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Abstract: The boreal hemisphere has been experiencing increasing extreme hot and dry conditions
over the past few decades, consistent with anthropogenic climate change. The continental extension
of this phenomenon calls for tools and techniques capable of monitoring the global to regional
scales. In this context, satellite data can satisfy the need for global coverage. The main objective we
have addressed in the present paper is the capability of infrared satellite observations to monitor
the vegetation stress due to increasing drought and heatwaves in summer. We have designed and
implemented a new water deficit index (wdi) that exploits satellite observations in the infrared to
retrieve humidity, air temperature, and surface temperature simultaneously. These three parameters
are combined to provide the water deficit index. The index has been developed based on the
Infrared Atmospheric Sounder Interferometer or IASI, which covers the infrared spectral range 645
to 2760 cm~! with a sampling of 0.25 cm~!. The index has been used to study the 2017 heatwave,
which hit continental Europe from May to October. In particular, we have examined southern Italy,
where Mediterranean forests suffer from climate change. We have computed the index’s time series
and show that it can be used to indicate the atmospheric background conditions associated with
meteorological drought. We have also found a good agreement with soil moisture, which suggests
that the persistence of an anomalously high water deficit index was an essential driver of the rapid
development and evolution of the exceptionally severe 2017 droughts.

Keywords: climate change; drought; water deficit index; infrared observations; satellite; remote
sensing; surface temperature; air temperature; humidity; dew point temperature

1. Introduction

The ECMWFEF (European Centre for Medium-Range Weather Forecasts) has deter-
mined that the winter of 2020 was the hottest winter season ever recorded in Europe (e.g.,
see https:/ /climate.copernicus.eu/boreal-winter-season-1920-was-far-warmest-winter-
season-ever-recorded-europe-0 (accessed on 15 August 2022)). This is an event that is now
repeated year after year [1,2], as evidenced by the Copernicus Climate Change Service
(C3S) dataset (e.g., see https://climate.copernicus.eu/esotc/2021/globe-in-2021 (accessed
on 15 August 2022)), which shows that the last seven years have been the warmest on
record, with 2021 varying from the fifth to the seventh warmest.

The present analysis is most relevant to temperate regions and the Mediterranean
vegetation. In this respect, ref. [3] discussed the risks of climate change altering sustainable
development in the Mediterranean area. Furthermore, in [4], it has been shown that long-
lasting droughts induce dieback phenomena in temperate and Mediterranean climate
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regions, an issue that has also been addressed in [5], which analysed the effect of the 2017
summer heatwave in Europe.

The continental extension of the phenomenon calls for tools and techniques capable of
monitoring the global to regional scales. For this reason, we have set up a methodology
based on satellite data with the objective of using infrared satellite observations to monitor
early drying in summer because of drought and heatwaves.

Vegetation stress due to water deficit is widespread in many countries due to climate
change (e.g., see [4,5]). Drought is an extreme natural event typical of semi-arid areas and
much of the Mediterranean, especially regions located at middle latitudes. The lack of rain
for long periods increases the danger and risk of forest fires in lands rich in vegetation
and wooded areas [6]. Furthermore, the lack of rain in semi-arid regions causes water
stress (e.g., [7,8]). Therefore, the deficit of rainfall and/or water, in general, requires specific
actions to monitor and detect drought conditions aiming to mitigate its adverse impacts on
human health, wildlife, and plant communities.

Water deficit can be estimated using (1) meteorological data (e.g., [9-11]); and
(2) remote sensing (e.g., [12-15]).

The present study aims at a synergetic use of these two different methods to develop
new vegetation dryness indices based on the surface temperature, complemented with
atmospheric temperature and the water vapor mixing ratio or parameters depending on it,
such as dew point temperature.

In general, the problem has been studied through the use of indexes such as the
vegetation dryness index (or VDI), the temperature vegetation dryness index (TVDI), and
the improved TVDI (or iTVDI) (among many others, see [16-18]). These indices are based
on the NDVI (normalized differential vegetation index), the surface temperature, Ts, and
the air temperature close to the surface, or T,. The problem with NDVI is that it is a
greenness index and cannot distinguish bare soil from senescent vegetation (e.g., see [19]).
In addition, neither T nor T, are directly linked with soil moisture. It should be observed
that the use of Ts-NDVI relationships has been long investigated for application to drought
assessment, and it has been found to produce inconsistent results in some specific situations
(e.g., [20]).

Conversely, we propose to follow the strategy of using surface temperature (T),
and the dew point temperature (T4), which are more closely related to surface type and
coverage, and soil moisture. The water deficit index is then defined according to the linear
difference Ts — Tg.

