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Abstract: The eastern Hengduan Mountains are located in the transition zone between the Qinghai-
Tibet Plateau and the Sichuan Basin and are important for global biodiversity and water conservation
in China. However, their landscape pattern vulnerability index (LVI) and its influencing factors have
not been systematically studied. Therefore, the spatial distribution patterns, LVI, and the landscape
artificial disturbance intensity (LHAI) of Ganzi Prefecture were analyzed using ArcGIS software based
on landscape data and Digital Elevation Model (DEM) digital elevation data. Then, the LVI response
to LHAI and elevation was discussed. The results showed that Ganzi Prefecture was dominated
by low- and middle-LVI areas, together accounting for 56.45% of the total area. LVI values were
highest in the northern regions, followed by the southern and eastern regions. Batang and Derong
counties had the highest LVI values. Most areas in Ganzi Prefecture had very low- or low-LHAI
values, accounting for 81.48% of the total area, whereas high-LHAI areas accounted for 2.32% of the
total area. Both the LVI and LHAI of Ganzi Prefecture had clustered distributions. Spearman analysis
indicated that when elevation exceeded 4500 m, it was the most important factor affecting LVI and
LHAI. In the range of 4500–5400 m, the relationship between elevation and LVI shifted from a weak
positive correlation to a negative correlation, whereas LHAI was positively correlated with elevation.
In addition, LVI also responded significantly to LHAI. However, the relationship kept changing
as elevation increased. Hence, the ecological vulnerability of high elevation areas above 4500 m
deserves greater attention. In addition, pasture areas in the upstream reaches of the Yalong River in
the northern region, the coastal area in the downstream reaches of the Jinsha River in the southern
region, and the eastern mining area, should be prioritized for protection and restoration. This research
provides a basis for appropriate environmental planning mechanisms and policy protections at the
landscape level.

Keywords: eastern Hengduan Mountains; landscape pattern vulnerability index; landscape artificial
disturbance intensity; human activities; elevation

1. Introduction

Landscape pattern refers to the spatial arrangement and combination of landscape
elements and is a spatially integrated expression of landscape heterogeneity [1]. Landscape
pattern is linked to various ecological processes. Previous studies have found a strong
correlation between the landscape pattern index and ecological vulnerability [2]. Landscape
pattern vulnerability refers to the degree of vulnerability exhibited by the interactions
between landscape patterns and ecological processes [3]. It reflects the sensitivity and
adaptive capacity of landscape patterns to human activities and natural disturbances, which
lead to changes in the structure, function, and characteristics of the regional landscape
system [4–6].

On the one hand, cultural and political influences play a significant role in construct-
ing landscape patterns. Population growth, urbanization, and land development and
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utilization inevitably cause changes in landscape patterns [7,8]. Ecological land, such as
forests and grasslands, may be converted into agricultural and construction lands [9]. The
original single, holistic, and continuous natural landscape can be converted to a complex,
heterogeneous, and discontinuous mosaic of mixed patches. Accordingly, landscapes in
rapidly expanding urban areas exhibit a high degree of fragmentation, which represents
further ecological fragility [10]. On the other hand, landscape patterns are also affected by
global climate [11,12], regional topography, and the soil environment [13]. Natural factors
(i.e., water and heat conditions, slope, and elevation) restrict the spatial distribution of
land-use types. At the same time, the environment is highly sensitive to land-use changes,
and unsuitable land uses can easily aggravate local land degradation, degrade ecosystems,
and deteriorate environments [14].

The current research on mountain landscape patterns has mainly focused on under-
standing temporal and spatial changes [15]. Relatively complete methods for assessing
landscape ecological security [16], ecological risk [17], and pattern sensitivity [18] have been
developed. In addition, landscape pattern vulnerability studies continue to evolve. The
plural definition of vulnerability has diversified the framework and methodology for assess-
ing vulnerability. Bourgoin et al. [19] developed a rigorous methodological framework to
assess highland forest ecological vulnerability. However, the popular proxy indicator-based
approach has been used to analyze the relationship between landscape spatial patterns and
ecological processes [20].

Feyissa et al. [21] calculated landscape structure indices using a patch-corridor-matrix
ecological model for patches on Mount Wechecha, Ethiopia, and found that they declined in
all years. Kumar et al. [22] selected six vulnerability indicators using the analytical hierarchy
process (AHP) to assess the forest landscape vulnerability of the Western Himalayan region,
India. Campagnaro et al. [23] used transition matrices to analyze spatial and temporal
changes in a pair of alpine watersheds in Italy. Kulakowski et al. [24] explored changes
in forest landscape structure and the factors influencing forest landscape patterns in the
Swiss Alps using landscape indices such as patch density, number of patches, and Shannon
diversity. Song et al. [25] established an evaluation index system that included ecological
sensitivity (ES), natural and social pressure (NSP), and recovery capacity (ERC) aspects to
explore the ecological condition of China’s southwest mountainous areas at the regional,
county, and grade levels. Due to the complex effect factors, it is difficult to measure
landscape pattern vulnerability. Although indicators are useful when synthesizing complex
situations for vulnerability assessment into a single number, the selection of appropriate
indicators is the hardest step in mountain vulnerability assessments.

