
Citation: Zheng, S.; Huang, Y.; Sun, Y.

Effects of Urban Form on Carbon

Emissions in China: Implications for

Low-Carbon Urban Planning. Land

2022, 11, 1343. https://doi.org/

10.3390/land11081343

Academic Editor: Muhammad

Shafique

Received: 21 July 2022

Accepted: 16 August 2022

Published: 18 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Effects of Urban Form on Carbon Emissions in China:
Implications for Low-Carbon Urban Planning
Sheng Zheng 1,2,* , Yukuan Huang 1 and Yu Sun 1

1 Department of Land Management, Zhejiang University, Hangzhou 310058, China
2 Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources,

Shenzhen 518034, China
* Correspondence: shengzheng@zju.edu.cn

Abstract: Carbon emissions are closely related to global warming. More than 70% of global carbon
emissions have been generated in cities. Many studies have analyzed the effects of cities on carbon
emissions, from the perspective of urbanization, economics, and land use, yet a detailed understand-
ing of the relationship between urban form and carbon emissions is lacking due to the absence of
a reasonable set of urban form metrics. The aim of this research is to explore the effects of urban
form on carbon emissions through empirical research. By eliminating collinearity, we established
a set of urban form landscape metrics comprising Class Area (CA), Mean Perimeter–Area Ratio
(PARA-MN), Mean Proximity Index (PROX-MN), and Mean Euclidian Nearest Neighbor Distance
(ENN-MN) representing urban area, complexity, compactness, and centrality, respectively. Through
spatial autocorrelation analysis, the results show that there is a positive spatial autocorrelation of
carbon emissions. The high–high agglomeration regions are located in the Beijing–Tianjin–Hebei and
Yangtze River Delta, while the low–low agglomeration regions are concentrated in the Southwest
and Heilongjiang Province. Based on a spatial error model, for the whole study area, CA, PARA-MN,
and ENN-MN show a positive correlation with carbon emissions, but PROX-MN is the opposite.
Based on ordinary least squares, PARA-MN in the Northeast and East, PROX-MN in the North and
Mid-South, and ENN-MN in the North are significantly correlated with carbon emissions. These
findings are helpful for low-carbon urban planning.

Keywords: carbon emissions; urban form; spatial error model; urban planning

1. Introduction

Since the Industrial Revolution, coal, oil, natural gas and other forms of fossil energy
have become the main resources for human life. The utilization of fossil energy leads to
increased carbon emissions, causing global warming [1]. China is the largest developing
country in the world. Its industrialization and urbanization have developed rapidly, and its
carbon emissions are also increasing. In 2006, China surpassed the United States to become
the country with the highest carbon emissions in the world [2]. In 2020, China’s carbon
emissions accounted for 30% of global carbon emissions [3]. In the same year, China put
forward the goals of peak carbon emissions in 2030 and carbon neutrality in 2060 [4,5].

As the center of human socio-economic activities, cities carry 85% of human production
and economic activities [6], and generate more than 70% of global carbon emissions with 2%
of the earth’s land area [7,8]. From 1990 to 2018, China’s urban population and construction
land area grew significantly [9]. On the one hand, the rapid development of cities has
expanded the scale of production activities and increased the consumption of fossil energy.
On the other hand, the outward expansion of urban area continues to encroach on farmland
and forests, resulting in a reduction in carbon sinks. In fact, as much as 50% of carbon
emissions in cities are attributed to the choice of urban form [10]. For example, the increase
in carbon emissions is affected by the intensity effect, expansion effect and economic effect
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to different degrees [8]. Urban form affects residents’ carbon emissions mainly through
the housing market, losses in power transmission and the urban heat island effect [11].
Furthermore, urban form affects regional meteorological factors. For instance, urban
form can influence the urban heat island effect through energy consumption, ultimately
increasing carbon emissions [12]. In addition, carbon reduction, a priority for future
development, requires an important foundation that can consolidate its achievements in
order to achieve its sustainability. The urban form, as the physical foundation of cities, is
relatively stable. It is also spatially integrated and interacts with economic and demographic
factors, ultimately leading to a long-term effect of urban form on carbon emissions [13].
Thus, the urban form is not only an important factor in reducing carbon emissions but
also an important vehicle for sustaining low-carbon sustainable development in the future.
Exploring the effects of urban form on carbon emissions could provide a new perspective
to achieve low-carbon sustainable development.