The water deficit index is meant for analysis at the regional scale; therefore, we need the
use of satellite data to ensure the correct spatial coverage and time sampling. Toward this
objective, we have used the hyper-spectral satellite infrared sounder (Infrared Atmospheric
Sounder Interfemoter or IASI, e.g., [21]) flying on board the European Meteorological
Platforms (MetOp). By adequately exploiting IASI observations, we can simultaneously
retrieve Ts and T4, which limit problems of time-space colocation. However, satellite data
are available at uneven grid points, making it challenging to check spatial patterns. In this
respect, our objective is two-fold: first, we want to define and compute a suitable water
deficit index based on direct satellite soundings; and second, we want to define a strategy
to resample the sparse satellite retrievals on a regular grid for the better understanding of
spatial patterns.

We acknowledge that water deficit indices are common in-field analyses related to
horticulture, e.g., irrigation management, evaluation of crop water stress, and so on (e.g.,
see [6] and references therein). However, in these cases, we are generally in the presence
of temporary water deficit anomalies. In contrast, our approach is meant to account for
the background atmospheric humidity and temperature related to drought onset and
development (e.g., see [22]). For satellite-based analysis, a similar approach has been
proposed in [23], using the concept of vapour pressure deficit (VPD), the difference between
the saturation and actual vapour pressure for a given time. In contrast, our approach uses
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T4, which is related to VPD, and T to build the difference Ts — T4 allowing us to better
separate the hot-dry from humid-warm weather conditions.

The paper is organized as follows. Section 2 deals with data and methods; in particular,
the section illustrates the IASI retrieval system we have developed and used for the present
analysis. Results are shown in Section 3 and discussed in Section 4. Finally, conclusions are
drawn in Section 5.

2. Materials and Methods
2.1. Material and Data

The retrieval from space observations of Ts and T4 have been performed using the
Infrared Atmospheric Sounder Interferometer (or IASI) [21]. IASI has been developed
in France by CNES and is flying on board the Metop platforms, which are satellites of
the EUMETSAT European Polar System (EPS). IASI has been primarily designed as a
meteorological mission; hence, its main objective is to provide relevant information on
temperature and water vapour profiles. The spectral coverage of the instrument extends
from 645 to 2760 cm ™!, and its sampling interval is Ac = 0.25 cm~!; therefore, the instrument
provides 8461 channels, i.e., spectral observations for every spectrum.

IASlLis a cross-track scanner with 30 adjacent fields of regard (FOR) per scan, spanning
an angular range of +48.33° on either side of the nadir. The FOR viewing geometry consists
of a 2 x 2 matrix of instantaneous fields of views (IFOVs). In turn, the single IFOV has a
diameter of 0.8394°, corresponding to a ground resolution of 12 km per nadir for a satellite
altitude of 819 km. The 2 x 2 IFOV matrix is centered on the viewing direction. At nadir,
a FOR of 4 IASI IFOVs (or pixels) covers the ground a square area of ~50 x 50 km?. The
corresponding FORs (among the 30 views) are £1.67° on each side from the nadir direction.
Further details about IASI and its mission objectives are referred to in [21].

Figure 1 shows the target area we have focused on in the paper. The site corresponds
to southern Italy, with the Apennine chains covered by forest, as exemplified by the
2018 CORINE land cover (https://land.copernicus.eu/pan-european/corine-land-cover
(accessed on 15 August 2022)). The black dots identify two dieback forest areas, where
forest monitoring, by ecophysiological and dendrochronological approaches, has been
running since 2013 [24].

The two locations circled in the maps of Figure 1 correspond to the forest stands of San
Paolo Albanese (40.02° N, 16.34° E, 950-1050 m.a.s.l.) and Gorgoglione (40.40° N, 16.14° E,
800-850 m.a.s.L.), which are suffering from long-lasting drought-induced tree mortality
(e.g., [4]). In the San Paolo Albanese site, the vegetation is formed by a pure high forest of
Quercus frainetto Ten. for a stand density of 348 trees ha~!. As far as the most affected stands
are concerned, recent studies observed that more than 50% of the mature specimens showed
symptoms of death, while about 15% died recently [25]. On the other hand, the Gorgoglione
woodland is a highly mixed forest, with an average density of about 600 stems ha~!. The
vegetation is dominated by Quercus cerris L. (71%), followed by Quercus pubescens L. (25%)
and, at a lower density (4%), other species of deciduous trees [25].