In recent years, researchers have begun to use landscape indices to evaluate landscape
pattern vulnerability. According to the definition of ecological vulnerability and the eco-
logical significance of landscape indices, Sun et al. [4] constructed a new evaluation index
for landscape pattern vulnerability based on the landscape sensitivity index (LSI) and the
landscape adaptation index (LAI). The advantage of this method is that it establishes a
direct link between landscape patterns and ecological issues at a large scale, and it guides
the integration of resources and spatial restructuring of landscape patterns within a study
area. Since then, many researchers have used this method for conducting spatial and
temporal variability analyses of landscape pattern vulnerability for basin [26], wetland [27],
watershed [28], urban [3], and mining landscapes [29]. Accordingly, the above studies have
verified the feasibility of this method in different landscape environments.

Recently, there has been a fast-growing interest in assessing mountain vulnerability
for environmental and socio-economic disciplines. Liu et al. [30] used remote sensing
(RS) and Geography information systems (GIS) techniques to show that human activities
were a decisive factor causing landscape vulnerability changes in the eastern part of
the Qilian Mountains. Guo et al. [31] used a remote sensing evaluation system to find
that human activities, precipitation, and topography were significant factors affecting
the vulnerability of southwest karst mountain ecosystems. Similarly, Zhang et al. [32]
found that geology and topography were the two major controlling factors affecting the
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landscape pattern vulnerability of the Guizhou karst region in China. Song et al. [25]
showed that mountain pattern vulnerability in China’s Yunnan, Sichuan, and Gansu
Provinces was greatly influenced by human economic activities. Donoso et al. [33] found
that mountain landscape vulnerability suffers constant modifications due to the agricultural
practices of dwellers and migrants. Jha et al. [34] indicated that mountain vulnerability
varied along elevation gradients due to variations in socioeconomic profiles, livelihood
requirements, resource availability, accessibility, utilization patterns, and climate risks.
Schneiderbauer et al. [35] believed that mountain regions are vulnerable areas that are
significantly exposed and susceptible to climate change.

The Hengduan Mountains form the longest and widest north-south-facing mountain
range of southwestern China, with a total area of 449,841.00 km2 [36]. They are located
at the junction of Sichuan Province, Yunnan Province, and Tibet. Due to the elevation
differences, short growing season [37], intensive soil erosion [38], vertical climate differenti-
ation [39], increasing human activities, and irrational land-use patterns [40], the Hengduan
Mountains ecosystems are extremely vulnerable [41]. At the same time, due to the highly
heterogeneous environment, the area has become the most important conservation area
and a critical biodiversity hotspot in China [42]. However, the rapid development of urban-
ization has put a lot of pressure on its eco-environment, and it is necessary to carry out a
series of vulnerability assessments of the area. Until now, the Hengduan Mountains land-
scape patterns had not been analyzed through the vulnerability lens using spatio-temporal
landscape indicators. Studying the effect of elevation differences on the vulnerability of
landscape patterns for mountainous areas is rare; however, the elevation factor cannot
be ignored as both human activities and landscape patterns are affected by elevation to a
certain extent. The above research gaps can be filled in this study. The data in this paper
can help local decision-makers in establishing a good mechanism for the optimal allocation
of various factors such as the land use, human and natural resources, as well as guiding
the structure and layout of industries such as agriculture, animal husbandry, tourism, and
energy. This will contribute to a balanced relationship between local socio-economic devel-
opment and ecological conservation. In addition, the findings of this study can provide a
reference point for monitoring future changes in the landscape.

To monitor and precisely quantify landscape patterns and identify ecosystem con-
servation strategies, the objective of this study was to produce spatial indicators at the
landscape scale using multidimensional remote sensing in order to assess the ecological
vulnerability of the Hengduan Mountains. The specific steps were: (a) to use GIS and
landscape indicators to calculate the landscape pattern vulnerability index (LVI) and the
landscape artificial disturbance intensity (LHAI) of Ganzi Prefecture, located in the eastern
Hengduan Mountains; (b) to clarify the spatial differentiation characteristics of the LVI and
LHAI in this region; and (c) to evaluate the univariate and multivariate effects of elevation
and the LHAI on LVI.

2. Materials and Methods
2.1. Study Area

The Hengduan Mountains range contains the eastern Qinghai-Tibet Plateau, the
Western Sichuan Plateau, and the Northwestern Yunnan-Guizhou Plateau [43]. This study
investigated the Ganzi Tibetan Autonomous Prefecture—abbreviated as “Ganzi Prefecture”
(between 27◦58′′–34◦20′′ N and 97◦22′–102◦29′ E). It is located in the alpine valley area of
western Sichuan and in the northern part of the Hengduan Mountains. It is an important
part of the Qinghai-Tibet Plateau and an important ecological barrier in China. Ganzi
Prefecture contains one city and 17 counties with a total area of 153,000 km2, accounting
for more than one third of the area of Sichuan Province. A total of 120,000 km2 is covered
by mountains, or 78.4% of the total area of Ganzi Prefecture [44]. The territory of Ganzi
Prefecture spans six latitudes from north to south with an average elevation of 3500 m. The
highest peak, Mount Gongga, is 7556 m above sea level. The relative elevation difference
between it and the lowest point of the Dadu River is greater than 6000 m [45]. Snow
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or glaciers seasonally cover the peaks of some mountains in Ganzi Prefecture, such as
the Shaluli and Daxue Mountains. Due to varying elevation, the study area has varied
vegetation patterns that include subtropical forests, coniferous and broad-leaved forests,
spruce and fir forests, alpine oak forests, alpine shrubs, alpine meadows, and alpine
rocky beaches.

