affects habitats
and biodiversity [61,62]. The trade-off of the economic and ecological intensity of land use
is essential in this area [63]. We used the monthly global Normalized Difference Vegetation
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Index (NDVI) data at1 km resolution, which is a MODIS product provided by NASA [64],
and conducted a phased spatial comparison from 2000 to 2020 with the HAI. The analysis
found that HAI and NDVI changes in most population agglomeration areas were negatively
correlated to a certain extent. Vegetation coverage has been greatly reduced in urban areas
such as Mangshi, Jinghong, Aheqi, Jimunai, and Mohe in China, as well as Myitkyina,
Bhamo in Myanmar, and the Brahmaputra watershed in India. Due to overgrazing in the
Pamir Plateau, the HAI increased slightly, and the NDVI decreased significantly on the
borders of China–Tajikistan, China–Kyrgyzstan, and China–Kazakhstan. Although the
HAI increased rapidly in some areas, the NDVI here remains stable, such as in the border
areas with high forest coverage in Vietnam, Laos, and Myanmar. The HAI is reducing
in the Sino-Russian border area, such as Greater Khingan. Coupled with strict ecological
protection and control measures on the Chinese side, the NDVI in this area has increased
significantly, which is reflected in improved ecological conditions.

Biodiversity in the study area faces a greater threat at several hotspots that cross
borders, such as the Himalayas, the Central Asian mountains, and the India–Myanmar
region [65]. The HAI in these areas has increased significantly. Tang et al. found that the
estimated forest disturbance area reached 4366.14 km2 in the China–Laos border areas
from 1991 to 2016 [66]. Lin Wang et al. found that the reduction of natural forests in
the southwestern border areas of China led to a decrease in the number of biological
habitats, especially in the Sino-Vietnamese border area [67]. We extracted the range of
key biodiversity areas (KBA, https://www.keybiodiversityareas.org/, accessed on 10 May
2022) and found that the HAI in KBA increased by 13% from 1992 to 2020. Among the
KBA areas with the most HAI growth are Dibru Saikhowa National Park and Sonai Rupai
Wildlife Sanctuary in India, Irrawaddy River in Myanmar, and Tongbiguan Nature Reserve
and Longgang Nature Reserve in China, which are mainly located in the southern and
southwestern study areas. Therefore, we propose that cross-border protection measures
and international cooperation in these two areas should be strengthened. Governments
should take appropriate control of the HAI in the KBA areas, for instance, to ensure orderly
migration in core protected areas and improve cross-border biological connectivity.

4.4. Research Deficiencies and Prospects

Several uncertainties still exist. First, we proposed an HAI based on data acquisition
in the study area. Some indicators, such as roads, are not considered because of the
poor availability of historical data, which may underestimate the impact of infrastructure
construction outside human agglomeration. Second, the HAI represented by land cover
adopts an empirical evaluation method. However, referencing the results of previous
research still involves a certain degree of subjectivity. If high-precision data for continuous-
time is available in the future, such as monthly and daily dynamic data of the tourist
population and migrant population, these data can be incorporated into the research
framework to further analyze the changes in the HAI during the year. In the buffer zone
between two countries in border areas, the impact of human activities has spillover effects
such as transboundary air and water pollution [68,69]. Therefore, we should also strengthen
the research on this kind of telecoupling in the future [70] and explore the cross-border
cooperation mechanism of border ecological environment governance.

5. Conclusions

About 90% of the study area has a low HAI, and there are almost no traces of human
activities in the Central Mongolian desert Gobi area, the Greater Khingan virgin forest area,
the Qinghai-Tibet Plateau, and the Pamir Plateau. High HAI areas are mainly distributed
in the Ili River Valley, the Brahmaputra River Valley Plain, and the Sino-Russian and
Sino-Myanmar border urban areas. The HAI of the Chinese side is higher than that of
the neighboring countries. In particular, the land use intensity on the Chinese side has
increased significantly, but the population density on the Chinese side is lower than that of
the neighboring countries. Among China’s land neighbors, India’s HAI is the highest with
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rapid growth, and the Indian side presents a contiguous HAI with high intensity. Mongolia
had the lowest HAI, but it increased slightly. With the adjustment of China’s geostrategies
in relations with neighboring countries, four regional evolution patterns emerged in the
study area. They are Sino-Russian HAI decline, Sino-Kazakhstan HAI unilateral growth,
Indian HAI continuous growth, and China and Indo-China Peninsula HAI synchronous
growth. Spatial models in hotspot areas are unilateral expansion, bilateral expansion, and
cross-border integration.

The paradoxical phenomenon of “border effect” and “agglomeration effect” is pre-
sented in border areas at the same time. In the context of globalization, the agglomeration
effect of increased population and industrialization in border areas, such as those reflected
in migration and urbanization in border cities, and as a result of the development of cross-
border economic cooperation zones and cross-border transport infrastructure, have an
impact on the ecological environment. Meanwhile, human activity intensity in border areas
is also an important factor affecting geopolitics and geoeconomics. Governments are in-
clined to move border residents to disputed areas to enhance control. The agglomeration of
the population in border cities promotes cross-border economic cooperation, and economic
prosperity attracts more population, in turn.

The main contributions of this paper are as follows. Given the current lack of research
on human activity in international border areas, we take China as an example to make up
for this gap. Three different kinds of data were integrated to form a new index of HAI,
which helps understand the evolution of human activities in the past 30 years in China’s
border areas. The methodology of this study can provide a reference for border research,
and the results support decision-making about cooperation between China and neighboring
countries in such key areas as ecological protection, border security, and border trade.
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