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Abstract: Protected areas are fundamental for maintaining ecosystem functions and have generally
been considered to affect land use change. Here, we explored how protected areas affected land
cover volatility in China from 2011 to 2020 with LandTrendr using the Google Earth Engine (GEE)
platform by comparing the difference in volatility of the Normalized Difference Vegetation Index
(NDVI) in protected and unprotected areas. The results show that the regions with frequent land
cover volatility are mainly located in eastern, central, and southwestern China, indicating that land
cover volatility with high NDVI loss values is spatially aggregated in most cases. Considering the
impact of protected areas, land cover volatility is relatively consistent inside and outside the protected
area throughout the study period, showing a trend of first fluctuating and then rising. Approximately
22% of detected land cover volatility occurred in protected areas, though the average NDVI loss value
(0.56) for protected areas was greater than unprotected areas (0.51). Combined with the outliers, land
cover volatility accompanied by larger NDVI loss values is still primarily distributed in unprotected
areas in most years. The detection of NDVI gain values in protected areas shows that protected areas
(average value is 0.48) are larger than unprotected areas (average value is 0.47) almost every year,
even combined with the outliers, and land cover volatility accompanied by larger NDVI gain values
is also primarily distributed in protected areas in most years. Elucidating land cover volatility is
helpful in understanding land cover changes and how to formulate an effective land use policy.

Keywords: land use/cover change; unprotected area; GEE; China

1. Introduction

Most human activities occur directly on the land surface, fundamentally changing the
physical properties of the Earth’s land surface and triggering a series of environmental
and climate consequences [1–3]. For global ecosystems, different land uses and land cover
changes could result in different outcomes [4,5]. Humans derive high-quality resources from
natural ecosystems to sustain themselves or improve their development status, influencing
biogeochemical cycles as well as ecosystem services [1,6,7]. Numerous studies have shown
that land use change can have an impact on climate change [8]. Anthropogenic land use and
land cover change, including urbanization, defined as the expansion of urban land, affect
local and global climates and the water and energy balance through the modification of
surface albedo and impact the magnitude and pattern of temperature and rainfall [7,9,10],
even creating an urban heat island effect in urban areas [11,12]. The same situation occurs
in the hydrological cycle [13,14], as land use/cover changes also affect changes in surface
runoff [15]. Land use and land cover change are closely linked to the ecosystem, especially in
forest areas. Research has showed that ecosystem service value loss is mainly due to the loss
of ecosystem functions, such as nutrient cycling, the provision of raw materials, and erosion
control, due to deforesting [16]. The multiple relationships between land use/cover change
and ecosystems will further intensify as a result of the continuously growing population
and the scarcity of natural resources [17]. It is thus necessary for human beings to use
land intensively and economically, reduce the damage to ecosystems and natural resources,
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and promote sustainable land use [18]. In order to map land use/cover changes, previous
researchers monitored their dynamics by analyzing current characteristics [19], which has
become the basis for studying the driving mechanisms of land use/cover change [20,21]. With
improved computer power and remote sensing, spatial modeling is common in the process of
land use change analysis [22], and mapping land use and land cover changes can be realized
by deeply mining and analyzing the spatial characteristics and simulating them [23,24].

Expanding and enhancing protected areas are fundamental for maintaining ecosystem
functions and protecting the Earth’s biodiversity [25]. Numerous studies indicate the
effectiveness of protected areas for local biodiversity [26,27], water and soil retention [28],
carbon sequestration [29], and human well-being [30]. However, there is still an ongoing
debate on the positive role of protected areas in the global situation. For example, recent
reporting has revealed the uncertainty about the protection of avian species hotspots
globally [31]. As of April 2014, the global number of nationally designated terrestrial
protected areas is 155,584, covering 18.4 million km2, or 12.5% of the terrestrial realm, and
7318 marine protected areas cover about 10.1 million km2 (or 3%) of the world’s marine
environments [32]. However, these figures are still short of meeting core 2020 targets
outlined in the Convention on Biological Diversity [33]. There is a strong global consensus
that the primary role of protected areas is nature conservation, but in practice, they are
always expected to make much wider ecological, economic, and social contributions to
the local community. Thus, failure to achieve one or more of these objectives, such as the
growth of protected areas, is in conflict with the needs of local society to achieve economic
development, which will greatly affect the enthusiasm for managing protected areas.
Global studies point out that 50–80% of protected areas are ineffectively managed [34,35]. For
example, research examining vegetation loss in protected areas in South Asia has shown that
the trajectory of habitat conversion rates inside protected areas is indistinguishable from that
on unprotected lands, and habitat conversion rates do not decline following the gazettement
of a protected area, which indicates the ineffectiveness of protected area establishment [36].