Moreover, the landforms of Ganzi Prefecture are diverse, including mountains, plateaus,
flat dams, terraces, and mountain plains. Its natural pastureland is one of China’s five
major pastoral areas. The main rivers in Ganzi Prefecture are the Jinsha, Yalong, and Dadu
Rivers, all of which are major tributaries of the upper reaches of the Changjiang River
(Figure 1). The region has a continental highland-mountain type monsoon climate, with an
apparent vertical elevation difference. There are annual temperature differences of more
than 17 ◦C along the six latitudes. The total annual precipitation has ranged from 417.8
to 935.8 mm over nearly 10 years [46]. On average, there are 1900–2600 annual sunshine
hours and 18–228 frost days per year [47].
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Due to the harsh environment and difficult access, a large area of Ganzi Prefecture is
uninhabitable [44]. The economic level of Ganzi Prefecture is much lower than that of other
regions in Sichuan Province. The gross regional product accounts for only 0.83% of the
province [48]. In recent years, Ganzi Prefecture has been in a stage of rapid urbanization
and industrialization. Transportation, hydropower, mineral resources, and tourism have
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developed. However, due to the adverse effects of global climate change and anthropogenic
activities, the ecosystems in Ganzi Prefecture are under tremendous pressure with severe
degradation of grasslands, desertification of land, soil erosion [49,50], and land salinization,
and dramatic changes have occurred to the landscape patterns.

2.2. Data Sources and Processing

In the present study, local forestry survey data and a current land use map were
acquired from the Ganzi Forestry Bureau. According to the national-level land use classifi-
cation standards [51], and the actual land use in Ganzi Prefecture, six landscape types were
classified in this study: cultivated land, forest, grassland, water body, construction land,
and unused land. Table 1 shows the classified types.

Table 1. Factors affecting landscape resources and the environment.

Landscape Type Environmental Impact of Landscape Resources Impact Factors

Cultivated land
Has a small impact on resources and the

environment, some of which is reversible, but is
greatly affected by human activities

0.25

Forest

Has the function of ecological maintenance and
has little impact on resources and the environment.
Orchards and tea gardens are clearly affected by

human activities

0.1

Grassland Has the function of ecological maintenance and has
a low impact on resources and the environment 0.1

Water body
Rivers and lakes have little impact on resources
and the environment and are less influenced by

human activities
0.37

Construction land
It is greatly affected by human activities, most of

which are irreversible and have a significant
impact on resources and the environment

0.85

Unused land Has a slight impact on resources and the
environment, most of which are irreversible 0.48

Based on shapefiles developed by regional institutes, ArcMap software was used to
create a database from which raster maps and tiff images of Ganzi Prefecture were created
for this study. The tiff images were imported into Fragstats, a software program designed
to calculate landscape indices, in order to obtain the index data needed in this study. LISA
clustering maps were created using the “Anselin Local Moran’s I”, ArcToolbox in ArcMap.

To characterize the mountain terrain, an elevation map of Ganzi Prefecture was created
from a shapefile of contour lines with elevation data from the SRTMDEMUTM dataset. The
dataset was derived from the Shuttle Radar Topography Mission (SRTM3 V4.1) data product
with a global Digital Elevation Model (DEM) at 90 m resolution that covers all of China
and is freely available online at http://www.gscloud.cn, accessed on 15 April 2022 [52].
Elevation distribution maps of the LVI and LHAI were derived from a combination of
elevation maps and a shapefile of their respective spatial distribution. The correlation
analyses between the elevation, LVI, and LHAI were performed in statistical product
service solutions (SPSS) software.

2.3. Calculation of the LVI

LVI is related to the LSI and LAI [53]. The larger the LVI value, the more vulnerable
the landscape pattern is. The LVI was calculated using Fragstats software, following
Equation (1) (Figure 2):

LVI = LSI× (1 − LAI) (1)

http://www.gscloud.cn
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LSI can be measured by the landscape disturbance index (Ui) and landscape type
vulnerability (Vi). The former represents the degree of external disturbance to the land-
scape, and the latter represents the degree of landscape loss to disturbance [28], following
Equation (2). In addition, different landscape types also have different responses to envi-
ronmental disturbances [53].

LSI =
n

∑
i=1

Ui ×Vi (2)

where, n is the number of landscape types, and i is the landscape type. Ui values were
calculated following Equation (3) [26]:

Ui = aFNi + bFDi + cDOi (3)

where, FN is the fragmentation index, FD is the inverse of the fractional dimension, and
DO is the dominance degree [54]. Ui is usually summed by FN, FD, and DO, and the
weights of the three indices (a, b, and c) are assigned as 0.5, 0.3, and 0.2, respectively [3].
Considering the high proportion of unused land in Ganzi Prefecture and significant impact
of DO on unused land, this study adjusted the weights of the three indices for unused land
to 0.3, 0.2, and 0.5. Vi reflects the degree of loss of each landscape type under external
disturbance. Unused land, forests, and grasslands are the most easily changed, cultivated
land is the second most easily changed, while water bodies and construction land are not
easily changed. Therefore, four relative weights of Vi values were assigned from high to
low: unused land = 7, forest and grassland = 5, cultivated land = 3, and water body and
construction land = 1.