The two main studied tree species (i.e., Quercus cerris L. and Quercus pubescens L.) have
shown recent drought-induced decline symptoms since the early 2000s (shoot dieback,
summer leaf loss, withering, growth decline, and high mortality). According to local reports
about the study area, the yearly oak mortality affected ca. 450 ha. The incidence of the
decline syndrome raised mortality from 5 to 10%, from 2002 to 2004 [24].

IASI soundings have been acquired for the whole year of 2017 when an intense heat
wave hit Europe and the Mediterranean area in summer (e.g., see [5]). For comparison, we
have also acquired IASI data for 2020 and 2021.

For a proper comparison with our IASI Ts — T4 index, for the same target area and
the year 2017, the Copernicus Global Land Service (https:/ /land.copernicus.eu/global/
products (accessed on 15 August 2022)) was used to obtain data about the surface soil
moisture (ssm) and the leaf area index (LAI).
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Figure 1. Target region for which IASI data have been selected for the present analysis. The figure
also shows the CORINE land cover for 2018 to help identify forest regions, which are primarily of
interest for this study. The two upper panels help to determine the target area (magenta square) on
the globe and Italy.

The surface soil moisture was derived by observing the band C SAR onboard the
satellite Sentinel-1. Data were provided with a timeliness of one day at a spatial resolution
of ~1 km. For details about the ssm product, we refer the interested reader to [26].

The leaf area index was globally estimated at a spatial resolution of about 300 m
through a neural net approach. The input to the net was obtained from instantaneous
top-of-canopy reflectances from the OLCI (Ocean and Land Colour Imager) instrument
onboard the Sentinel-3 satellite, or daily top-of-aerosol reflectances from the PROBA-V
satellite. We refer the interested reader to [27] for further details about the LAI data.

Finally, data about the ecophysiological responses of trees for the forest stands of San
Paolo Albanese and Gorgoglione were measured and used in the present analysis during
two field campaigns performed from July-September in 2020 and 2021.

2.2. Methods

IASI will add unique capabilities to the present study because we were able to simul-
taneously retrieve Ts and Ty (e.g., [28-32]) from this instrument. To this end, we developed
two retrieval prototypes: one for simultaneous inversion of infrared observations (level 2 or
L2 prototype), and the second for remapping L2 products on a regular grid (L3 prototype).
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The layout of the overall scheme we developed is sketched in Figure 2. The procedure
consists of three main steps identified in Figure 2 with grey boxes.
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Figure 2. Schematic flow chart of the methodology developed in the present study to yield Level 3
monthly maps of the water deficit index [30,33,34].

The IASI Level 2 and 3 prototypes have been developed in previous studies. The most
up-to-date versions of both schemes can be found in [30,33] for the L2 package and [34] for
Level 3 Optimal Interpolation. The digital object identifier (doi) shown in Figure 2 allows
the interested reader to open online references where the two schemes are analytically
presented. For this reason, they are just summarized in the present paper. In contrast, the
Pre-OI scheme is described in more detail, as it implements the equations and formulas
needed for calculating the state vector and associated covariance matrix, which are passed
to the OI scheme to compute the maps of the water deficit index.

2.2.1. The L2 Retrieval System

The L2 prototype, which we also call 5-IASI, consists of an optimal estimation scheme
(e.g., [35]), which simultaneously inverts the full IASI spectrum to retrieve the state vector,
which is made up of the surface emissivity (¢), the surface temperature (Ts), the atmospheric
profiles of temperature (T), water vapour (Q), ozone (O), HDO (D), carbonyl sulfide or
OCS, and scalar scaling factors for the column amount of CO,, CO, N,O, CHy, SO,, HNO;3,
NHj3, and CF4. However, the parameters relevant to the present analysis are T, and the
atmospheric profiles for T and Q. Our L2 prototype for IASI has been variously validated
as far as the surface parameters and T and Q profiles are concerned. Validation for surface
parameters can be found, e.g., in [32,33], whereas for T and Q they can be found in [30,36].

2.2.2. The L2 Pre-OlI and the Definition of the Water Deficit Index

Regarding Figure 2, the Pre-Ol acts on the IASI Level 2 data to extract the geophysical
parameters close to the surface and compute the water deficit index and its variance to
input the final optimal interpolation scheme. From the profiles of T and Q, we considered
only the elements, which correspond to the lowermost atmospheric layer, say T; (in units
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of K) and Q; (in units of gr/Kg). The corresponding layer pressure was denoted with P,
(in units of hPa). From the L2 products, we also extracted the surface temperature, Ts. The
three parameters (Ts, T;, Q1) were piled up in a vector, x; of size n = 3, whose covariance
matrix was denoted with S;, whose size was n x n. Both x;, S are outputs of the IASI
L2 system.