China has paid considerable attention to the protection of the nation’s ecological
functions, and with the issuance of the National Ecological Protection Program, the im-
portance of ecological protection was further clarified [37]. Assessing the effectiveness
of protected areas in China is crucial to developing adaptive management approaches to
conservation [38]. Research has indicated that we could further understand the spatial
and temporal patterns of land use and land cover change by learning the aggregation and
volatility properties of land use [39]. Based on this, we can analyze the driving forces of
land use change and propose relevant countermeasures and recommendations [40–42]. To
further understand the effectiveness of protected area establishment in China, we could
analyze the characteristics of land cover volatility in protected areas and unprotected areas
to gain insight into the conservation effectiveness of protected areas and provide policy
recommendations for conservation and development. Therefore, the purpose of this study
is to map the current status of land cover volatility in China from 2011 to 2020 in protected
and unprotected areas, and by comparing the difference, to analyze how protected areas
affect land cover volatility. Specifically, we (1) identified the strong land cover volatility in
time and space based on LandTrendr in the whole study area; (2) achieved cluster/outlier
analysis of land cover volatility in protected areas and unprotected areas; and (3) analyzed
the impact of protected areas on land use and land cover change.

2. Materials and Methods
2.1. Description of the Study Area

The study area covers all of China and is located in the southeastern part of Eurasia,
at latitude 4◦15′~53◦31′ N and longitude 73◦34′~135◦5′ E. The geomorphological types are
complex, with three major terraces from west to east. The first is the Qinghai–Tibet Plateau,
with an average altitude of over 4000 m. The second order ranges from the northern
and eastern edges of the Qinghai–Tibet Plateau to the line between the Daxinganling and
Taihang Mountains, Wushan, and Xuefengshan, with an altitude of 1000 to 2000 m. The
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third one is the eastern part of China with an altitude of less than 500 m. Unique climatic
and geomorphological features are the natural basis for the development and evolution of
various terrestrial ecosystems such as forests, grasslands, wetlands, and deserts.

2.2. Priority Criteria for Data Source
2.2.1. Priority Criteria for Satellite Data

Landsat 7/8 satellite images from 2011 to 2020 were used in our research to identify
the strong land cover volatility in time and space in the whole study area. Considering
the accuracy and reliability of land cover volatility identification based on NDVI, which is
closely related to vegetation cover, the time period of remote sensing images was mainly
limited from May to October. We retrieved multiple images from May to October in each
year, masked out clouds and cloud shadows from each image by using CFMASK [43], and
finally used medoid compositing to create a composite of those images. The remote sensing
analysis is based on the composite image.

2.2.2. Protected Area Networks in China

Various ecosystems in China have been exploited, disturbed, and destroyed to varying
degrees due to thousands of years of development and enormous population pressure, and
ecological services have been significantly reduced. This has led to a series of ecological
problems and a serious threat to national ecological security. Therefore, since 2001, China
has carried out a national ecological status survey, and on this basis, facilitated the estab-
lishment of protected areas. The National Ecological Function Zoning Plan was published
in 2008, which is based on the ecological status, sensitivity, and service function evalua-
tion. The protected areas comprise about 2,336,700 km2, accounting for 24.34% of China.
National protected areas in China mainly undertake six types of functions, namely, water
conservation, species resources conservation, soil and water conservation, flood control,
windbreak and sand fixation, and marine conservation. As our study is focused on land
use and land cover change, we removed the zones in which the protected areas are mostly
marine to ensure the rationality of the study, including Zhoushan Islands, the Yangtze
River Estuary, and the Gulf of Tonkin Ecological Functional Protected Areas (Figure 1). At
present, the effectiveness of protection induced by the delineation of protected areas is
gradually emerging, but there are disparities within different regions [44].
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2.3. Methods
2.3.1. Research Framework