Due to the different connotations of urban form, there are many types of urban form
measurement metrics. The first category is dominated by socio-economic metrics, including
urbanization [14], economy [15], land use [13,16] and climate [5]. First, urbanization is
an important metric affecting carbon emissions. In the early stage of urbanization, urban
carbon emissions efficiency decreases with the growth of urban areas and their populations,
but as the level of urbanization exceeds a certain point, carbon emissions efficiency increases
instead. The impact of urbanization on carbon emissions shows a U-shaped trend [15]. Cur-
rently, the urbanization of Chinese cities shows large regional differences, with some cities
growing while others are shrinking [4]. However, in general, China’s level of urbanization
is in the first half of a U-shaped line, with the huge pressures of population growth and the
environment. Thus, urbanization shows a positive relationship with carbon emissions [17].
Second, different industrial distributions and structures can change the effects of the econ-
omy on carbon emissions. Therefore, a large number of studies have classified economic
data. For example, per capita GDP [18], industrial SO2 emissions per capita and the propor-
tion of employees in the secondary sector are positively related to carbon emissions, while
the proportion of employees in the three sectors and population density are negatively
related to carbon emissions [19]. Third, influenced by urban density, community layout and
building heights [20,21], specific land-use types can generate more carbon emissions. Retail
trade and residential land have larger carbon emissions, while terrace houses produce more
carbon emissions than other residential building categories [16]. Finally, climate shows a
negative effect on carbon emissions [22]. This trend is mainly from the increase in tempera-
ture and precipitation [5]. Increased temperatures usually directly enhance autotrophic and
heterotrophic soil respiration, and the increased precipitation can intensify soil erosion and
lead to losses in soil nutrients, ultimately affecting ecosystem productivity and carbon sink
functions. The second category of urban form measurement metrics is mainly based on
the geometric characteristics of urban forms. Measures of the geometric characteristics are
constantly changing as cities grow. In the early urbanization process, the population moved
from rural to urban area, so urban areas became the most direct indicator of urban form [23].
With the expansion of cities, the ability of single-dimensional metrics to explain them is
decreasing, and high-density land use is becoming the future direction of urban planning.
Metrics such as compactness, complexity and centrality have been incorporated into the
measurement dimensions of urban form. Compact development is associated with a high
density of urban areas. The reduced distances between urban parts can reduce the need for
transport and tourism, which directly reduces carbon emissions [24]. Complexity refers
to the roughness of the urban patch perimeter. It has been proven that there is a positive
correlation between complexity and carbon emissions [25]. Since landscape metrics can
combine the characteristics of patch size, shape and quantity, they play an important role
in the study of the spatiotemporal characteristics of urban land use [26] and the prediction
of future morphological changes [27].

Since different urban forms have different effects on carbon emissions [28], it is im-
portant to analyze their relationship from an appropriate perspective. Although some
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studies have begun to focus on the relationship between landscape metrics and carbon
emissions, most of them considered landscape metrics as a driving factor, and integrated
them with other factors such as urbanization and economy in one metric set. However, the
urban form landscape metric includes multiple subdivision concepts such as urban area,
compactness and centrality, which can not only directly reflect the level of urbanization, but
also reflect the economic development and policy orientation of the region. Considering
the rich information of landscape metrics, we need to select appropriate metrics from a
large number of landscape metrics for analyzing their effects on carbon emissions. There-
fore, the following hypotheses are proposed: urban form landscape metrics affect carbon
emissions, and the effect of each metric changes from region to region. In order to prove
these hypotheses, this study selected 282 cities at the prefectural level and above in China
as an example. The aim of the presented research was to construct a reasonable set of urban
form metrics through stepwise linear regression, analyze the effects of the urban form on
carbon emissions through the spatial error model and ordinary least squares, and propose
relevant policy recommendations for low-carbon urban planning.

In detail, there are two main contributions of this study. On the one hand, a set of
reasonable urban form landscape metrics was constructed by stepwise linear regression
This metric set can help in the selection of metrics for future research. On the other hand,
key urban form metrics, which are significantly associated with carbon emissions in each
region, are found, providing a reference for empirical research on the effects of urban form
on carbon emissions and helping to suggest targeted improvements for low-carbon city
planning. The rest of this paper is organized as follows: the Section 2 includes the study
area and data; the Section 3 presents the methods; the Section 4 contains the results and
discussion; and the Section 5 provides conclusions.

2. Study Area and Data
2.1. Study Area

Due to the lack of carbon emission data in the Tibet Autonomous Region, Hong Kong,
Macau and Taiwan, 282 cities at the prefectural level and above in China were selected as
the study area. Because of the vast size of China, carbon emissions vary greatly from region
to region. In order to explore the impact of different urban forms on carbon emissions
and provide more policy recommendations for low-carbon urban planning, cities need to
be classified. This study classifies China’s administrative regions according to traditional
geographic locations. It has been proven that the geographical location of cities and
regional policies affects the urban form [29]. The traditional geographical divisions divide
China into six regions, which are the North, Northeast, East, Mid-South, Southwest, and
Northwest [30]. This method can analyze the driving factors affecting carbon emissions
and provide more specific suggestions. Figure 1 shows the classification results of the
282 cities, comprising 30 cities in the Northwest, 33 cities in the Southwest, 77 cities in the
Mid-South, 76 cities in the East, 34 cities in the Northeast and 32 cities in the North.

2.2. Data

There are mainly carbon emissions and urban form data in this study. The carbon
emissions data were obtained from the carbon emissions inventory at the county level in
China developed by Chen et al. [31] (https://www.ceads.net.cn/data/county/ (accessed
on 1 April 2022)). This inventory is based on nighttime light data and uses the particle
swarm optimization back-propagation (PSO-BP) algorithm to downscale the energy carbon
emissions of each province. Finally, the carbon emissions of 2735 county-level energy
sources from 1997 to 2017 were calculated. We summarized the county-level to city-level
carbon emissions, and those of the 282 cities were obtained.

Urban form landscape metrics are based on the urban built-up area. Impervious
surface data, as a typical representative of urban built-up areas, can be used directly in the
calculation of urban form [32]. The national 40-year urban impervious surface data released
by Gong et al. [33] (http://data.ess.tsinghua.edu.cn (accessed on 1 April 2022)) was used
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as the basic remote sensing data source for calculating urban form metrics. This dataset
comprehensively considers MODIS and nighttime light data, classifies urban and rural
impervious surfaces, and finally derives the annual dynamic change data of impervious
surfaces within the urban area from 1978 to 2017. In order to improve the efficiency of
data, the spatial resolution of the impervious surface data in 2017 was resampled to 100
m. Then, the urban administrative map was used for cropping to obtain the impervious
surface distribution map of 282 cities in 2017.
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2.3. Urban Form Landscape Metrics

In terms of urban area, patchiness, urban irregularity and urban compactness [28,34–36],
15 urban form landscape metrics were selected. We divided them into four categories: area,
edge, shape and aggregation. (The equations and specific descriptions of the 15 metrics are
shown in Table A1 in Appendix A).

