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Abstract: Rice, wheat, maize, millet, and barley are the five major staple cereal crops in Nepal.
However, their yields are low, and imports are needed to meet domestic demand. In this study, we
quantify the gap between current and potentially attainable yields in Nepal, estimate how much
additional fertilizer and irrigation are required to close the gap, and assess if self-sufficiency can
thus be achieved. For this, we first test the ability of the crop model EPIC to reproduce reported
yields in 1999–2014 accurately. On average, simulated and reported yields at the national level were
in the same range, but at the district level, the error was large, as the resolutions of the available
climate and soil input data were not high enough to depict the heterogenic conditions in Nepal
adequately. In the main study, we show that average yield gaps in Nepal amount to 3.0 t/ha (wheat),
2.7 t/ha (rice), 2.9 t/ha (maize), 0.4 t/ha (barley), and 0.5 t/ha (millet). With additional irrigation and
fertilization, yields can be increased by 0.1/2.3 t/ha (wheat), 0.4/1.3 t/ha (rice), 1.6/1.9 t/ha (maize),
0.1/0.3 t/ha (barley), and 0.1/0.4 t/ha (millet), respectively. The results show that providing reliable
and affordable access to fertilizer should be a priority for closing yield gaps in Nepal.

Keywords: yield gap; crop modeling; irrigation; fertilizer application; nitrogen management;
phosphorous management

1. Introduction

The global food demand is predicted to increase by 35% to 56% between 2010 and
2050 [1]. Meeting increased demands for food and feed without over-exploiting agricul-
tural systems and encroaching on natural ecosystems will be a challenge for humans in
the coming decades, especially considering the projected effects of climate change [2].
Intensification of current agricultural systems is one way toward increasing crop yields and
strengthening food security [3]. Currently, yields on a considerable proportion of global
agricultural land do not attain their full potential [4]. Significant yield variations exist
even among regions with similar agro-climatic conditions, signifying the presence of yield
gaps [5]. These yield gaps are defined as the differences between the potential yields of a
specific crop under optimal management and the actual yields attained by farmers [6]. The
main causes for the yield gaps are insufficient nutrient and water supply and inadequate
pest and disease management [4]. By addressing these impediments, crop yields in low-
yielding regions could be increased without changing crop varieties, resulting in enhanced
food supply, improved food self-sufficiency, and higher food security at regional, national
and global scales [7].

Increasing food production is a priority in low-yielding regions worldwide, and
Nepal is one such example. Nepal’s agricultural sector provides livelihoods to over 80%
of Nepal’s population, employs almost 68% of the labor force, and contributes 35% to
Nepal’s gross domestic product (GDP) [8]. Although agriculture is the main contributor
to GDP, the average yields of cereal crops are much lower in Nepal than in neighboring
countries, mainly because of poor infrastructure and a high proportion of subsistence
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farming with its dependency on rainfall and low fertilizer application rates [9]. The average
fertilizer use in Nepal in 2014 was 67.4 kg per ha, while in the same year, 464.8 kg/ha
were used in China, 163.5 kg/ha in India, 279.2 kg/ha in Bangladesh, and 134.9 kg/ha in
Pakistan [10]. Furthermore, only 36% of the agricultural area in Nepal is irrigated, and
the lack of irrigation and the low application of fertilizer is a significant impediment to
increasing agricultural productivity [11].

Due to the low productivity of the agricultural sector in Nepal, national production
cannot meet the national food demand, and food imports are necessary to close the gap.
Cereals are the most vital food for providing caloric and nutritional requirements and are
the main low-cost source of energy and protein in Nepal. Figure 1 shows the import rates
of the five main cereal crops in Nepal. The country went from being a net food exporter
in the 80s to becoming an importer, with increasing import rates of on average 39% per
annum for rice, 26% for maize, and 126% for wheat [12,13].
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In order to address these issues, Nepal’s Ministry of Agriculture Development (MOAD)
proposed an Agriculture Development Strategy (ADS) with the goal of transforming the
agricultural sector over the next 20 years [15]. The ADS comprises measures to raise
agricultural productivity, including efficient use of fertilizers, an expansion of the irrigated
area, and an improvement of irrigation efficiency. It also includes measures to strengthen
the agricultural sector and improve its sustainability and resilience in the longer term, such
as an expansion of its agricultural research and extension services, and the development
and promotion of efficient and sustainable farming practices and sustainable use of natural
resources to increase the resilience to climate change.

The first step toward increasing agricultural productivity is a robust, spatially explicit
estimation of the potentially attainable crop yields, followed by an analysis of how the gap
between the attainable and the actual yields can be closed most efficiently [16]. Previous
studies on the yield gap in Nepal focused only on specific households, places, basins,
regions, or crops [17–20]. In this paper, we present a spatially explicit, country-level
assessment of intensification scenarios for the five major cereal crops grown in Nepal. We
want to answer the following questions:

(i) How large is the current yield gap for the five key arable crops grown in the country
(rice, wheat, maize, millet, and barley)?

(ii) How much fertilizer is needed to close the yield gap, and where should it be applied?
(iii) How much irrigation water is needed to close the yield gap, and which are the priority

regions where irrigated areas should be increased?