LAI is related to system diversity, and a more complex structure and uniform distri-
bution indicate a more stable system [55]. In this study, three representative indices of
ecological significance (the patch richness density index (PRD), the Shannon diversity index
(SHDI), and the Shannon evenness index (SHEI)) were selected to construct the LAI [56],
following Equation (4):

LAI = PRD× SHDI× SHEI (4)

2.4. Calculation of the LHAI

Landscape pattern evolution is influenced by both natural and human factors [57,58].
The study area is in the process of new urban development, and development and con-
struction activities can induce profound spatial and directional changes in land use across
the region. These, in turn, could affect the regional landscape pattern and ecosystem
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security. LHAI is used to describe the intensity of human disturbance of the landscape in a
region. Therefore, this study chose LHAI to analyze the disturbance intensity of the Ganzi
Prefecture landscape under the influence of human activities. LHAI was calculated using
Equation (5) (Figure 2):

LHAI =
n

∑
i=1

Si × Ri/A (5)

where, n is the number of landscape types and i is the landscape type; Si is the area of the
i-th landscape type; Ri is the environmental impact factor of the i-th landscape resource;
and A is the sum of each landscape area. In this study, Ri is mainly based on the indicators
of landscape artificial disturbances established by Liu et al. [58], which assess the impacts
of the intensity of human activities on landscape changes. In addition, this study took into
account differences in the degree of influence of landscape types on the regional ecological
environment. Based on the degree of ecological maintenance [59] and the degree of the
influence of human activities, the environmental impact factors for landscape resources in
Ganzi Prefecture were determined, as shown in Table 1.

2.5. Spatial Analysis Methods
2.5.1. Delineation of the Unitary Mesh

To ensure accurate LVI and LHAI calculations, the map of Ganzi Prefecture was
divided into grids of 2.5× 2.5 km2 cells using the Fishnet tool in ArcGIS 10.5 software. There
was a total of 26,379 grids. The LVI and LHAI values were then assigned to the centroids
of each fishnet gird. At the same time, the data were optimized using the semi-variance
function that explains the spatial variation structure of landscape characteristics [60]. We
used the ordinary kriging method to interpolate a corresponding spatial distribution map
and perform a horizontal comparative analysis of landscape vulnerability and artificial
disturbance in Ganzi Prefecture. Five vulnerability levels were classified using the natural
break method [61] for LVI values, i.e., very low-, low-, middle-, high-, and very high-
vulnerability. Similarly, LHAI values were divided into five levels: very low-, low-, middle-,
high-, and very high-intensity (Table 2).

Table 2. Classification statistics according to LVI and LHAI in Ganzi Prefecture.

LVI Value LHAI Value

Very low-vulnerability 0.03–0.28 Very low-intensity 0.10–0.12
Low-vulnerability 0.28–0.38 Low-intensity 0.12–0.17

Middle-vulnerability 0.38–0.47 Middle-intensity 0.17–0.28
High-vulnerability 0.47–0.57 High-intensity 0.28–0.31

Very high-vulnerability 0.57–0.82 Very high-intensity 0.31–0.47

2.5.2. Spatial Autocorrelation Analysis

In this paper, spatial autocorrelation analysis was performed to reveal the spatial corre-
lation among LVI, LHAI, and their aggregation characteristics. The spatial autocorrelation
indicators included the global spatial autocorrelation index (Moran’s I index) and the local
spatial autocorrelation index (LASI index) [62,63]. The former characterizes land-cover
change, especially from Landsat data. The LASI index was used to verify the degree of
correlation between an attribute in a small local area over the whole area and the same
attribute in a small adjacent area [64]. The LASI index decomposes Moran′s I value into
individual spatial units and reflects the local spatial aggregation of high or low values, thus
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reflecting local spatial heterogeneity [65]. The following formulas were used to calculate
Global Moran’s I (Equation (6)) and LASI index (Equation (7)):

GlobalMoran′s I =

n
∑

i=1

m
∑

j=1
Wij(xi − x)

(
xj − x

)
S2

n
∑

i=1

m
∑

j=1
Wij

(6)

where, S2 = 1
n

n
∑

i=1
(xi − x)2, x = 1

n

n
∑

i=1
xi, xi denotes an observation for region i, n is the

number of rasters, and Wij is the binary adjacency space weight matrix that indicates
the adjacency of spatial objects. i = 1, 2, ..., n; j = 1, 2, ..., m; Wij = 1 when region i and
region j are adjacent, while Wij = 0 when region i and region j are not adjacent. Moran′s
I value is generally between −1 and 1, where values less than 0 represent a negative
correlation, values equal to 0 represent no correlation, and values greater than 0 represent a
positive correlation.

LocalMoran′s Ii =

(
xi − x

m

) n

∑
j=1

Wij(xi − x) (7)

where, m =

(
n
∑

j=1,j 6=1
x2

j

)
/(n− 1) − x2, positive Ii values indicate spatial clustering of

similar high or low values around the spatial unit, and negative Ii values indicate spatial
clustering between non-similar values.

This study used the spatial statistics tool in ArcGIS 10.5 to calculate global Moran’ I
coefficients for LVI and LHAI based on the spatial distribution data of the two. Significance
testing of the approximately normal distribution was also conducted in order to reflect
their average degree of association and spatial distribution patterns.