For the metric of area, Class Area (CA) represents the total area of all urban patches.
The Number of Patches (NP) can measure the urban fragmentation. The Largest Patch
Index (LPI) is equal to the percentage of the total landscape area occupied by the largest
urban patch.

For the indicator of edge, Edge Density (ED) is the sum of the lengths of all edge
segments divided by the total landscape area.

For the metric of shape, the Area-weighted Mean Shape Index (AWMSI) at the patch
level is equal to the sum of the perimeter-to-area ratio of each urban patch multiplied by
the proportion of the entire urban patch area to the landscape area. Based on the AWMSI
formula, the Area-weighted Mean Patch Fractal Dimension (AWMPFD) introduces a fractal
dimension to weight all patches. However, the fractal dimension depends on the patch
size and the units used. Therefore, changing the cell size of the input image will affect the
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AWMPFD to a large extent. Mean Perimeter–Area Ratio (PARA-MN) is the ratio of the total
perimeter of urban patches to the total area of the area.

For the indicator of aggregation, the Landscape Shape Index (LSI) measures the
perimeter–area ratio of urban patches. The Clumpiness Index (CLUMPY) reflects the de-
gree of aggregation between urban patches. The Percentage of Like Adjacencies (PLADJ)
represents the degree of connectivity within the urban built-up area. The Patch Cohesion
Index (COHESION) is the ratio of the area-weighted average perimeter–area ratio to the
area-weighted average patch shape index. Its formula is similar to PARA, but the interpre-
tation of changes is more robust. The Aggregation Index (AI) examines the connectivity
between patches of each landscape type. Patch Density (PD) represents the urban patch
area per unit area. The Mean Proximity Index (PROX-MN) refers to the sum of the ratios of
the size of all urban patches to the edge-to-edge distances of their nearest neighbors within
a specified search radius. The Euclidian Mean Nearest Neighbor Distance (ENN-MN)
quantifies the average distance between the two closest urban patches.

Based on the impervious surface distribution in 282 cities in 2017, the above 15 urban
form landscape metrics were calculated. To eliminate the effect of differences in data
magnitude, we normalized all variables by extreme value normalization, and the equation
is as follows:

X =
x−xmin

xmax − xmin
(1)

3. Methods

Highly correlated metrics could lead to redundant information, so it is necessary to
judge whether there is multicollinearity by analyzing the variance inflation factors (VIF)
of the metrics. Stepwise linear regression was used to eliminate the multicollinearity of
metrics. Then, to investigate the effects of the urban form on carbon emissions, spatial auto-
correlation analysis was applied to determine the spatial dependence of carbon emissions.
Finally, the spatial error model and ordinary least squares were used to analyze the effect
of each urban form metric on carbon emissions.

3.1. Stepwise Linear Regression

Stepwise linear regression is one of the most common methods of eliminating multi-
collinearity in variables. Its basic principle is to select the most important variables from
a large number of variables. We used forward stepwise linear regression [37], adding
one variable at a time until there were no new significant variables. The variables were
introduced on the condition that they were statistically significant (p < 0.1) and to avoid
multicollinearity (VIF < 10).

3.2. Spatial Autocorrelation Test

Only if there is a spatial dependence on carbon emissions can the spatial regression
method be used. The spatial autocorrelation is used to test spatial dependence, including
global spatial autocorrelation and local spatial autocorrelation [38]. Moran’s I is the most
popular indicator to explore spatial autocorrelation. The calculation formula is as follows:

Moran′s I =
∑n

i=1 ∑n
j=1 ωij(CE i −CE)(CE j −CE

)
S2 ∑n

i=1 ∑n
j=1 ωij

(2)

where n is the total number of cities; CEi and CEj represent the carbon emissions of city i
and j, respectively; ωij represents the spatial weight; CE is the mean carbon emissions and
S2 is the sample variance. Moran’s I has a value between −1 and 1. If the value exceeds 0,
it means that there is a positive spatial autocorrelation of carbon emissions; conversely, it
means that there is a negative spatial autocorrelation. If the value is close to 0, it means that
there is no spatial independence.
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3.3. Spatial Error Model

The spatial error model (SEM) is used to quantify the effects of the urban form on
carbon emissions (for the choice of SEM, please see Appendix B). The SEM is different from
the ordinary linear regression model, because its dependent variable is influenced not only
by the independent variables in the region, but also by the independent variables in the
neighboring regions. The SEM is expressed as follows [39]:

CE = βX + λWµ + ε, ε ∼ N
[
0, δ2 In], (3)

where β is a coefficient vector, X is a matrix of the independent variables, λ is the spatial
error factor, Wµ is the spatial weight matrix and ε is the stochastic error.

3.4. Ordinary Least Squares

If there is no spatial dependence on carbon emissions in the spatial autocorrelation
test, or if carbon emissions and the urban form do not pass the Lagrange Multiplier test,
then the next step is to use ordinary least squares (OLS) for multiple regression analysis.
The OLS is expressed as follows:

CE = α+ βX + ε (4)

where α is the regression constant, β is the regression coefficient, X is the independent
variable and ε is the stochastic error.