To answer these questions, we use the bio-geophysical crop model EPIC to simulate
crop production on 3430 simulation units covering all of Nepal’s agricultural area and
aggregate results to district levels. In the first step, we calibrate the model to reproduce
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the observed historical crop yield from 1999 to 2014, and then simulate current agricultural
practices with this calibrated model to identify spatial variations of crop yields. In the second
step, we simulate crop growth without nutrient or water stress to estimate attainable yields
for every spatial unit and thus identify the current yield gap between attainable and actual
yields. In the third step, we quantify the nutrient and water management changes that are
necessary to close this gap. We also discuss the difficulties of obtaining the spatially explicit,
high-quality input data necessary for running the model in a country such as Nepal.

2. Materials and Methods
2.1. Study Area

Nepal is a Himalayan landlocked country in South Asia with an area of
147,181 km2 (Figure 2a) and a population of 29.13 million in 2020 [21]. The country is
poor—the annual per capita income was USD 1155 in 2020—with 68% of the population de-
pending mostly on agriculture. The total cultivated area is 41,210 km2 (28% of the total land
area), most of which is located in the south of the country (Figure 2b), where the land is flat
(“Terai”, Figure 2c). The middle hill region consists of numerous hilly peaks, fertile valleys,
and river basins, of which one-tenth of the land is cultivable. The northern mountain region
consists of only two percent of cultivable land. In 2015, 52% of the agricultural land was
irrigated, but year-round irrigation is only available on 36% of the cultivated land [22].
Altitudes in the country vary from 60 m above the mean sea level in the South to 8848 m at
the peak of Mount Everest in the North. Areas below 1000 m are part of the tropical zone,
followed by the subtropical zone (1000–2000 m), the temperate zone (2000–3000 m), the
subalpine zone (3000–4000 m), the alpine zone (4000–5000 m), and the nival zone (above
5000 m) (Figure 2d,e) [23]. The large altitudinal range and the topography containing
several river basins, ridges, and valleys give rise to multiple microclimate sub-pockets
within the hills and mountains [22]. The mean annual rainfall in Nepal varies from place
to place due to the sharp topographical variations and ranges from less than 150 mm to
above 5000 mm (Figure 2f). Monsoonal precipitation contributes around 80% of the annual
precipitation, whereas precipitation during the winter and pre- and post-monsoon seasons
contributes only 3.5%, 12.5%, and 4.0%, respectively [24]. Since monsoon precipitation is
the largest contributor to annual precipitation, the spatial pattern of annual precipitation
follows monsoon precipitation patterns [25]. Annual temperatures are increasing in the
high-elevation areas of the country (North and Central Region); in the Southern regions,
the increase is less pronounced. It is projected that the yearly average temperature may
increase in Nepal by 1.2 ◦C by 2030, 1.7 ◦C by 2050, and 3 ◦C by 2100 [26].
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2.2. Derivation of Simulation Units

For the simulation of Nepal’s agricultural area, we first classified the territory into
Homogeneous Response Units (HRUs), following a similar methodology as used in the de-
velopment of the Global Earth Observation-Benefit Assessment (GEOBENE) database [28].
We used seven elevations, seven slopes, and ten soil classes (Table 1).

The elevation raster was obtained from the NASA Shuttle Radar Topographic Mission
(SRTM) 90 m Digital Elevation Database (v4.1), accessible through the Consortium for
Spatial Information (CGIAR-CSI) of the Consultative Group for International Agricultural
Research (CGIAR) [29], with a resolution of 90 m at the equator. Soil typological units (STU)
were derived from the global dominant soil typological units contained in the GEOBENE
database [28]. STU characterizes distinct soil types described by attributes specifying the
nature and properties of the soils [30].
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Table 1. Classes of elevation, slope, and soil texture used for the delimitation of the homogeneous
response units in this study.

Elevation Classes Slope Classes Soil Typological Units

Elevation [m] Classification [31] Class Slope [%] Class Dominant Soil

<300 Lower Tropical 1 <3 1 Eutric Cambisols (Be)
300–1000 Upper Tropical 2 3–6 2 Eutric Fluvisols (Je)

1000–2000 Subtropical 3 6–10 3 Calcic Cambisols (Bk)
2000–3000 Temperate 4 10–15 4 Dystric Regosols (Rd)
3000–4000 Subalpine 5 15–30 5 Dystric Cambisols (Bd)
4000–5000 Alpine 6 30–50 6 Humic Acrisols (Ah)

>5000 Trans Himalayan 7 >50 7 Humic Acrisols (Ah)
8 Rankers (U)
9 No soils (RK2)

10 Lithosols (I)

After the HRU delineation, we further divided the units based on district boundaries,
land use and land cover, and the climate data raster. The district boundaries were obtained
from the Global Administrative areas database [32]. The land use mask was obtained
from the Land Cover of Nepal 2010 dataset developed by the International Center for
Integrated Mountain Development (ICIMOD) [33]. The climate data that were used for this
study were created in phase 3b of the Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP3b), which is based on the output of phase 6 of the Coupled Model Intercomparison
Project [34]. The spatial resolution of this dataset is 0.44 degrees. In the last step, we
identified cropland and non-cropland areas using the land use mask and only included
units with cropland presence in the list of simulation units. The final count of simulation
units was 3430 (Figure 3).
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2.3. Simulation Framework and Input Data