2.6. Different Elevation Sub-Bands

The study area was divided into 21 elevation sub-bands at 300 m intervals using
DEM elevation data in order to investigate the changes in LVI and LHAI. The map of LVI
at different elevations was obtained from a combination of the files of the 21 elevation
sub-bands and the spatial distribution of LVI. The map of LHAI at different elevations was
created following the same processing method. Then, based on the topographic features of
China, the Chinese 1:1 million digital landform classification system [66], and the elevation
characteristics of the study area, the study area was divided into four elevation levels: low,
medium, high, and extremely high (Table 3).

Table 3. Classification statistics according to elevation in Ganzi Prefecture.

Classification Elevation (m) Proportion (%)

Low-level elevation <1200 0.01
Medium-level elevation 1200–3600 12.56

High-level elevation 3600–5100 86.74
Extremely high-level elevation >5100 0.69

3. Results
3.1. Spatial Differentiation of Landscape Pattern Vulnerability in Ganzi Prefecture
3.1.1. Analysis of Current Land Cover

Figure 3 and Table 4 show that land use in Ganzi Prefecture is diverse. Forests and
grasslands were the most common land cover types, accounting for 45.25% and 44.17%
of the total area, respectively. The per capita forest area was 17.71 km2 and the per capita
grassland area was 18.15 km2. Both of these areas were significantly higher than the
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provincial and national averages. The percentage of unused land was 8.19%, and the
water body percentage was 0.64%. Cultivated and construction lands accounted for 1.57%
and 0.18% of the total area, respectively. These areas were scattered in the valleys of the
Jinsha, Yalong, and Dadu Rivers and on the terraces, platforms and gentle slopes of their
tributaries, with a low level of intensive use.
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Figure 3. Landscape type map of the study area. Note: The county numbers in Figure 3 correspond
to the numbers in Table 4.

Table 4. Land use in each county of Ganzi Prefecture.

Number Country Construction Land (%) Forest
(%) Grassland (%) Cultivated Land (%) Unused Land (%) Water Body (%)

1 Baiyu 0.19 49.40 42.08 3.41 4.52 0.39
2 Batang 0.08 45.64 35.49 1.49 16.94 0.35
3 Danba 0.23 74.13 15.28 2.19 7.46 0.70
4 Daochen 0.17 58.24 34.61 1.08 5.11 0.79
5 Daofu 0.26 52.69 39.40 1.73 5.50 0.42
6 Dege 0.17 34.76 48.94 4.20 11.56 0.38
7 Derong 0.22 60.64 17.56 1.91 19.33 0.35
8 Ganzi 0.21 43.39 48.70 2.95 4.49 0.26
9 Jiulong 0.24 56.02 31.30 1.54 10.55 0.36
10 Kangding 0.50 41.71 48.41 1.50 7.48 0.40
11 Litang 0.12 55.34 35.51 0.69 7.97 0.36
12 Luding 0.33 66.41 14.05 5.18 13.36 0.67
13 Luohuo 0.35 58.23 33.39 1.90 5.90 0.24
14 Seda 0.08 35.84 61.59 0.23 0.79 1.47
15 Shiqu 0.05 11.25 73.94 0.23 12.92 1.62
16 Xiangchen 0.34 63.80 26.95 1.00 7.63 0.28
17 Xinlong 0.06 56.49 36.66 0.66 5.85 0.27
18 Yajiang 0.08 63.59 33.60 1.13 1.31 0.30

Total 0.18 45.25 44.17 1.57 8.19 0.64

3.1.2. Spatial Distribution of LVI

The spatial distribution of LVI values in Ganzi Prefecture is complex (Figure 4a and
Table 5). Low-vulnerability regions made up the most area, accounting for 29.47% of the
total area, followed by middle-vulnerability areas. These two types of regions accounted
for 56.45% of the total area and were uniformly distributed in the northern part of the
study area and scattered in other areas. High- and very high-vulnerability areas were
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mainly concentrated in the southern and northern edges of the study area, which was also
the Jinshal River system watershed. Other vulnerable areas were fragmented and widely
distributed in the study area.
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Table 5. LVI and LHAI in each county of Ganzi Prefecture.
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LVI (%) LHAI (%)

Very Low Low Middle High Very High Very Low Low Middle High Very High

Baiyu 19.13 36.72 32.07 10.67 1.42 64.26 25.67 6.84 2.42 0.80
Batang 5.70 17.03 27.41 30.63 19.23 28.73 29.93 23.61 12.51 5.22
Danba 16.53 32.64 25.27 18.02 7.53 46.28 37.66 14.33 1.72 0.00

Daochen 15.76 36.23 29.51 13.84 4.65 66.10 21.66 8.96 3.03 0.24
Daofu 10.94 34.68 26.62 19.75 8.01 63.08 23.93 10.09 2.90 0.00
Dege 1.97 22.04 30.50 24.51 20.99 53.22 24.86 7.95 7.01 6.96

Derong 9.53 13.19 20.49 37.71 19.08 21.16 26.58 30.59 19.02 2.65
Ganzi 59.51 27.45 5.92 3.93 3.19 77.55 10.34 6.09 3.79 2.23

Jiulong 7.84 20.89 28.65 26.42 16.20 41.33 32.51 19.35 5.40 1.42
Kangding 30.26 33.74 20.21 11.67 4.12 60.00 20.72 11.44 4.89 2.94