The computation of the dew point temperature, T, involves the calculation of the
actual and saturation water vapour pressures. These are referred to as P, and Py , respec-
tively. From Q;, we can compute P, according to:

— BPQy;p = 103w (1)

_ R
Pw =10 3PlQl w R..
ai air

Rair
with Py, in hPa and where Ry, = 461.5] K~! Kg~! and R;;, = 286.9 ] K~'Kg~! are the

specific gas constants of water vapour and air, respectively. According to [37], Py; is
computed with the formula:

_ M
2 exp (al tl +H3 )

(tl + a4)a5 (2)

with t; = T; —273.15 (temperature in degrees Celsius) and Pys in hPa. Equation (2)
is valid for t; > 0 (vapor pressure of water), and where a; = 34.494, a, = 4924.99,
az = 237.1, ag = 105, a5 = 1.57 are fit parameters that in case ¢; are expressed in degrees
Celsius. From (1) and (2), we obtain the fractional relative humidity:

rh = —
P‘LUS

3)

From (1) and (2), we can also compute the vapour pressure deficit or VPD = Py — Py.
Finally, the dew point temperature, T; can be calculated by using the well-known Magnus
formula (e.g., [38]):

cx bt
tg =
b—x c+h

where t; is in degrees Celsius (we will use T; when referring to degrees Kelvin units), and
b = 17.62 (dimensionless), c = 243.12 C. Finally, the IASI-based water deficit index, wdi, is
defined according to:

, x =1In(rh) +

4)

wdi=T, — Ty =t —ty (5)

Equation (5) stresses that the index can be computed indifferently with both tempera-
tures in K or C degrees, although the computation of the dew point temperature has to be
performed in C, according to Equation (4), before converting it to K.

For the application of the optimal interpolation to the mapping of the water deficit
index, we also need the variance of the index, 02 ;. Considering the chain of equations
from (2) to (5), we can formally write wdi as a function wdi = f(T;, Ty, Q1), from which,
using the usual rule of variance propagation (see, e.g., [39]), we obtain:

Uagi = 8518 6)

with the superscript ¢ indicating the transpose operation, and

of of of

t
§= (aTs’aTl’aQ1>

@)
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We stress that the parameters defined by Equations (5) and (6) have to be computed for
the IASI retrievals and the ECMWF background, as shown in the diagram of Figure 2. For
the background, the covariance matrix is assumed to be diagonal, as we use background
derived from climatology (see [29]) for which we do not consider correlation among air
temperature, humidity, and surface temperature.

Considering that
cx
(T T Q) =T =Ty =t —tg =t — ®
we have
of _ 9of _
JdTs — Ot
f _ f _ f ox _ as bc
9T, — ot — dxoh ( t1+a3 (t1+”4) + (f1+C)2> ©)
of _ af ox _ _ _¢b 1
0Q1 — Q1 —  (b—x)2 Q1

The parameter wdi, when referring to a surface covered by vegetation or crops, can
help to understand the water stress or deficit during long-lasting droughts or heatwaves.
This is because vegetation releases water into the atmosphere through transpiration. The
process involves the vaporization of liquid water in plant tissues and the consequent
release of vapour into the atmosphere (for example, see [40])). Similar to direct evaporation,
transpiration depends on the amount of energy available: solar radiation, wind, and vapour
pressure gradient at the surface-atmosphere interface. Consequently, solar radiation, air
temperature and humidity, and wind velocity must be considered when evaluating and
assessing a satellite-based index to quantify water deficit.

In Equation (5), the role of energy supply is modelled with T;. The sun’s radiation will
cause a rapid increase in the surface temperature of the land. On the other hand, T; will
take into account both air temperature and air humidity. The effect of wind is more difficult
to introduce. However, drought and heatwave conditions minimize the spatial gradient
and wind intensity. The air subsidence and low intense pressure gradients characterize
meteorological conditions that favour summer heatwaves.

It is also important to stress that evaporation and transpiration co-occur, and it is not
easy to distinguish between the two processes. For this reason, we mention evapotranspi-
ration when referring to the water exchange between vegetation and the air. In addition
to water availability in the topsoil, evaporation from the cultivated terrain depends, as
already mentioned, on the amount of impinging solar radiation. The solar energy at the
surface decreases during crop growth because its foliage or canopy shadows the area below
from the sun’s rays as the crop develops. Therefore, water is predominately lost by soil
evaporation when the crop is small, or when the leaves are not well developed. However,
transpiration becomes the main process once the crop and leaves are well developed and
completely cover the soil.