For the simulations, we used the Environmental Policy Integrated Climate (EPIC)
model [35]. EPIC is a field-level biophysical process-based model which can simulate crop
growth and crop yield, soil nutrient cycling, soil erosion, and the effects of agro-ecological
practices for climate change mitigation and adaptation [36,37]. The plant biophysical
processes simulated by EPIC include interception of photosynthetically active solar radia-
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tion dependent on LAI, conversion to biomass based on radiation use efficiency and crop
growth stresses (nutrient and water availability, temperature), partitioning of the daily
biomass increase into the root and aboveground biomass, and adaption of the harvest
index to drought conditions [38]. The soil submodel consists of several soil pools tracking
the amount of organic nitrogen and carbon, mineral nitrogen, organic phosphorous, and
mineral phosphorous in the soil. Only the labile pools contain nutrients available for plant
uptake; nitrogen and phosphorous in the other pools are assumed to be sorbed to organic
or inorganic soil particles. If mineral fertilizer is applied, the nutrients are added to the
plant-available pool but may quickly be immobilized. The user can choose between five
potential evapotranspiration equations [39] and simulate a wide range of crop rotations,
tillage systems, and management practices.

The EPIC model has been effectively employed to study crop yields and yield gaps [40,41],
climate change impacts on crop yields [42], environmental impacts [43,44], soil degrada-
tion [45], soil erosion and nutrient leaching [46], and crop management operations [47]. The
model has been validated across scales from the field to continental [45,48] and global stud-
ies [49]. We chose to use the EPIC model in this study due to this proven robust performance
in a variety of settings, cognizant of the fact that the environmental conditions in Nepal make
crop simulations a challenge. The model output of EPIC comprises detailed information on
crop growth, water, nutrient, and carbon fluxes in daily, monthly, and yearly steps. For this
study, we focus on the estimated annual yield (Yd, t/ha), the growing season evapotranspira-
tion (GSET, mm), and the amount of water provided by irrigation annually (IR, mm). We use
the Hargreaves method in the EPIC Model for estimating evapotranspiration [50].

EPIC requires detailed input data on management, soil, topography, and weather.
Data related to crop area and crop yields of rice, wheat, maize, millet, and barley for the
fiscal years from 1979/80 to 2013/14 were obtained from agricultural statistics of cereal
crops in Nepal [15]. The amount of fertilizer and irrigation water applications per hectare
as well as application times were derived from CBS Nepal decadal agriculture census data
published in the years 1981, 1991, 2001, and 2011 and from Takeshima [51] (Table 2).

Table 2. Annual inorganic and organic fertilizer use in Nepal based on data from CBS Nepal decadal
agricultural census data and Takeshima et al. [51].

Fertilizer Type Terai Hill Mountain

Urea 28 kg/ha 18 kg/ha 12 kg/ha
Complex 3 kg/ha 4 kg/ha 2 kg/ha

DAP 17 kg/ha 3 kg/ha 1 kg/ha
Organic N fertilizer 22 kg/ha 16 kg/ha 13 kg/ha
Organic P fertilizer 11 kg/ha 4 kg/ha 2 kg/ha

Other inorganic 0 kg/ha 0 kg/ha 0 kg/ha

District-wise crop calendar data for Nepal’s major crops were taken from an FAO/WFP
food security assessment mission to Nepal (Table 3). Soil data were taken from the
GEOBENE database [28]. The latitude and longitude of the centroid of each simulation
unit were extracted from the administrative boundary dataset of Nepal downloaded from
GADM. Elevation and slope for every simulation unit were derived from the SRTM 90 m
Digital Elevation Database (v4.1), and daily values for the weather variables solar radiation,
maximum and minimum temperature, relative humidity, and wind speed were taken from
the ISIMIP3b database.
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Table 3. Crop calendar for the main cereal crops cultivated in Nepal split by ecological zone and
irrigation management. P—planting; TP—transplanting; H—harvesting.

Crop Ecological
Zone Irrigation Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Rice Hill Rainfed TP TP H H
Irrigated TP TP H H

Terai Rainfed TP TP H H H
Irrigated TP TP H H H

Maize Mountain Rainfed P P H H H
Hill Rainfed P P H H
Terai Rainfed P P H H

Wheat Mountain Rainfed H H P P
Hill Rainfed H H H P P P
Terai Rainfed H H P P

Millet Mountain Rainfed P P H H
Hill Rainfed P P H H

Barley Mountain Rainfed H H P P
Hill Rainfed H H P P P

2.4. Model Calibration

For the testing of the performance of the EPIC model in Nepal, we used district-wise
yield data for the crops rice, wheat, maize, millet, and barley provided in the agricultural
statistics of cereal crops in Nepal [15] for the years 1999–2014. We first ran the model for
the years 1999–2014 with default parameters, aggregated the crop yields to the district level
(using the crop areas provided in the agricultural statistics [15]) and compared reported
to simulated yields. We then iteratively calibrated the crop-specific parameters potential
heat units, radiation use efficiency, harvest index, and optimal and base temperature to
decrease the difference. We were not able to identify one set of crop parameters that could
be applied to all regions of Nepal and decided to derive a separate crop parameter set for
each of the nine ecoregions (Figure 2c) instead. We calculated the percent bias (PBIAS,
Equation (1)) to identify the average tendency of the simulated data to be larger or smaller
than the observed data. Positive values indicate an underestimation, negative values an
overestimation bias, and zero no bias at all. Generally, PBIAS values 0–10 are considered
very good, 10–15 good, 15–25 fair, and values >25 unsatisfactory [52].