Litang 28.02 33.89 20.79 11.17 6.12 66.93 17.49 8.53 4.20 2.84
Luding 45.18 22.06 11.38 10.50 10.89 41.85 33.13 6.10 8.31 10.61
Luohuo 27.06 38.94 25.31 8.14 0.56 64.78 22.15 9.51 2.66 0.91

Seda 8.41 60.85 22.02 5.92 2.79 94.19 4.75 0.64 0.40 0.01
Shiqu 0.14 9.82 43.02 26.91 20.11 50.50 17.59 15.01 13.17 3.73

Xiangchen 8.19 31.72 34.77 19.55 5.78 56.21 28.19 10.28 5.24 0.07
Xinlong 13.92 31.05 30.87 19.40 4.76 49.65 41.44 7.52 1.30 0.09
Yajiang 36.50 46.48 12.23 4.26 0.53 89.46 9.36 1.18 0.00 0.00

Total 17.00 29.47 26.98 17.08 9.46 59.37 22.11 10.53 5.66 2.32

At the county level, as high- and very high-vulnerability areas accounted for more than
half of the county areas, Batang and Derong counties were classified as highly vulnerable
areas (Table 5). Baiyu, Daocheng, Ganzi, Kangding, Litang, Luding, Luhuo, Seda, and Ya-
jiang county were classified as low-vulnerability areas. The low- and very low-vulnerability
areas exceeded four-fifths of the total area in both Ganzi and Yajiang counties. This indi-
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cated stable landscape patterns in these two counties. The remaining seven counties were
classified as middle-vulnerability areas.

3.2. Characterization of the Landscape Intensity of Artificial Disturbance in Ganzi Prefecture

Figure 4b shows that most of the study area is covered by connected very low- and
low-intensity patches accounting for 81.48% of the total area. Conversely, there were
minimal very high-intensity areas accounting for 2.32%. The results showed that the
artificial disturbance intensity of the study area was low. In addition, the middle-, high-,
and very high-intensity areas were scattered in the study area in the form of spots and
blocks. The high- and very high-intensity areas were mainly distributed in Derong, Luding,
Shiqu, Dege, and Batang counties. The other 13 counties had minimal high-intensity areas.

3.3. Spatial Autocorrelation Analysis
3.3.1. Global Autocorrelation

Global Moran’s I values for LVI and LHAI were 0.5242 and 0.3113 (p < 0.01), re-
spectively (Table 6). Moreover, the Z-scores were greater than the threshold of 2.58 for a
two-sided test with a 99% confidence interval under a normal distribution. This indicated
that the spatial distribution of LVI and LHAI values of the study area was not random, but
rather a clustered spatial phenomenon.

Table 6. Global Moran’s I values.

- LVI LHAI

Moran’s I 0.5242 0.3113
z 55.9278 25.8204
p <0.01 <0.01

3.3.2. Local Autocorrelation

LISA clustering maps (Figure 5a) showed that the “high-high” values of LVI were
mainly distributed in the plateau area of northwestern Ganzi Prefecture. The dominant
land cover in this area is pasture. Due to the long-term dependence on natural grassland
grazing, the landscape gradually became fragmented, which decreased the stability of the
system. “High-high” values also dominated around mountains and valleys in the eastern
and southern regions. Because of the topographic constraints, the cultivated land was
mainly scattered in the river valleys, mesas, and gentle slopes. Most settlements were
also scattered in the valley hinterland. Conversely, the eastern and southern parts of the
study area were covered by a large area of “low-low” values, and these were the first
development areas in Ganzi Prefecture. In accordance with national policy requirements,
the regional government has continuously improved its ability to regulate land and formed
distinctive industrial layouts so that the landscape patches in the region are relatively
evenly distributed. As a result, the landscape pattern diversity and stability have increased.

Figure 5b shows the clustering of the “high-high” and “low-low” LHAI areas. The
“low-low” areas were widely distributed across the study area. That could be due to the
lower social and economic development levels. Most of the areas were covered by forests
and grasslands and were less artificially disturbed. In addition, the terrain fluctuations
caused cultivated land to be scattered in this area. It is impossible to implement large-scale,
mechanized planting in cultivated lands. The “high-high” values were clustered along
railways, highways, and the northern and southwestern edges of Shiqu County. Because of
the influence of traffic projects, low LHAI areas (forest and grassland) constantly changed
to high-disturbance landscapes with construction and cultivated lands. Furthermore, Shiqu
County had many unused lands on the northern and southwestern edges, and “high-high”
value clustering occurred.
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3.4. Vertical Distribution Characteristics of LVI and LHAI Values

As shown in Figure 6a, the low-LVI area decreased and then increased, while the
high-LVI area increased and then decreased. Low-LVI areas were mainly found below
4500 m elevation. When the elevation was 4500–6600 m, high-LVI areas gradually replaced
low-LVI-value areas. At elevations of 5400–6600 m, high-LVI-value areas dominated. When
the elevation exceeded 6600 m, the LVI values began to decline sharply. At an elevation of
7200 m, the very high-LVI areas disappeared, and the landscape was dominated by low
LVI values. This is because land at this elevation range is covered with ice and snow all
year round, and the landscape system is relatively stable.