4. Results and Discussion
4.1. Urban Form Metrics Set

The results of the multicollinearity test for the metrics are shown in Table 1. The VIF
values of 10 metrics, comprising CA, NP, ED, AWMSI, AWMPFD, LSI, CLUMPY, PLADJ,
AI and PD, are higher than 20, indicating that these metrics contain redundant information
and ordinary linear regression is inappropriate. In the stepwise linear regression, the
independent variables comprise 15 landscape metrics, and the dependent variable is carbon
emissions. The results are shown in Table 2. The final five metrics remaining in the model
are CA, PARA-MN, PROX-MN, ENN-MN and PLADJ. The R2 of the model is 0.739, and
the model passes the F-test (F = 155.968, p < 0.05).

Table 1. Multicollinearity test results statistics.

Landscape
Metrics

Collinearity Statistics Landscape
Metrics

Collinearity Statistics

Tolerance VIF Tolerance VIF

CA 0.041 24.658 CLUMPY 0.003 372.238
NP 0.023 43.959 PLADJ 0.000 8627.861
LPI 0.053 18.816 COHESION 0.072 13.827
ED 0.007 134.318 AI 0.000 9250.508
AWMSI 0.037 27.091 PROX-MN 0.102 9.769
AWMPFD 0.034 29.444 ENN-MN 0.263 3.802
PARA-MN 0.209 4.782 PD 0.029 34.254
LSI 0.015 67.847 - - -

Note: VIF: the variance inflation factors; CA: Class Area; NP: the Number of Patches; LPI: the Largest Patch
Index; ED: Edge Density; AWMSI: the Area-weighted Mean Shape Index; AWMPFD: the Area-weighted Mean
Patch Fractal Dimension; PARA-MN: Mean Perimeter–Area Ratio; LSI: the Landscape Shape Index; CLUMPY: the
Clumpiness Index; PLADJ: the Percentage of Like Adjacencies; COHESION: the Patch Cohesion Index; AI: the
Aggregation Index; PROX-MN: the Proximity Index; ENN-MN: the Euclidian Mean Nearest Neighbor Distance;
PD: Patch Density.

Each VIF of the metric remaining in the stepwise linear regression model is less than
5, and the multicollinearity problem is statistically solved. However, due to the potential
overlap between the metrics descriptions, we needed to optimize the metric set. First, CA,
PARA-MN and ENN-MN depict different contents, but CLUMPY and PROX-MN both
depict urban compactness. Second, CLUMPY requires patches to be adjacent. However,
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PROX-MN considers the size and proximity of all patches within the specified search radius
of the edge, and there is no requirement that there must be a neighboring relationship
between urban patches. Thus, we eliminated CLUMPY. Finally, the set of urban form
metrics included the four metrics of CA, PARA-MN, PROX-MN and ENN-MN.

Table 2. Stepwise linear regression model results statistics.

Variable Coefficient VIF

Constant −0.314 *** -
CA 0.796 *** 1.534
PROX-MN −0.331 *** 1.437
PARA-MN 0.350 *** 3.055
ENN-MN 0.182 *** 2.534
CLUMPY 0.093 *** 1.871
R2 0.739
Adjusted R2 0.734
F F = 155.968, p = 0.000

Note: *** indicates significance at 1% level. F: F-test statistic value.

4.2. Analysis of Landscape Metrics and Carbon Emissions

The results for the 282 cities’ carbon emissions after extreme value normalization in
2017 are shown in Figure 2. Shanghai, Chongqing, Tianjin and Suzhou are the four cities
with the highest grade. The high-carbon-emissions cities are mainly distributed in the
North and East, and are concentrated in Henan, Jiangsu, Hebei, Shandong, Shanxi and
Zhejiang Province.
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The carbon emissions and landscape metrics statistics of the study area are shown in
Table 3. The characteristics of each region are as follows.

Table 3. Result statistics of urban form metrics.

Area Statistics Carbon
Emissions CA PARA-MN PROX-MN ENN-MN

All Areas

Min 0.0000 0.0000 0.0000 0.0000 0.0000
Max 1.0000 1.0000 1.0000 1.0000 1.0000
Mean 0.1402 0.1611 0.8222 0.0346 0.0500
Std 0.1342 0.1654 0.1147 0.0858 0.1119

North

Min 0.0683 0.0593 0.5528 0.0016 0.0068
Max 0.7741 1.0000 0.8638 0.2810 0.6036
Mean 0.2668 0.2612 0.7808 0.0460 0.0467
Std 0.1571 0.2132 0.0701 0.0683 0.1045

Northeast

Min 0.0092 0.0225 0.0000 0.0023 0.0150
Max 0.4105 0.3548 0.9373 0.2960 1.0000
Mean 0.1103 0.1086 0.7161 0.0328 0.1801
Std 0.0882 0.0846 0.2484 0.0580 0.2569

East

Min 0.0150 0.0226 0.6903 0.0006 0.0023
Max 1.0000 0.9553 0.9242 0.2351 0.0469
Mean 0.1697 0.2380 0.8187 0.0315 0.0177
Std 0.1479 0.1877 0.0457 0.0473 0.0107

Mid-South

Min 0.0016 0.0138 0.7048 0.0009 0.0000
Max 0.4495 0.6562 0.9449 1.0000 0.0787
Mean 0.1069 0.1363 0.8489 0.0485 0.0253
Std 0.0833 0.1292 0.0591 0.1387 0.0139

Southwest

Min 0.0000 0.0000 0.8626 0.0000 0.0148
Max 0.7938 0.5986 0.9498 0.0636 0.1121
Mean 0.0987 0.0758 0.9090 0.0085 0.0409
Std 0.1549 0.1199 0.0218 0.0153 0.0211

Northwest

Min 0.0060 0.0109 0.5396 0.0005 0.0013
Max 0.3237 0.3576 1.0000 0.3294 0.3938
Mean 0.0954 0.0766 0.8320 0.0253 0.0609
Std 0.0857 0.0834 0.0937 0.0603 0.0799

Note: Min: minimum value; Max: maximum value; Std: standard deviation.