In order to assess the impact of protected areas on land cover volatility, we used
Landsat 7/8 satellite images from 2011 to 2020 to create an annual composite image so as
to extract the NDVI values of all pixels by LandTrendr in the study area during the study
period. We selected DNVI as the spectral index to finish the calculation of the original
NDVI values, and then fit them to a time series mathematical model to identify abnormal
inflection points or breakpoints in the trend, when the NDVI values have a large difference
between adjacent years (Figure 2). We extracted all pixels with NDVI rapid decline values
greater than 400 in the whole study area to represent strong land cover volatility. We
identified different degrees of land cover volatility and their basic change characteristics
from amount identification (including pixel numbers of strong land cover volatility with
different NDVI loss values and of NDVI loss occurring in different years) and spatial
identification (including distribution of strong land cover volatility and analysis of hot and
cold spots). Then, combined with the protected area network product in the study area, we
analyzed the land cover volatility in different types of protected areas and in unprotected
areas to gauge the impact of protected areas on land cover volatility based on NDVI
loss. Considering the effectiveness of protected areas in vegetation restoration, we further
extracted the NDVI gain to analyze the impact of protected areas on vegetation restoration,
and comprehensively considered the effect of protected areas on land cover volatility.
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2.3.2. LandTrendr Algorithm

The LandTrendr algorithm based on Google Earth Engine (GEE) is a useful tool for
monitoring and screening land use and land cover changes [41]. It is a set of spectral–
temporal segmentation algorithms that are useful for change detection in a time series of
moderate-resolution satellite imagery (primarily Landsat) and for generating trajectory-
based spectral time series data largely devoid of inter-annual signal noise [45]. Specifically,
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the LandTrendr algorithm extracts the relevant information of the Landsat image pixels in
the study area year by year (the image is the composite Landsat image in this paper). It
then calculates the spectral information correlation index (NDVI is selected in this paper)
of the pixel over time to select the pixels that are meaningful for the research. We further
fit them to a similar mathematical model, and we calculated the root mean square error
between the original values and the segmentation-fitted values as the accuracy assessment,
and finally selected a breakpoint or an inflection point where the corresponding spectral
index fluctuates violently, indicating that the land use and land cover changed violently.

The most important preparation for the LandTrendr application is to adjust and correct
spectral–temporal segmentation and the annual image collection by setting variations of
8 control parameters to see what works best for the environment we are working in, as land
use cover also has its own unique characteristics given the actual geographical conditions.
The original LandTrendr paper describes the effect and sensitivity of changing some of
these argument values [45].

2.3.3. Selection of Spectral Index in LandTrendr

A reasonable spectral index is also a necessary condition to indicate land use and land
cover change in addition to the correct setting of parameters. Considering that vegetation
coverage is important for protected areas and that vegetation coverage could, to some
extent, reflect the land use and land cover change, previous research has shown that the
NDVI index, as the normalized difference vegetation index, could adequately complete the
characterization of the vegetation growth state and vegetation coverage [46–48]. Therefore,
we use the NDVI to run LandTrendr in our study area and calculate the root mean square
error (RMSE) between the original values and the segmentation-fitted values. The results
indicate the reliability of choosing NDVI as the spectral index to run LandTrendr and reveal
the land use and land cover change in the study area (Figure 3). All calculation results are
enlarged by 1000 times to show the details of variation.
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gradually recovered after the sudden drop; panels (c,d) show that the vegetation coverage did not
recover after the decrease.
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2.3.4. Identification of Strong Land Cover Volatility

Strong land cover volatility indicates rapid loss in NDVI, which corresponds to the
fast decrease in land vegetation coverage. We identified the area with an NDVI rapid loss
greater than 400 (the actual NDVI value was 0.4) within the study area based on LandTrendr
and regarded it as strong land cover volatility in our study.

We identified the similarities and differences in land cover volatility mainly concerning
the loss of NDVI in quantity, time, and space, and we analyzed the intensity of regional
land use change based on the extracted number of pixels, which represent the land cover
volatility area, and the trend characteristics of land use change by combining the temporal
changes in different NDVI loss values. We quantified the pixel numbers of strong land cover
volatility in all years of the whole study area to analyze land cover volatility difference
based on various NDVI loss values and time series. We extracted the spatial distribution of
land cover volatility to analyze the spatial differences, and using the spatial distance as the
calculation basis, we carried out local spatial autocorrelation analysis based on the grid
scale to explore the spatial aggregation effect of land cover volatility.