The LHAI values first decreased and then increased (Figure 6b). Low-LHAI areas
covered most mountain areas below 2700 m. This area mainly included valleys where
the settlements are located. It reflected the low socio-economic development and low
development intensity of land in Ganzi Prefecture. Then, the LHAI shifted from low
to very low values at medium- and high-level elevations (2700–4500 m), in the local
traditional grazing area. There was significantly less interference of traditional grazing
activities on the landscape pattern than in the urban construction areas of the valleys. When
elevations exceeded 4500 m, the LHAI values clearly changed from low to high. Especially
at elevations above 6300 m, the very high-LHAI area completely covered the study area.
Although human activities hardly disturb this area, the landscape type is composed of
glaciers, permanent snow, and barren land. A high weight was given to unused lands and
thus there were very high LHAI values.

3.5. Spearman Correlation Analysis of LVI, LHAI, and Elevation

Spearman correlation analysis (Table 7) showed that both LVI and LHAI were not
correlated with elevation below 4500 m. Regions at 4500–5400 m had a positive correla-
tion between LHAI and elevation. However, there was a weak positive correlation to a
negative correlation between LVI and elevation. In addition, there was a significant posi-
tive correlation between LVI and LHAI; moreover, it changed with elevation. A negative
correlation between LVI and LHAI was only observed at elevations of 985–1200 m. Then,
with the increase in elevation, there was always a significant positive correlation between
LVI and LHAI. An extremely positive correlation (coefficient greater than 0.6) occurred at
3900–5100 m elevation. However, when the elevation exceeded 6000 m, all the correlations
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disappeared. Fitting the relationship between LHAI and elevation, LVI and LHAI, as
shown in Figure 7, the goodness of fit indices were 0.209 and 0.442, respectively.
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Table 7. Spearman correlation analysis between LVI, LHAI and elevation.

Elevation (m) LVI LHAI LVI and LHAI

985–1200 0.700 −0.400 −0.900 *
1200–1500 −0.040 0.120 −0.143
1500–1800 −0.083 −0.055 −0.114
1800–2100 0.093 0.180 0.403 **
2100–2400 0.069 −0.008 0.438 **
2400–2700 −0.026 −0.057 0.581 **
2700–3000 0.035 −0.100 * 0.570 **
3000–3300 −0.038 −0.057 0.519 **
3300–3600 −0.008 −0.092 ** 0.488 **
3600–3900 −0.058 ** −0.093 ** 0.570 **
3900–4200 −0.022 −0.067 ** 0.642 **
4200–4500 0.053 ** 0.051 ** 0.646 **
4500–4800 0.171 ** 0.188 ** 0.770 **
4800–5100 0.049 0.124 ** 0.751 **
5100–5400 −0.251 ** 0.032 0.450 **
5400–5700 −0.167 −0.132 0.485 **
5700–6000 0.036 −0.205 0.597 **
6000–6300 0.000 0.258 0.775

Total 0.168 ** 0.082 ** 0.674 **
** p < 0.01, * p < 0.05.
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4. Discussion
4.1. Analysis of Landscape Pattern Vulnerability Drivers

In this paper, considering its regional development strategy and ecological character-
istics [67], Ganzi Prefecture was divided into eastern (Kangding, Luding, Danba, Jiulong,
Yajiang and Daofu countries), northern (Shiqu, Dege, Baiyu, Ganzi, Seda, Luhuo, and
Xinlong counties), and southern (Batang, Litang, Derong, Xiangcheng, and Daocheng
counties) regions to analyze the drivers of LVI distribution (Figure 8). Although the eastern
region was the most socio-economically developed and the main population agglomeration
area, Kangding, Luding, and Yajiang also had low LVI values. This could be due to two
reasons. First, this was an important water conservation area in the upper reaches of the
Yangtze River. It also contained the Gongga Mountain National Nature Reserve and the
Gexigou Provincial Nature Reserve. It was a national key ecological function area, which
effectively protects the integrity of the landscape pattern. Secondly, with the control of the
urban development boundary, the layout and structure of urban and rural lands have been
optimized. The landscape pattern has evolved from a disordered state to an ordered one,
so that its stability has gradually improved. Similarly, Salvati et al. [68], Zhou et al. [69],
and Wang et al. [70] pointed out that rational land-use policies for ecological development
can increase the number of landscape types and stabilize the landscape pattern, which
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will reduce the landscape vulnerability. In addition, the very high- and high-vulnerability
areas were mainly located in Jiulong, Danba, and Daofu Counties, which are important
mineral resource development areas in Sichuan Province. Although mine development has
brought huge production benefits, it has destroyed the stable mountain landscape pattern
and caused serious ecological problems. Previous studies [6,71] indicated that mining
activities could stimulate the rapid expansion of urban and industrial lands. Farmland,
grassland, and gardens have been converted into urban and bare land. The aggregation
and connectivity of various landscapes has been reduced, creating a scattered landscape
pattern. The regional natural ecosystem gradually became sensitive and unstable.
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The southern region belongs to the economically sub-developed area of Ganzi Prefec-
ture. Low- and very low-vulnerability areas that are favorable for tourism development
were mainly located in Litang and Daocheng counties. This result was consistent with the
findings of Sun et al. [72] and Wang et al. [73] that responsible land resource use can miti-
gate the conflict between economic construction and environmental protection. Conversely,
the high- and very high-vulnerability areas were mainly located in the arid river valley
downstream of the Jinsha River. Intensive anthropogenic disturbance occurs in this area
with relatively low elevations and gentle and concave slopes, as these areas are easy and
convenient to access [74]. Thus, the long-term construction of hydropower facilities, as well
as the disorderly reclamation of barren sloping land and the conversion of concentrated
deforested land into construction land and arable land has caused severe soil erosion and
debris flows in these arid valleys.