PBIAS = 1 − ∑n
i=1(Yi − Xi) ∗ 100

∑n
i=1 Yi

(1)

where Xi is the reported crop yield in district i, Yi simulated crop yield in district i, and n is
the total number of districts.

We also calculated the relative error RE (Equation (2)) to examine systematic errors in
the simulated data. Considering the versatility of agro-ecological zones and the scale of
this study, we assume an RE of ≤30% to be an acceptable result, whereas RE > 50% should
be considered to be extreme error [39,53].

REi =

(
Yi − Xi

)
Xi

∗ 100 (2)

where Xi is the reported crop yield in district i, Yi simulated crop yield in district i, and Yi
is the simulated average crop yield in district i.

The calibration was considered successful once the acceptable ranges for PBIAS and
RE were achieved.
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2.5. Simulation Scenarios

Irrigation and fertilizer applications explain 60–80% of the global yield variability for
most major crops [54], which is why we only consider these two factors explicitly in our
scenarios and ignore other factors such as changes in tillage, mulching, pest control, or
cultivar development. Our four scenarios are:

(1) Current management practices (current yield);
(2) Current management practices with additional fertilizer applications up to a maxi-

mum of 300 kg/ha per year (additional fertilizer);
(3) Current management practices with additional irrigation of up to 2000 mm per year

(additional irrigation);
(4) Current management practices with additional fertilizer and irrigation applications

with the same maxima as in (2) and (3) (attainable yield).

The additional irrigation and fertilizer applications were triggered automatically
during the simulation if the plant experienced a moderate amount of water or nutrient
stress on a specific day (stress factor higher or equal to 15%). Each scenario was run for all
3430 simulation units covering Nepal for the period from 1999 to 2014 (Figure 3).

3. Results
3.1. Calibration of Crop Yields

We simulated crop yields under reported management for the period from 1999 to 2014
on all simulation units. District, province, and national level crop yields were determined
by aggregating the yields of all simulation units contained in the specific spatial boundaries.
The simulated mean crop yields at the country level were lower than reported mean crop
yields but in the same range: rice 2.3 vs. 2.59 t/ha (simulated/reported), wheat 1.07 vs.
1.94 t/ha, maize 1.87 vs. 2.15 t/ha, millet 1.06 vs. 1.08 t/ha, and barley 0.84 vs. 1.02 t/ha.
At the district level, the same pattern was visible, with simulated yields slightly lower than
reported yields in many cases but overall in the same range. PBIAS between reported and
simulated mean annual yields was −3.1% for rice, −5.1% for maize, −20.5% for barley,
−2% for millet, and 26% for wheat. According to these values, the calibration of millet,
rice, and maize can be considered very good, and the calibration of barley and wheat
unsatisfactory. The RE values vary between −33.02 and 36.8% (mean −14.08%) for rice,
between −58.87% and 48.85% (mean −41.86%) for wheat, between −37.43 and 40.04%
(mean −10.43%) for maize, between −48.37 and 48.29% (mean −1.90%) for millet, and
between −58.95% and 37.12% (mean −22.62%) for barley. Except for wheat, all mean RE
values fall into the range for ‘good’ RE values, but the range over the different districts
shows that many RE values exceed this range, indicating unsatisfactory results. These
outliers are also visible in the scatterplot of Figure 4, where we compare reported and
simulated mean annual yields at the district level. The plot shows that there is a moderate
agreement between simulated and reported values, with many outliers on both sides. For
wheat and barley, a clear systematic underestimation of yields by the model is apparent.

Even though the statistics show that the calibration is not satisfactory for some crops,
we nevertheless decided to accept it. The main reason for this is data constraints. The
resolution of 50 km of the bias-adjusted modeled climate data appears to be too coarse for
a country such as Nepal, where the geographic heterogeneity is high, and there are many
areas with microclimates. Another source of uncertainty is the global gridded soil data we
used, whose resolution is also too coarse to depict the spatial variations of soil conditions in
Nepal well. In the absence of soil and weather data with a higher resolution, we would have
needed to further increase the number of crop parameter sets to compensate for the input
data issues. Furthermore, there is a considerable range of reported yields in the district-wise
dataset (Table A1 in Appendix A). We assume that agronomic practices vary more across
districts than we simulate in the model and that we would need district-wise fertilizer
application and irrigation data to increase the quality of the calibration. In addition, there
is no information on the difference in yield levels under irrigated and rainfed conditions in
the dataset, and there is no spatial information on the location of irrigated fields. We had to
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rely on percentage shares of irrigated area per district to calculate mean crop yields, which
adds another source of uncertainty and difficulty in calibrating the crop parameters. Hence,
instead of continuing with the calibration and potentially overcalibrating the model, we
decided to accept the results and proceed with the study. Since we only use the simulated
data for the yield gap analysis, the negative effects of the unsatisfactory calibration can be
considered negligible for this specific study.
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3.2. Yield Gaps in Nepal

The yield gaps in Nepal are different for the different crops. The gap is smallest for
millet and barley with 0–1 t/ha and 0–1.85 t/ha, respectively, and largest for wheat with
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up to 7 t/ha. Rice and maize show yield gaps between 3 and 4 t/ha. There is a clear spatial
pattern in the gaps, with the largest yield gaps present in the tropical Terai and the lower
part of the subtropical hill region (Figure 5). The highest yield gaps for rice and wheat
can be observed in Province 2, which is part of the Eastern/middle Terai. Aggregated to
national level, the yield gaps amount to 3.01 t/ha (wheat), 2.7 t/ha (rice), 2.9 t/ha (maize),
0.44 t/ha (barley), and 0.49 t/ha (millet).
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Figure 5. Simulated yield gaps of (a) rice, (b) maize, (c) millet, (d) barley, and (e) wheat in tons per
hectare.