First, the average carbon emissions of the Norther region are nearly twice the national
average, making it a high-carbon-emitting region. Influenced by carbon outflows from
Beijing, Tianjin and other central cities, the North region contains more high-carbon-
emissions cities than any other region. These central cities gather a large amount of
resources, but the carbon emissions generated by its production resources are burdened
by neighboring cities [40]. For example, urban-household-embedded carbon emissions in
Shanxi, Hebei and Henan provinces increased from 37 Mt in 2002 to 97 Mt in 2012, while
that for Beijing and Tianjin only increased from 9 Mt to 21 Mt [41]. The CA and PROX-MN
of the cities in the North are higher than the national level, which indicates that these
cities are larger and more compact. Benefitting from strategies such as the development of
western China and the rise of central China, industrial transfer among cities in the North
has become an important link in regulating regional carbon emissions [42]. However, it is
not realistic to change the energy-intensive industries in the North in the short term. The
more appropriate carbon reduction strategy should be to optimize the energy mix and
improve the efficiency of energy use.

Second, the average carbon emissions of the East and Northeast regions are close to
the national average, but the urban form between the two areas is completely different.
The cities in the East have a higher CA, but their ENN-MN is the lowest among all regions.
This suggests that there are many large and compact cities in the East. They have entered a
period of orderly development and land-intensive development [43]. In the East, the carbon
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emissions in the Yangtze River Economic Belt are mainly limited by energy consumption,
carbon sinks and socio-economic development [44]. Because the core industries in the East
are light industries, this region has a stronger ability to reduce carbon emissions and can
easily transform into high-tech industries. The mean ENN-MN of the Northeast region is
0.1801, three times the national average, while the mean PARA-MN is 0.7161, the lowest
among all regions. This is consistent with the characteristics of the Northeast’s population
outflow and resource-dependent cities.

Third, the mean carbon emissions of the Mid-South, Southwest and Northwest regions
are each far below the national mean carbon emissions. The cities in the three regions have
similarities: the average CA is lower than the national average, but the average PARA-MN
is higher than the national average, indicating that these cities are in the early urbanization
stage of sprawl. The poorer quality level and the restricted scale of urbanization lead to
lower carbon emissions in the West and South than in the East and North [45]. The three
regional cities also have differences. The mean PROX-MN of the cities in the Mid-South and
Southwest are completely opposite, suggesting that the cities in the Mid-South are highly
compact, and the cities in the Southwest are scattered. The Northwest region of China
has a higher ENN-MN and a more dispersed urban distribution compared to the other
regions. The cities in the Northwest are mostly close to the borderline and are unsuitable
for concentrated distribution, influenced by land use and the military.

4.3. Spatial Effects of Carbon Emissions

The value of Global Moran’s I is 0.196, and p = 0.001 after randomization 999 times.
There is a low-medium degree of spatial dependence of carbon emissions, and high-carbon
cities are more likely to cluster with other high-carbon cities. The significance map and
the clustering map could be obtained through calculating the Local Moran’s I. In Figure 3,
many cities are shown in red or blue in the local indicators of spatial autocorrelation (LISA)
cluster map, indicating the high–high or low–low spatial clustering. A total of 132 cities
show significant spatial dependence in the LISA significance map, while others are not
significantly spatially dependent.
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Figure 3. The local spatial autocorrelation of carbon emissions in 282 cities in 2017: (a) the local
indicators of spatial autocorrelation (LISA) cluster map; (b) LISA significance map. Note: In the LISA
significance map, p = 0.001 indicates significance at the 1‰ level, p = 0.01 indicates significance at the
1% level, p = 0.05 indicates significance at the 5% level. If the significance level is below 5%, the city
passes the significance test.



Land 2022, 11, 1343 10 of 17

First, the Beijing–Tianjin–Hebei region and the Yangtze River Delta region exhibit
a significant high–high clustering. With Beijing and Shanghai as the two centers, the
significance gradually decreases outwards. This suggests that the cities with high carbon
emissions in China are mainly clustered in these two regions, and they have a stronger
spatial dependence the closer they are to the two core cities. However, spatial dependence
may change when the study area is narrowed from the national to regional scale. The
carbon emissions of cities in the Yellow River Economic Belt showed significant clustering
characteristics in the spatial autocorrelation analysis, but high–high clusters were mainly
concentrated in Shandong Peninsula, while low–low clusters were distributed in the
upstream and midstream of the Yellow River [46]. In Yangtze River Delta cities, the
maximum Global Moran’s I was only 0.071, implying a weak trend of spatial aggregation of
urban carbon emissions [6]. The scope on a national scale is more conducive to highlighting
regional characteristics and comparing differences between regions. In addition, the cities
with low–low clusters are mainly concentrated in Southwest and Heilongjiang province.
Panzhihua in Sichuan Province, Liuzhou in Guangxi Zhuang Autonomous Region, and
Shuangyu and Jiamusi in Heilongjiang Province are highly significant, but do not form a
clear center due to their fragmented distribution. This means that the cities with low carbon
emissions are mainly clustered in the Southwest and Northeast and are evenly distributed,
which is consistent with previous studies. Finally, cities with high–low and low–high
clustering are mainly distributed at the edges of high- (low-) carbon-emissions-clustering
city blocks, without forming significant spatial aggregation.