2.3.5. Cluster/Outlier Analysis of Land Cover Volatility and Restoration in Protected and
Unprotected Area

Expanding and enhancing protected areas is of great significance for conserving and
restoring global biodiversity, and the establishment of protected areas will also significantly
affect land use change [25]. We firstly quantified the number of varied NDVI loss values
in protected areas, analyzed NDVI loss value differences in different protected area types,
and carried out time series research to analyze the land cover volatility inside and outside
the protected area by calculating the average median and mean NDVI loss values in all
years in protected and unprotected areas. Considering that protected areas would also
have an obvious impact on vegetation restoration, we extracted gain values of NDVI to
further analyze the degree of land vegetation restoration inside and outside the protected
area. The cluster/outlier analysis of land cover volatility including loss and gain of NDVI
values showed the impact of protected areas on land use.

3. Results
3.1. Amount Identification of Strong Land Cover Volatility

We quantified the pixel numbers of strong land cover volatility, represented by NDVI
loss values greater than 400 within the study area, and divided them into classes (Figure 4).
Throughout the study period, values of 400–500 were dominant, covering approximately
57.4% of the total, followed by values of 500–600 (approx. 21.8%). The remaining classes
were relatively small, accounting for approximately 20.8% of the total, and the proportion
with NDVI loss values greater than 800 only accounted for 7.98% of pixels. Overall, the
number of pixels decreases rapidly with increasing NDVI loss values. The larger the loss
value, the fewer the pixels.

The amount identification of strong land cover volatility based on time series demon-
strated that the pixel numbers with NDVI loss values vary greatly over time, with an overall
fluctuating, rising tendency over the research period (Figure 5). The most severe land cover
volatility occurred in 2011, with the NDVI loss value accounting for 29% of the overall
change value. The lowest numbers of NDVI loss values were recorded in 2012 and 2013, ac-
counting for 5.3% and 2.5% of the total, respectively. Continuous growth patterns occurred
from 2015 to 2017 and from 2018 to 2020. In terms of the loss values, pixel numbers with
NDVI loss values of 700–800 and larger than 800 had the biggest proportions in 2020. The
patterns in the number of NDVI loss values of 300–400 and 400–500 were similar to the
general trend, all exhibiting a falling tendency followed by a fluctuating rise.
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3.2. Spatial Identification of Strong Land Cover Volatility

We identified the spatial distribution of NDVI loss values greater than 400 within
the study area, which indicated strong land cover volatility (Figure 6). The regions with
frequent land cover volatility are mainly located in eastern, central, and southwestern
China. Among them, strong land cover volatility is mainly found in southeastern Tibet and
the central part of Yunnan and Sichuan Province, while relatively less land cover volatility
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is observed in the North China Plain and the Yangtze River Delta. We identified that the
NDVI loss value has aggregation characteristics, with more volatile areas clustered together
and less volatile areas clustered together.
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Land cover volatility in the study area exhibits distinct aggregation characteristics, and
to further elucidate the spatial characteristics of their distribution, we used hot and cold
spot analysis to measure land cover volatility in China (Figure 7). Hot spots of land cover
volatility are mainly concentrated in eastern, southeastern coastal, and southwestern China,
including Shandong, Hebei, Zhejiang, Jiangsu, Yunnan, Sichuan, and Guizhou provinces.
The volatility of land cover in these areas is more easily affected by the surrounding land
use patterns, showing a positive spatial correlation. Cold spots are mainly concentrated
in the northwest and northeast of China, including Xinjiang, Tibet, Qinghai, Gansu, Inner
Mongolia, and other provinces, showing the characteristics of concentrated contiguous
distribution and predisposition to land cover volatility. The cold/hot spots with 90–95%
confidence intervals are distributed around the spatially clustered areas with 99% con-
fidence intervals, and these areas are also spatially clustered. It is noteworthy that the
confidence interval for the distribution of cold spots is only 90–95%. The spatial aggregation
area of land cover volatility in the study area overlaps to a certain extent with the protected
areas in China, which are responsible for species resources and water conservation, and
located in the hot spots of land cover volatility.
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value G is used to describe the hot and cold distribution. If the index is a statistically significant
positive value, with a higher value and a more concentrated distribution of hot spot clusters, the
region is a hot spot region, and vice versa for a cold spot region.

3.3. Cluster/Outlier Analysis of Land Cover Volatility Based on Protected Area
3.3.1. Cluster/Outlier Analysis of NDVI Loss Based on Protected Area

The land cover volatility indicating an NDVI loss value greater than 400 located in
protected areas accounted for 22.72% of the total identified areas (Figure 8). The largest
NDVI loss value was noted for the species resources protected areas, accounting for 49.37%
of the area, followed by the flood control and water conservation protected areas, account-
ing for 22.87% and 16.53%, respectively. Protected areas of windbreak and sand fixation are
only 2.18%, representing the smallest proportion in all protected areas without considering
the marine protected areas. Considering the magnitude of NDVI loss value, the decrease in
NDVI in the species resources protected areas is more obvious.