The northern region is the most remote, least developed, and least competitive region.
Although the northwest of this area is primary natural grassland, excessive grazing has
resulted in grassland degradation and salinization. Serious rodent damage and compaction
problems in farming and pastoral areas have occurred. Thus, the high- and very high-
vulnerability areas were clustered in blocks. As suggested by Oliva et al. [75], excessive
grazing has led to the erosion of unstable soils and damage to perennial vegetation, causing
farm production losses. In addition, although there was a large area of unused land,
the unsustainable land use has led to the serious desertification of unused land. The
middle-vulnerability areas were clustered in blocks in this area. The moderately vulnerable
areas were distributed near the Yalong River and its tributaries. Driven by economic
development, the construction of hydropower stations and the mining of sand and gravel
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have also caused a certain degree of damage to the water system. As Cai et al. [76] reported,
as the intensity of development and utilization increased, the ecological pressure increased
sharply, and the ecological vulnerability of the landscape increased.

In general, social and economic factors have a stronger impact on the landscape
vulnerability than natural factors and are now the main factors affecting local landscape
vulnerability in Ganzi Prefecture.

4.2. How Elevation Impacts LVI and LHAI

The vast elevation difference is one of the unique topographic features of mountain-
ous areas, which is an important environmental factor affecting land use and carrying
capacity [77]. In this study, areas with low- and medium-level elevations had relatively
flat or hilly terrain dominated by waters, construction land and cultivated land, and were
gathering areas for population and cities. The use of land resources in the region is varied
and complex [78,79]. The vulnerability of the landscape pattern was significantly affected
by topography and human activities, but it did not have a strong correlation with elevation.
Jin et al. [80] and Song et al. [81] also found that low elevation areas were vulnerable to
human activities, and the original continuous landscape matrix was easily broken in the
Tibetan Plateau and the Songnen high plain.

Both LVI and LHAI transformed from negative to positive correlations with high
elevation regions. Dwarf woodland and shrub-meadows dominated this area. Changes
in climate factors caused by elevation played a key role in the formation of landscape
patterns. As Zong et al. [44] pointed out, almost all the climatic variables were significantly
(p ≤ 0.05) related to elevation in the Hengduan Mountains, and elevation was considered
a crucial factor affecting the cover and richness of the plant community. Feng et al. [82]
also suggested spatial differences in temperature, light, and water conservation capacity
of the high mountains would enhance the constraints of terrain factors on land use. In
this study, correlations between LVI and LHAI and elevation reached a maximum value at
4500–4800 m. This could be due to the topography of the Hengduan Mountains creating the
“Massenerhebung” Effect, which distributes species or biomes at higher elevations [83], and
the macro-landforms produce a thermos-dynamic impact that lengthens and warms the
growing season in the central mountain ranges [84]. Ultimately, vertical zone boundaries
such as forest and snow lines will be higher in the center of the mountain system than at
the periphery. In addition, Buzhdygan et al. [85] suggested that human grazing practices
on grassland ecosystems could become more obvious with increasing elevation, which
may lead to the severe spatial fragmentation of the landscape [86]. Reclamation and
deforestation in high mountains in order to meet food and timber needs will result in
highly vulnerable regional landscapes [87–89]. In this area, there was a significant positive
correlation between LVI and LHAI. Therefore, increasing human activities and harsh
environments could be the main factors driving landscape pattern fragmentation. When
elevations exceeded 6000 m, all correlations with elevation disappeared. This could be due
to the homogenization of the landscape in this area.

4.3. Limitations

This paper only analyzed the current spatial distribution of LVI in the study area, which
was inadequate because there were no comparisons over multiple time scales. Secondly, the
impacts of natural factors, such as complex topography and climate, on landscape ecology
should not be ignored. Also, social factors such as the degree of economic development,
urbanization, and industrialization were not quantitatively analyzed. Therefore, research
should be conducted on the driving forces of landscape ecological vulnerability based on
multiple impact factors.

5. Conclusions

The study found that low- and middle-vulnerability areas dominated the landscape
ecological vulnerability in Ganzi. Overall, the northern region had the highest landscape
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pattern vulnerability, followed by the southern region, while the eastern region had a
relatively stable and healthy landscape pattern. At the county level, Derong, Batang, Shiqu,
Dege and Jiulong were the most vulnerable. In addition, the study found that Ganzi had
fragile alpine ecosystems that were highly sensitive to human activities, such as the level of
human production and living, as well as land use guided by national policies. The spatial
distribution of LHAI values varied greatly. The LVI was significantly impacted by the
severe soil erosion in the lower Jinsha River basin, overgrazing in the upper Yalong River
basin, and ecological damage caused by the construction of large hydropower facilities
and mining activities. Elevation differences also accounted for the observed LVI variability.
Particularly at elevations above 4500 m, the study area showed a high level of vulnerability.

The results suggested that unsustainable anthropogenic disturbances, such as uncon-
trolled construction land expansion and deforestation, excessive grazing, and farming,
should be restricted. Integrated desertification management guided by policies premised
on ecological development is effective and we suggest promoting it in the study area. In
addition, there is a need to focus on restoring and protecting native vegetation at high and
extremely high elevations (>3600 m).
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