4.4. Results of SEM and OLS

As shown in Table 4, for the 282 cities in the study area, SEM has a higher log likelihood
and lower Akaike information criterion than OLS, which indicates that SEM fits the data
better. Meanwhile, the R2 of SEM and OLS is 76% and 73%, respectively, so SEM can
explain carbon emissions better.

Table 4. Comparison between ordinary least squares (OLS) and spatial error model (SEM) results.

Variable OLS SEM

Constant −0.208 *** −0.253 ***
CA 0.777 *** 0.800 ***
PARA-MN 0.271 *** 0.322 ***
PROX-MN −0.289 *** −0.293 ***
ENN-MN 0.199 *** 0.202 ***
LAMBDA - 0.557 ***
R2 0.73 0.76
Log likelihood 351.532 365.674
Akaike info criterion −693.064 −721.348

Note: *** indicates significance at the 1% level.

The coefficients of CA, PARA-MN and ENN-MN are 0.800, 0.322 and 0.202, respec-
tively, showing a significant positive correlation with carbon emissions. This means that
the growth in urban areas, irregularity of morphology and urban sprawl all increase car-
bon emissions, and the effect of urban areas on carbon emissions is much greater than
irregularity and sprawl. In contrast, the coefficient of PROX-MN is −0.293, which shows a
significant negative correlation with carbon emissions. This suggests that an increase in
urban segregation and fragmentation will increase carbon emissions. At the same time, the
results support the hypothesis that urban form landscape metrics affect carbon emissions.

In the spatial autocorrelation test for each region, there is no significant spatial de-
pendence in the North, Southwest and Mid-South regions. There is significant spatial
dependence in the East, Northwest and Northeast regions, but the Lagrange Multiplier
(lag) and Lagrange Multiplier (error) of these regions are insignificant, indicating that OLS
should be used to analyze the effects of urban form on carbon emissions in these regions.
Therefore, OLS is more suitable for use in regional analysis than SEM.
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The results of OLS for different regions are shown in Table 5. The variables that
are significant in each region (p ≤ 0.05), are selected for the next analysis. CA has a
significant positive correlation with carbon emissions in all regions, with the highest
coefficient of 1.253 in Southwest. As the sizes of cities increase, the influence of the area
on carbon emissions decreases [13]. PARA-MN shows a significant positive correlation
with a coefficient of 0.231 and 0.358 in the Northeast and East, respectively. PROX-MN
shows a significant negative correlation with a coefficient of −0.752 and −0.241 in the
North and Mid-South, respectively. Sha et al. [28] not only found this result by studying
232 cities in China during 2000–2010, but also concluded that this phenomenon is more
obvious in coastal areas. However, it is worth noting that the value of PROX-MN in the
East is 0.114, indicating an upward trend in carbon emissions as urban compactness grows
in the East region. Considering this metric has no significant effect on carbon emissions,
the phenomenon will not be discussed next. However, the results can provide a direction
for future research, especially the impact of compact cities on carbon emissions. ENN-
MN shows a significant positive correlation with a coefficient of 0.566 for urban carbon
emissions in the North. The above results support the hypothesis that the effect of each
metric varies from region to region.

Table 5. OLS results statistics based on administrative divisions.

Variable Northeast North East Southwest Northwest Mid-South

Constant −0.160 *** −0.297 −0.331 *** −0.455 −0.233 −0.080
CA 0.946 *** 0.680 *** 0.730 *** 1.253 *** 0.928 *** 0.724 ***
PARA-MN 0.231 *** 0.505 0.358 *** 0.507 0.310 * 0.112
PROX-MN −0.252 * −0.752 ** 0.114 −0.570 −0.451 * −0.241 ***
ENN-MN 0.059 0.566 ** 0.581 0.059 0.187 0.185

Note: *** indicates significance at a 1% level, ** indicates significance at a 5% level, * indicates significance at a
10% level.

4.5. Discussion
4.5.1. Mechanisms of the Effects of Urban Form on Carbon Emissions

CA shows a positive correlation with carbon emissions in all 282 cities, implying
that the expansion of urban areas can increase carbon emissions. Urban growth does not
directly lead to the increase in carbon emissions, but it can increase economic opportu-
nities, population growth and commuting distances, which have been closely linked to
carbon emissions. Urban areas, economy and ecology are the core issues for achieving
sustainable development in complex geographic areas, and the growth of urban areas has
positive effects on economic development and carbon emissions [47]. However, as the city
grows, the ecology in general moves in a positive direction. Wang et al. [48] found that
urbanization plays a positive mediating effect in the impact of financial scale and financial
efficiency on carbon emissions, and this mediating effect includes both chain and parallel
effects. Then, although there is a U-type relationship between urbanization and carbon
emissions intensity [14], China is currently in the process of rapid urbanization. The rate
of urbanization in some developed cities is gradually slowing down, but more cities are
still in the first half of the U-shape. Thus, we were able to establish that urban area affects
urban carbon emissions through various factors.