The attainable yield (scenario 4) was simulated using additional irrigation and fertilizer
applications. To identify priority areas for investment, we simulated two scenarios with
only additional irrigation water (scenario 3) and only additional fertilizer applications
(scenario 2). With the addition of irrigation water (scenario 3), yields can on average
be increased by 0.1 t/ha (wheat), 0.4 t/ha (rice), 1.6 t/ha (maize), 0.1 t/ha (barley), and
0.1 t/ha (millet). Irrigation is thus especially effective for maize. Figure 6 shows that
additional irrigation water alone can close the yield gaps to a large degree for maize. The
yields of the other four crops, rice, barley, millet, and wheat, are only marginally improved
by additional irrigation. For rice, there is a larger effect in provinces three and four, which
are located mostly in the middle hill ecoregion. For wheat, with additional irrigation water
alone, yields do not or only marginally increase beyond current levels.
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Figure 6. Current yields, attainable yields, and yields produced under current management plus
additional irrigation water and current management plus additional fertilizer at province level.

With the addition of fertilizer (scenario 2), yields can be increased by 2.3 t/ha (wheat),
1.3 t/ha (rice), 1.9 t/ha (maize), 0.3 t/ha (barley), and 0.4 t/ha (millet) at national level.
Additional fertilizer has a more pronounced effect on crop yields than irrigation for all
crops and in all provinces. For wheat, millet, and barley, only additional fertilizer is enough
in many provinces to close the yield gap almost entirely or to a large degree. For rice,
even though fertilizer has a pronounced effect on crop yields, a combination of fertilizer
and irrigation water is necessary to reach attainable yields. For maize, additional fertilizer
applications close the yield gap by more than 50% in most provinces.
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3.3. Additional Irrigation and Fertilizer Requirements for Closing the Yield Gaps in Nepal

Rice is the most water-consuming crop grown in Nepal. Robust estimations of the
water volumes required to irrigate this crop can thus serve as a base for future irrigation
infrastructure planning in Nepal. Aggregated to the district level, the irrigation requirement
for rice ranges from 0 to 958 mm (see online supplementary material for a table of the
data). At the level of single simulation units, the required supplemental irrigation ranges
from 0 to 1100 mm annually, with the highest requirements in the tropical Terai regions
and decreasing with increasing altitude (Figure 7a). The tropical Terai regions require on
average 785 mm of irrigation, the subtropical hill regions 540 mm, and the mountain areas
384 mm. Maize is the crop with the second highest water requirements after rice, varying
from 0 to 700 mm. The highest water demands are simulated in the hilly and mountainous
province 4, the lowest in the Terai regions of provinces 1, 2, and 5 (Figure 7b). This is a
reverse of the pattern observed for rice. For wheat, the irrigation requirement varies from 0
to 520 mm, for millet from 0 to 420 mm, and for barley from 0 to 365 mm.
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The mineral N requirements to achieve attainable yields vary from 12.1 to 205.2 kg/ha
for rice, from 30.5 kg/ha to 260.5 kg/ha for maize, from 0 to 245.4 kg/ha for wheat, from 39.3
to 239.85 kg/ha for millet, and from 0 to 218.75 kg/ha for barley. The mineral P requirement
to achieve attainable yields varies from 1.75 to 31.2 kg/ha for rice, from 6.4 to 69.7 kg/ha
for maize, from 0 to 24.57 kg/ha for wheat, from 10.4 kg/ha to 34.4 kg/ha for millet, and
from 0 to 5 kg/ha for barley. Spatially, the patterns observed for irrigation are also visible
for nutrients: for rice and wheat, more fertilizer and irrigation water is required in the
warmer provinces, while the hilly and mountains regions require less to close the yield gap
(Figure 7c). For maize, more nitrogen is required in the hill and mountainous regions than
in the Terai regions (Figure 7d), which is also apparent for barley and millet (Figure 7e).

A list of district-wise irrigation requirements for each crop is provided in the on-
line supplementary material. Maps of all crops not shown in Figure 7 are provided in
Figures A1–A5 in the Appendix A.

3.4. Effects of Closing the Yield Gaps on Food Self-Sufficiency in Nepal

The simulations of attainable yields show that an additional 4316.85 metric kilotons
of rice, 2625.30 metric kilotons of wheat, 2870.30 metric kilotons of maize, 110.96 metric
kilotons of millet, and 8.19 metric kilotons of barley can be produced with increased
fertilizer and irrigation applications, which is sufficient for Nepal to achieve self-sufficiency.
Especially province 2, located in the middle and Eastern Terai ecoregion, may play an
important role in increasing rice and wheat yields (Table 4). For wheat, closing the yield
gap in this province alone would be enough to replace all imports. For rice, the yield
gap in province 5 would have to be closed as well to achieve self-sufficiency. For maize,
closing the yield gap in province 1 (covering the ecozones Eastern Terai/hill/mountain)
would be sufficient to entirely meet domestic demand. The yields of millet and barley,
grown primarily in the more Northern mountain provinces, can only be increased to a
small degree, which is still sufficient to replace all imports with domestic production.