The results based on the analysis of land cover volatility of NDVI loss value over time
indicate that the changing trend of NDVI is relatively consistent inside and outside the
protected area throughout the study period, showing a trend of first fluctuating and then
rising (Figure 9). At the same time, it is worth noting that the quantile value of 25–75%
of protected areas is generally larger than that of unprotected areas (it does not mean the
ineffectiveness of protected areas, but could be discussed from more dimensions [35]).
The median and mean NDVI loss values in all years for protected areas were still more
significant than those for unprotected areas. Specifically, the median NDVI loss value in
protected areas was 499.9, while that of unprotected areas was 470.7. The average value
in protected areas was 558.13, and in unprotected areas was 512.78. Combined with the
outliers, stronger land cover volatility and larger NDVI loss values are primarily distributed
in unprotected areas in most years. Overall, the average level of land cover volatility in
protected areas is greater than that in unprotected areas, but the most significant land cover
volatility mostly occurs in unprotected areas.
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3.3.2. Cluster/Outlier Analysis of NDVI Gain Based on Protected Area

To gain further insight into vegetation restoration in protected areas, we identified the
amount and spatial distribution of NDVI gain in the study area. The areas with an NDVI
gain value greater than 400 located in protected areas accounted for 21.84% of the total
areas identified (Figure 10), among which the highest NDVI gain value was in the species
resources protected areas, accounting for 50.98%, followed by the flood control and water
conservation protected areas, with 18.56% and 14.03%, respectively, similar to the situation
of NDVI loss. The smallest percentage was windbreak and sand fixation protected areas,
accounting for only 7.71%. As the value of NDVI gain increases, the proportion of species
resources protected areas has the biggest increase in various types of protected areas.
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Figure 10. Land cover volatility with NDVI gain in different protected areas.

The NDVI gain value in the protected areas showed a fluctuating downward trend
during the study period (Figure 11). NDVI gain values in protected areas are larger
than those in unprotected areas almost every year. Meanwhile, the average NDVI gain
values also have notable differences inside and outside the protected area—the average
value is 481.62 in protected areas and 465.38 in unprotected areas, indicating that the
vegetation restoration in protected areas is greater than in unprotected areas. Combined
with the outliers, stronger land cover volatility and larger NDVI gain values are primarily
distributed in protected areas in most years.
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4. Discussion and Conclusions
4.1. Discussion

Land cover volatility is influenced by human activities, and even directly related, to
some extent, and could indicate a regular characteristic coinciding with regular human
activities [39,49]. The establishment of protected areas at the forefront of efforts to conserve
and restore global biodiversity has important ecological significance, but will inevitably
affect regional land cover volatility [33,36], and it is essential to clarify the effectiveness
and feasibility of protected areas and to explore land use change in protected areas. Thus,
the main purpose of this research was to map the current status of land cover volatility in
China from 2011 to 2020 and analyze how protected areas affect land cover volatility so as
to guarantee the rationality of expanding protected areas and enhance their effectiveness.

The identification of strong land cover volatility, with NDVI loss values greater than
400 (which means the actual value is 0.4), based on LandTrendr reveals that the NDVI
loss value regions are widely distributed in the study area, mainly in eastern, central, and
southwestern China. Most NDVI loss values lie within 400–500, and the pixels where large
land cover volatility occurs are mainly located in southern Tibet and part of southwest
China, while the regions with less volatility are mainly located in the North China Plain and
the middle and lower reaches of the Yangtze River Plain. The spatial aggregation of land
cover volatility is further illustrated—the pixels with high NDVI loss values are adjacent to
other pixels with high NDVI loss values in most cases. This is closely related to the scope of
human activities. Humans always give priority to the exploitation of easy-to-use land, and
will also develop new land nearby to expand their use scale, thus forming a spatial cluster
of hot and cold spots. Areas that are prone to NDVI loss value are mainly concentrated in
two different settings. One is frequently affected by human activities, mainly located in
the densely populated and economically developed North China Plain, the middle and
lower reaches of the Yangtze River Plain, and the Sichuan Basin. The other setting has
high vegetation coverage, which is sensitive to frequent land cover volatility, and is mainly
concentrated in southern Tibet and part of southwest China. It is necessary to strengthen
the protection of the ecological environment and vegetation in these areas.