PARA-MN shows a significant positive effect on carbon emissions in the Northeast and
East, implying that irregular urban development can increase carbon emissions. Regional
policies are the key factors contributing to this effect. After the 16th Communist Party
Congress, the Northeast region began to revive the old industrial bases and enhance devel-
opment efforts in specific regions, such as the Liaoning coastal economic belt, Shenyang
economic zone and Hadazhi industrial corridor. During the implementation of the policy,
the government strengthened infrastructure development and restructured the state-owned
enterprises, but there were still a lot of land sales. On the one hand, this has exacerbated
the low-density extension of some cities I then Northeast, leading to irregular urban ex-
pansion [49]. On the other hand, there are a large number of resource-dependent cities.
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These resource-dependent cities are mainly located around capital cities and dominated
by secondary industries. While the spatial distribution range expands, the population
and economy shrink, generating more carbon emissions than other types of cities. Finally,
the irregular shape of the city also affects the traffic road network in the East region. The
irregular development of cities increases the development of inter-regional long-range
transport situations and intensifies the emission of CO2.

PROX-MN shows a significant negative effect on carbon emissions in the North and
Mid-South, implying that compact urban development can reduce carbon emissions. The
North and Mid-South regions of China are in the stage of rapid urban development.
Influenced by urban planning, the cities in these regions are beginning to develop into
compact cities. The compact city can improve land use efficiency and reduce commuting
distances. It has been proven to be a more useful form to reduce carbon emissions compared
to the scattered patterns of early urban development [50]. Thus, the focus of our compact
city policy is to maximize the strengths and minimize the weaknesses to capture the best
shape of compact cities. However, compact cities may not always be the best form for
reducing carbon emissions according to the experience of foreign urban development. For
example, the concentration of population beyond a certain level will consume a lot of
resources and increase per capita carbon emissions [28].

ENN-MN shows a significant positive effect on carbon emissions in the North. Urban
expansion has a deeper connotation than the growth in area, which means that cities grad-
ually shift from outward expansion to inward development. Si et al. [51] also found that in
the North, urbanization has the most significant impact on carbon emissions than other
regions, followed by the consumption of fossil energy. The cities in the North have higher
intra-urban land use, a large concentration of people and industries in a smaller land area,
and high transportation density, which results in more significant carbon emissions from
urban expansion than other regions. For example, Tianjin has been transformed from a
production city to a consumption city since 2000, and investments in industrial infrastruc-
ture have generated the most carbon emissions [52]. An integrated model consisting of
population, income and urbanization can better explain the growth in carbon emissions.

4.5.2. Policy Implications for Low-Carbon Urban Planning

According to the effects of urban size, complexity, compactness and centrality on
carbon emissions, the region-specific policy recommendations regarding low-carbon urban
planning are as follows.

First, based on the significant positive effect of urban area on carbon emissions and
the significant negative effect of urban compactness on carbon emissions in the North and
Mid-South, the selection of appropriate urban development patterns is a key aspect of
low-carbon urban planning in China. Currently, there is still a gap in the urbanization level
between China and the developed countries, especially in some cities in the Northwest,
Southwest and Mid-South. Therefore, the focus of urban development at this stage remains
on compact development, improving the efficiency of land and public facilities utilization,
and avoiding blind expansion. However, when urban compactness exceeds a certain
threshold, we also need to consider the issues of traffic, population density and health. On
the one hand, we need to develop specific measures for different cities to maintain urban
compactness at an appropriate level, so as to achieve the goal of maintaining low carbon
emissions while living in a livable environment, for example, by balancing the relationship
between urban compactness, water bodies and green spaces to achieve the coexistence of
regulated urban microclimates and compact cities [53]. On the other hand, future urban
development can also shift towards other urban forms, such as polycentric development. It
can improve carbon efficiency while reducing traffic pressure and is suitable for cities with
large populations in China [28].

Second, based on the significant positive effect of urban expansion on carbon emissions
and the spatial characteristics in the North, low-carbon urban planning should focus on
optimizing the energy structure and improving energy use efficiency. Above all, population
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and technology are prerequisites for improving energy efficiency. The North region should
use its regional attractiveness and combine it with the national strategy of “One Belt,
One Road” to increase the inflow of highly qualified personnel and the import of high
technology. The development of a low-carbon transportation system is also an important
aspect. Transportation carbon emissions caused by decentralized urban distribution should
be reduced through rational transportation and road network planning. Transportation
planning should shift from quantity to quality and from building more roads to optimizing
the structure of the road system. Public transportation, as one of the main sources of carbon
emissions from transportation, produces less carbon emissions than private cars. Thus,
it is necessary to increase the number of public car and subway operating stations and
reasonably limit the amount of private car ownership [54]. Finally, the North region is
at the key node of domestic industrial transfers and needs to ensure that pollution does
not occur again. To reduce the vicious competition in the process of industrial transfers,
relevant planning is needed to restrict companies. Companies also need to optimize their
development for energy-intensive industries, shifting from a focus on coal resources to
cleaner energy sources and technological innovation. Cities need to seize the important
opportunity period of industry shifts to eliminate outdated production equipment and
develop a reasonable strategy for future industrial development.

Third, based on the significant positive effect of urban complexity on carbon emissions
in the Northeast and East, the government should pay attention to urban development
boundary control in its planning. In the context of China’s current territorial spatial
planning, the government needs to strengthen the control of urban development boundaries.
The control of these boundaries mainly includes the formulation of growth boundaries and
the delineation of urban areas. The growth boundary should be set with attention to both the
rigid boundary of a reasonable scale and the flexible boundary of the reuse of the internal
stock of land. Then, the cities should choose the appropriate development boundary
orientation, combining their stage of development and existing problems. For example,
Sargent et al. [55] detected changes in carbon emissions around Boston by combining CO2
emissions inventories and Lagrangian particle dispersion models, which were used to
assess carbon mitigation efforts in the surrounding area and establish buffer zones.