Table 4. Additional yields [1000 tons] that can be produced in Nepal if irrigation and fertilizer
applications are increased at provincial and national levels. The import rates in the last line show
that Nepal could achieve self-sufficiency for all five crops if the yield gaps were closed.

Province Rice Wheat Maize Millet Barley

Province 1 859.46 157.33 890.60 30.27 0.33
Province 2 1329.26 1084.56 136.67
Province 3 348.05 140.71 559.71 20.35 1.31
Province 4 311.38 70.50 344.26 38.30 1.52
Province 5 896.57 651.71 397.26 3.72 1.50
Province 6 124.60 225.96 362.97 9.30 2.48
Province 7 447.54 533.09 178.81 9.01 1.05

Nepal (sum) 4316.85 2863.87 2870.30 110.96 8.19

2020 Imports 1912 300 550 18 0

4. Discussion

Cereals are an important cheap source of calories and protein in Nepal, but domestic
production is low, and import rates are rising to meet the increasing demand. In this
study, we show that it would be possible to increase domestic production by closing the
gap between current yields and yields attainable with additional irrigation water and
fertilizer applications. Yields could even reach levels where it is possible for Nepal to
achieve self-sufficiency for the five cereals considered in this study, which would reduce
the economic burden on the country. The government of Nepal is aware of this potential. In
the fiscal year 2021/22, it has announced a budget of NPR 45.09 billion for the development
of the agricultural and livestock sector; NPR 12 billion have been allocated to manage
chemical fertilizers [55]. The plan is to make the country fully self-reliant in agriculture
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within five years through modernization, commercialization, and mechanization of the
agricultural sector. However, even though a budget was allocated to increase crop and
livestock production, in reality, farmers are still struggling to buy fertilizers. There is
a shortage almost every year during the peak season [56]. Recently, there was even an
incident of looting, where farmers took fertilizers from trucks headed for the capital [57].
The timely and regular availability of fertilizer thus must be guaranteed; otherwise, a
steady increase in the productivity of Nepal’s agricultural sector is in jeopardy, and food
self-sufficiency cannot be achieved.

To support smallholder farmers and encourage more resource-intensive agriculture,
the government has also attempted to subsidize chemical fertilizer use and reduce prices.
However, these measures primarily benefited larger commercial farmers and not small-
holders [51]; more direct support is needed to reach these farmers. Increasing the use of
fertilizers could also be achieved by improving the quantity and quality of organic farmyard
manure fertilizers [58]. In the municipality of Bhaktapur, for example, organic compost
manure is produced from the biodegradable waste collected from households [59]. Since
77% of the typical household waste in Bhaktapur is organic, this represents an abundant
source of compost manure [60]. The composition of wastes in other cities follows similar
trends, indicating a considerable source of raw materials for making compost manure.

It has been shown many times before that increasing fertilizer and irrigation will
increase crop yields. However, for policy and infrastructure planning purposes, it is impor-
tant to know where the resources should be allocated, in which order, and in which quantity.
For example, the Nepalese government is currently investing considerable resources in
the irrigation infrastructure of the country. Our results show that they should be focusing
on the issue of fertilizer availability first, as providing crops with adequate nutrients con-
tributes more towards closing the yield gap than irrigation. The only exception is maize,
where the roles of irrigation and fertilizer are equal in closing the yield gap. In contrast
to wheat and rice, where the irrigated area share is already higher than 25%, maize is
mostly grown under rainfed conditions. Increasing the area under irrigation, especially
in dry regions, can thus increase yields considerably. Spatially, the regions that would
benefit most from additional agricultural inputs are the warm regions of the South, where
mainly the crops rice, wheat, and maize are grown. In the mountainous areas of Nepal, the
growing season is shorter, and more hardy crops such as barley and millet are cultivated.
In these regions, the climatic conditions and not input shortages limit yields, which is why
additional fertilizer and irrigation water applications do not increase yields markedly in
most places. The development of new varieties could be an option to improve productivity
in these areas.

Beyond investments in irrigation infrastructure and fertilizer availability, rural and
infrastructure development policies are needed to stimulate overall growth and develop-
ment in the agricultural sector. A good infrastructure is key to linking rural farmers to
markets and institutions where they can buy and sell products and inputs, and access
services. Furthermore, trade-related policy measures discouraging foreign crop imports
could strengthen the domestic market and production.

There are some limitations to this study. First, we had to simplify crop management
practices. Farmers in Nepal choose the crops and the dates of fieldwork based on a number
of factors such as weather, seed availability, input availability, market prices, available
subsidies, and demand. For the simulations, we assume that cropping schedules are
annually static for all scenarios. Farmers also practice intercropping, whereas in EPIC,
usually only one crop is grown at a time on a simulation unit. Furthermore, there is the issue
of data. As we discuss in Section 3.1. (Calibration of crop yields), weather and soil data
would need to have a higher resolution to adequately cover all microclimatic conditions in
Nepal and thus allow a more accurate simulation of actual crop yields. Furthermore, there
was also limited availability of aggregated and joined data for agricultural productivity,
resource use, and management in Nepal; the data had to be combined from various sources
of different quality. The situation was aggravated by the fact that data acquisition in
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countries such as Nepal can be a challenge. Organization webpages were not up to date, so
we had to contact authorities directly. The data we received were in parts in Nepalese, in
parts in English, and often not in a format that was easily machine-readable and had to be
retyped, such as scanned or photographed books.