Our cluster/outlier analysis of land cover volatility based on protected areas further
illustrated the effect of protected areas on land volatility, and different types of protected
areas showed different results. Notably, species resources protected areas have the greatest
loss values in the study area. The results of the spatial and temporal analysis based on
NDVI loss values showed that the trends of NDVI changes in protected and unprotected
areas during the study period were relatively consistent, showing a trend of first fluctuating
and then rising. Meanwhile, the average median and mean NDVI loss values in all years
for protected areas were still greater than those for unprotected areas, which is quite
different from the generally recognized notion that land use change is less extensive in
protected areas than in unprotected areas. However, combined with the outliers, stronger
land cover volatility, accompanied by larger NDVI loss values, is primarily distributed in
unprotected areas in most years. We could speculate that protected areas generally have
higher vegetation coverage and are more sensitive to changes in NDVI.

To further explore the role of protected areas on NDVI, we identified the amount and
spatial distribution of NDVI gain in the study area. The results show that NDVI gain values
in protected areas are larger than in unprotected areas almost every year, even combined
with the outliers. Moreover, stronger land cover volatility and larger NDVI gain values are
also primarily distributed in protected areas in most years.

4.2. Conclusions

Our research shows that the occurrence of land cover volatility decreases with increas-
ing land cover intensity and exhibits a clustering effect in spatial patterns. This is consistent
with the previous studies [50], and the agglomeration effect of land cover volatility is evi-
dently caused by frequent human activities. Different protected areas have different effects
on land cover volatility, which are related to the dominant land cover type in the protected
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area. Areas with lush vegetation often have stronger land cover volatility, represented
by NDVI changes that occur more frequently. At the same time, the inhibitory effect of
protected areas on the decline in vegetation coverage is not obvious due to protected areas
having better ecological conditions and being more sensitive to human activities. Thus,
the inhibitory effect is inconspicuous. In contrast, protected areas have an obvious role in
promoting the restoration of vegetation coverage, which also indicates the effectiveness
of the establishment of protected areas in protecting global biodiversity. Figure 12 shows
that land cover volatility is relatively stable in natural ecosystems without human activity.
With the gradual intervention of human activities, different protected areas responded
differently, and various types of land cover volatility began to appear, showing spatial
aggregation. Although some protected areas are sensitive to human activities, resulting
in strong land cover volatility in regional land cover, most land cover volatility occurs in
unprotected areas, indicating the effectiveness of protected areas in suppressing suppress
human activities. The result is more obvious when combined with vegetation coverage.
The extreme value of vegetation coverage reduction mostly occurs in protected areas, and
vegetation restoration mostly occurs in protected areas.
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Figure 12. Land cover volatility in protected and unprotected areas. Different shapes represent
different protected areas. Different sizes represent the land cover intensity. Red and green indicate
the NDVI loss and gain, respectively. The figure shows the process of how protected areas affect land
cover volatility.

Most of the land cover volatility in protected areas is different, but the basic idea
is the same, in that all volatility affects land use change by affecting human activities.
Therefore, it is necessary to formulate reasonable land use policies in combination with
local natural conditions, geographical environment, economic conditions, land policies,
and other factors on the basis of exploring the characteristics of land cover volatility for
expanding protected areas.
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4.3. Limitations and Uncertainties

In this study, we identified land cover volatility in time and space based on the GEE
platform, using long time series and a wide range of data. The identification results of land
cover volatility were then combined with protected areas in China, and we analyzed the
characteristics of land cover volatility in the protected and unprotected areas and revealed
the influence of protected areas on land cover volatility. The accuracy of the research results
was directly affected by the extraction results of land cover volatility, which is calculated
by NDVI, but considering that the chief purpose was to reveal how protected areas affect
the trend of land cover volatility, the research method has a certain degree of reliability.

We focus more on the effects of protected areas on land cover volatility in our research
and less on the effects of the natural environment and policy factors. Subsequent research
will consider the influence of the natural environment, topography, economic conditions,
and local policies on environmental protection in different regions, and the results could be
more practical. For example, it is of significant interest to rationally arrange and manage
protected areas if we could clarify how different protected areas affect land cover volatility.
Although the research results are not applicable to all situations, they are effective in
explicating land cover volatility in China and analyzing the construction and management
of Chinese protected areas. This study idea is helpful in improving land use management
measures and providing suggestions.
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