5. Conclusions

This study identified the set of urban form landscape metrics, then analyzed the
characteristics and spatial correlation of carbon emissions in 282 cities in China and used a
spatial error model to analyze the effects of urban form on carbon emissions. First, through
stepwise linear regression, the set of urban form landscape metrics was determined to
include the four metrics of CA, PARA-MN, PROX-MN and ENN-MN. In addition, there
is a significant positive spatial autocorrelation within the study area. Through Local
Moran’s I, it was found that cities with high (low) carbon emissions are more likely to
cluster spatially. The cities with high–high clustering are mainly clustered in the Beijing–
Tianjin–Hebei region and the Yangtze River Delta region. The low–low clustering cities are
mainly concentrated in the Southwest and Heilongjiang Province. Furthermore, the results
of the spatial error model reveal that CA, PARA-MN and ENN-MN show a significant
positive correlation with carbon emissions, and the most significant effect for urban areas
among the three. In contrast, PROX-MN shows a significant negative correlation with
carbon emissions. By dividing cities into administrative divisions, CA shows a significant
positive correlation in all regions, and the highest coefficient in the Northwest, which
is related to the economic growth and population increase that occurs as urban areas
grow. PARA-MN has a significant positive correlation in the Northeast and East, which is
related to regional planning and traffic. PROX-MN has a significant negative correlation
in the North and Mid-South, which is related to the rapid urbanization development
of these cities. ENN-MN has a significant positive correlation only in the North, which
is related to the high land utilization rate and dense population resources of cities in
the North. These results strongly support the validity of the hypotheses. Finally, based
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on the effects of urban form on carbon emissions, we proposed recommendations for
low-carbon urban planning, including selecting appropriate urban development patterns,
strengthening energy structure optimization and utilization efficiency, and strengthening
urban development boundary control.

This study has some research limitations. Firstly, limited by the availability of data,
the data used only contain urban impervious surfaces and therefore do not allow for the
identification of detailed land use types. By exploring the effects of the urban form on
carbon emissions as influenced by different land use types, it can help to suggest low-carbon
planning recommendations specific to the land use type. Future work will identify the
different land use types. Secondly, this study classifies cities according to their geographical
location and ultimately finds that PROX-MN in the East has the opposite effect on carbon
emissions compared to other regions. For this particular result, we need to extend the time
scale in future work and focus on the coefficient of PROX-MN in the East.
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Appendix A

We selected 15 landscape metrics and described them briefly. The equations and spe-
cific descriptions of these metrics are given in Table A1 in order to improve comprehension
of the metric selection.

https://www.ceads.net.cn/data/county/
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Table A1. Urban form landscape metric system.

Category Variable Equation Description

Area
Class Area (CA) CA =∑n

i=1 ai

(
1

10000

)
Urban area

Number of Patches (NP) NP = n Urban fragmentation

Largest Patch Index (LPI) LPI =
maxn

j=1(aij)

CA 100 Urban growth

Edge Edge density (ED) ED =∑n
i=1 ei
CA

Urban shape
complexity

Shape

Area-weighted Mean Shape
Index (AWMSI) AWMSI =∑m

i=1 ∑n
j=1

[(
pij

minpij

)(
aij

CA

)] Urban shape
complexity

Area-weighted Mean Patch Fractal
Dimension (AWMPFD) AWMPFD =∑m

i=1 ∑n
j=1

[(
2 ln
(

0.25pij

)
ln(aij)

)(
aij

CA

)] Urban shape
complexity

Mean Perimeter–Area Ratio
(PARA-MN) PARA-MN =

∑m
i=1 ∑n

j=1

(
pij
aij

)
mn

Urban shape
complexity

Aggregation

Landscape Shape Index (LSI) LSI = 0.25 ∑m
k=1 e∗ik√

CA

Urban shape
complexity

Clumpiness Index (CLUMPY)
CLUMPY =

[
Gi−Pi

Pi

]
if Gi< Pi< 0.5 else

CLUMPY = [Gi−Pi
1−Pi

]
Urban compactness

Percentage of Like
Adjacencies (PLADJ) PLADJ = ( ∑m

i=1 gii
∑m

i=1 ∑n
k=1 gik

)(100) Urban compactness

Patch Cohesion Index (COHESION) COHESION =

[
1− ∑m

i=1 ∑n
j=1 p∗ij

∑m
i=1 ∑n

j=1 p∗ij
√

a∗ij

]
×[1− 1√

Z

]−1
(100) Urban compactness

Aggregation Index (AI) AI = [
gii

max(g ii)
](100) Urban compactness

Mean Proximity Index (PROX-MN) PROX-MN =∑n
s=1

aijs
hijs

Urban compactness

Mean Euclidian Nearest Neighbor
Distance (ENN-MN) ENN-MN = hij Centrality

Patch Density (PD) PD = n
CA Urban fragmentation

Appendix B

Before determining the spatial econometric model, it is necessary to diagnose the
spatial dependence of urban form and carbon emissions. Comparing the spatial regression
statistics in Table A2, both Lagrange Multiplier (lag) and Lagrange Multiplier (error) are sig-
nificant (p < 0.05), but P (Robust LM (lag)) = 0.120 > 0.1, p (Robust LM (error)) = 0.000 < 0.01,
and value (Robust LM (lag)) < value (Robust LM (error)), so the spatial error model is the
better choice.

Table A2. Diagnostics for spatial dependence of urban form and carbon emissions.

Test Degree of Freedom Value Probability

Lagrange Multiplier (lag) 1 4.339 0.037
Robust LM (lag) 1 2.417 0.120
Lagrange Multiplier (error) 1 38.279 0.000
Robust LM (error) 1 36.358 0.000
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