Even though our calibration was not perfect, our estimated yield gaps and estimated
attainable yields fall into the range of values reported in the literature. The national level
yield gap of the prevailing rice varieties was estimated to range from 1.7 to 3.0 t/ha in
2000–2016, as reported in the proceedings of a stakeholder workshop organized by the
Nepal Agricultural Research Council [61]. In our study, the rice yield gap amounts to
2.7 t/ha at the national level, and a simulation study on the attainable yield of maize
in Nepal showed that the average simulated maize yields with high fertilization rates
(180:60:60 N:P:K kg/ha) ranged from 3.9 to 7.5 t/ha across districts [62]. In our study,
attainable maize yields have a similar range of 1.4–6.6 t/ha. The same study recommended
N fertilizer rates between 65 and 208 kg/ha to reach attainable yields, which is also similar
to our values of 30.5–260.5 kg/ha. This shows that even though the calibration was not
perfect, the results of the main simulation study appear to be robust.

5. Conclusions

Our analysis of the current yield gaps of the five major cereal crops in Nepal showed
that there are considerable differences between attainable and current yields. By increasing
productivity on the existing cropland with additional nutrient and water inputs, Nepal
could potentially increase the yields of these crops to the degree that domestic demand
can be met entirely by domestic production. Even though increasing the share of irrigated
areas enhances crop yields, additional fertilizer applications have a higher potential for
closing the yield gaps in Nepal. The priority of the Nepalese government should therefore
be to ensure a steady and sufficient supply of affordable fertilizer and develop efficient
organic fertilization schemes before investing in additional irrigation infrastructure projects
on a larger scale. The results of this analysis can be used by policymakers to prioritize
further research and to identify regions with a potential for higher crop production. The
methodology applied in this study can also be relevant for other regions of the world where
the population is increasing, cropland area expansion is not possible, and climate change
impacts are projected to be substantial.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.fdr.uni-hamburg.de/record/10340#.YtmldrdBxaQ: Table with the district-wise simulated
current and attainable yields, yields simulated with additional water and irrigation applications,
yield gaps, nitrogen, phosphorous and irrigation requirements, agricultural area, and total attainable
yields per district can be downloaded.
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Appendix A

Table A1. District-wise simulated (Sim.) and reported (Rep.) crop yields (t/ha) for rice, maize,
wheat, barley, and millet. The reported crop yields were provided by the Ministry of Agriculture
Development Nepal. The data were used to evaluate the quality of the crop model calibration.

Rice Maize Wheat Barley Millet

District Sim. Rep. Sim. Rep. Sim. Rep. Sim. Rep. Sim. Rep.

Achham 1.86 2.13 1.07 1.61 0.98 1.49 1.31 1.09 1.35 1.17
Arghakhanchi 2.25 2.20 2.14 1.99 0.89 1.61 0.26 1.03 1.05 1.07

Baglung 1.98 2.62 2.61 2.20 1.37 1.73 0.58 1.44 1.06 1.17
Baitadi 1.65 1.96 0.75 1.64 1.26 1.37 0.04 0.91 1.22 1.14
Bajhang 1.95 1.91 1.48 1.45 0.84 1.48 0.74 1.00 0.72 0.95
Bajura 2.11 1.86 1.63 1.72 1.68 1.39 1.1 1.04 1.14 0.95
Banke 3.03 2.77 2.12 1.87 0.57 2.42
Bara 3.09 3.75 2.37 2.60 0.63 2.89

Bardiya 3.24 3.12 2.30 1.93 0.43 2.47
Bhaktapur 2.33 5.74 2.70 3.31 1.04 2.93 0.74 1.23 1.07 1.27

Bhojpur 2.2 2.45 1.92 2.10 1.56 1.95 0.23 1.14 1.21 1.03
Chitawan 3.79 3.07 2.02 2.50 0.62 2.45

Dadeldhura 1.83 2.31 0.87 1.71 1.27 1.37 0.97 1.18 0.88
Dailekh 1.81 2.45 1.07 1.88 1.03 1.54 1.06 1.01 1.38 1.19

Dang 3.2 3.19 2.81 2.01 0.37 2.18
Darchula 1.03 2.03 0.96 1.73 0.48 1.40 0.44 0.84 0.53 0.82
Dhading 1.72 2.71 0.94 1.90 0.97 1.82 2.03 0.91 1.28 0.96

Dhankuta 1.96 2.60 1.73 2.00 1.47 1.95 0.1 1.13 1.18 1.00
Dhanusha 2.73 2.68 2.81 2.54 0.69 2.03
Dolakha 2.17 2.19 2.17 1.93 1.59 1.50 0.92 0.81 1.02 1.11

Dolpa 1.12 1.57 0.88 1.71 1.42 1.48 0.93 0.97 0.86 0.81
Doti 1.82 2.43 0.73 1.71 0.99 1.67 0.51 0.95 1.03 1.10

Gorkha 2.09 2.71 1.39 2.20 0.74 1.81 0.67 1.13 0.82 1.06
Gulmi 1.73 2.34 1.80 1.80 0.88 1.69 0.25 1.11 0.63 1.19
Humla 1.94 1.42 0.69 1.52 2.06 0.91 1.22 0.92 1.26 0.85

Ilam 1.85 2.49 1.39 2.16 1.13 2.03 0.32 0.74 0.90 0.99
Jajarkot 1.73 2.23 1.14 1.73 0.84 1.18 1.34 1.16 1.50 1.38
Jhapa 2.66 3.31 2.47 2.30 0.53 2.47
Jumla 2.38 1.58 1.64 1.44 2.36 1.09 1.17 1.07 1.42 1.38

Kabhrepalanchok 2.13 3.06 1.99 2.25 0.88 1.92 0.52 1.02 0.94 1.01
Kailali 3.35 2.67 2.35 1.68 0.29 2.11
Kalikot 2.1 1.69 2.37 1.58 1.74 1.30 1.12 1.08 1.30 1.20

Kanchanpur 3.42 2.61 2.58 1.78 0.35 2.10
Kapilbastu 2.81 2.43 1.93 2.18 0.66 2.20

Kaski 1.18 2.88 1.77 2.25 0.84 1.97 0.19 1.17 0.59 1.21
Kathmandu 2.26 5.36 2.69 2.99 1.01 2.37 0.75 1.00 1.04 1.00

Khotang 2.04 2.21 2.07 2.03 1.61 1.67 0.39 0.97 1.27 1.00
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Table A1. Cont.

Rice Maize Wheat Barley Millet

District Sim. Rep. Sim. Rep. Sim. Rep. Sim. Rep. Sim. Rep.

Lalitpur 1.73 5.05 1.68 2.45 0.71 2.44 0.01 1.51 0.86 1.21
Lamjung 2.06 2.35 1.37 2.18 0.88 1.95 0.88 0.91 0.87 1.00
Mahottari 2.82 2.37 2.77 2.16 0.66 1.91

Makawanpur 2.98 2.97 2.20 2.28 0.34 2.30
Morang 2.87 3.21 2.71 2.27 0.54 2.16
Mugu 2.22 1.85 1.11 2.14 2.12 1.34 1.17 0.92 1.39 1.66

Myagdi 1.42 2.66 1.30 2.30 2.64 1.78 1.46 1.20 1.00 1.02
Nawalparasi

East 3.6 3.29 1.93 2.43 0.55 2.40

Nawalparasi
West 3.3 3.29 2.29 3.67 0.55 2.40

Nuwakot 1.61 3.14 0.82 2.12 1.10 2.21 2.2 0.94 1.36 1.35
Okhaldhunga 1.84 2.42 2.08 1.87 1.65 1.61 0.53 0.97 1.34 1.29

Palpa 2.15 2.69 1.88 2.03 0.64 1.93 1.06 0.65 1.04
Panchthar 2.3 2.13 1.40 1.56 1.43 1.68 0.62 0.91 1.09 1.45

Parbat 1.31 2.35 1.77 2.07 0.98 1.69 0.26 0.94 0.60 0.91
Parsa 3.08 3.58 2.63 3.04 0.67 2.67

Pyuthan 1.86 2.24 0.86 1.53 0.76 1.78 0.27 1.81 1.18 1.08
Ramechhap 1.81 2.23 1.98 2.12 1.47 1.76 0.63 0.81 1.19 1.08

Rasuwa 2.8 2.22 0.56 1.74 1.23 1.75 2.29 1.10 1.02 1.02
Rautahat 3.19 2.61 2.52 2.05 0.62 2.18

Rolpa 1.78 2.18 1.27 1.68 0.92 1.65 0.54 1.10 1.54 1.01
Rukum East 1.81 2.53 1.44 1.71 0.59 1.58 2.21 1.01 1.69 1.19
Rukum West 1.79 2.53 1.32 1.71 0.63 1.58 1.9 1.01 1.58 1.19
Rupandehi 3.34 3.28 2.26 2.40 0.58 2.60

Salyan 1.74 2.60 1.24 1.93 1.00 1.64 0.46 0.96 1.39 1.15
Sankhuwasabha 2.26 1.95 1.89 1.73 1.29 1.83 0.37 0.96 1.01 1.01

Saptari 2.8 2.53 2.99 2.17 0.73 2.17
Sarlahi 2.95 2.60 2.80 2.63 0.64 2.09

Sindhuli 2.49 2.35 2.75 2.24 0.62 2.02
Sindhupalchok 2.82 2.34 2.10 2.10 0.98 1.55 0.95 1.16 0.92 1.12

Siraha 2.78 2.39 2.66 2.27 0.68 1.99
Solukhumbu 1.97 1.99 1.58 1.99 1.57 1.45 1.29 1.06 1.12 1.17

Sunsari 2.93 3.02 2.75 2.42 0.58 2.36
Surkhet 3.02 2.79 2.95 2.21 0.22 1.96
Syangja 1.65 2.89 1.70 2.55 0.62 1.97 0.1 1.02 0.56 1.22
Tanahu 2.01 2.89 1.71 2.49 0.68 1.84 0.05 0.80 0.55 1.06

Taplejung 2.49 2.09 1.70 2.02 1.52 2.76 0.54 1.08 0.99 1.16
Terhathum 2.27 2.10 1.60 1.68 1.54 1.66 0.28 1.03 1.12 1.09
Udayapur 2.49 2.78 2.82 1.99 0.61 2.04
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