With this in mind, the parameter wdi can help to identify different regimes of water deficit:

1. wdi > 0; this regime characterizes very hot and dry conditions that favour evapo-
transpiration. Furthermore, in this regime, the evapotranspiration increases almost
linearly with the wind speed (e.g., [40]);

2. wdi > 0; this regime characterizes warm and humid conditions when the air is
already close to saturation; therefore, less additional water can be stored, so the
evapotranspiration rate is even lower than for arid land;

3.  wdi < 0; this is the regime T; < T, and therefore the vapour condenses in liquid
water at the surface.
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2.2.3. The 2-D OI scheme

It is worth noting that when wdi is determined by L2 satellite observations, as in our
case, we obtain data that are sparse and not homogeneously covering a given spatial region.
Therefore, to better compare with other data sources and perform a correct collocation
with stations at the ground, we used a resampling tool, which can remap wdi data to a
regular grid. To this end, we used the tool developed in [34]. The technique is based on a
2-dimensional (2D) optimal interpolation (OI) scheme, and is derived from the broad class
of Kalman filter or Bayesian estimation theory. For further details, we refer the interested
reader to [34].

The steps involved in the mapping on a regular grid are exemplified in Figure 3 using
the IASI retrieval for wdi for July 2017. Figure 3a,c show the IASI data points for wdi,
and its square root of the variance (standard deviation) as estimated by the L2 retrieval
scheme and the Pre-OlI step (see Figure 2). These values are accumulated considering
all the IASI overpasses for July 2017. As said before, the IASI scan pattern is made up
of footprints with circular diameters of about 12 km at nadir, and the scanning lines are
50 km apart along the flight direction of the satellite. The IASI scan pattern over the target
area for a single overpass is shown in Figure 4 for the benefit of the reader. Comparing
Figure 3 with Figure 3a,c, it can be seen that after one month, the IASI clear sky footprints
(we stress that we use only observations in a clear sky, which is diagnosed based on a
stand-alone algorithm for cloud detection, e.g., [41]) are densely distributed over the area
much more than the single IASI scan pattern overpass. The monthly ensemble of satellite
overpasses improves the sampling of spatial data, and therefore allows, for example, a
better comparison with in situ observations. We use the ensemble of multiple observations
to build a map with a better spatial sampling. Towards this objective, we use the 2-D OI
method, which remaps the data into a grid with a finer mesh than the original data.

IASI L2, wdi, July 2017 (°C) 25 ECMWF, wdi, July 2017 (°C) .
42°N 42°N -
20 20
41°N 41°N
15 15
40°N 10 40°N 10
5 5
39°N 39°N
. . . . . . 0 . . . . 5 . 0
13°E 14°E 15E 16 E 17 E 18'E 13E 14°E 15E 16'E 17 E 18'E
IASI L2, wdi std, July 2017 (°C) 0 ECMWF, wdi std, July 2017 (°C) 0
42°N 42°N T
8 8
41°N 41N
6 6
40°N 4 40°N 4
2 2
39°N 39°N
. . . . . . 0 . . . . 5 . 0
13°E 14°E 15E 16 E 17 E 18'E 13E 14°E 15E 16'E 17 E 18'E

Figure 3. July 2017. IASI L2 products for wdi (panel (a)) and its standard deviation (panel (c)) over the
target area. The figure also shows the ECMWF background field (both mean (panel (b) and standard
deviation (d)) at its native spatial resolution of 0.125° x 0.125°.
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Figure 4. Target region showing the IASI footprint scan pattern (red ovals) for one single overpass.
The IASI morning overpass for May, the first of 2020 is shown in the figure.

The final mesh we use has a spatial sampling of 0.05° x 0.05°. Another important
aspect of Ol remapping is the use of background fields. These fields are built up by using
the time and space co-located ECMWF (European Centre for Medium-Range Weather
Forecasts) analysis. The ECMWEF fields are available on a grid-mesh of 0.125° x 0.125°, and,
for the case at hand, the values for wdi and its square root of the variance, i.e., standard
deviation, are exemplified in Figure 3b,d, respectively. Based on the coarse ECMWF
background, the un-gridded L2 IASI observations and the 2-D Ol yields the results are
shown in Figure 5; that is, the maps of wdi (panel (a)) and its standard deviation (panel (b))
at a sampling of 0.05° x 0.05°. In this process, we lose temporal resolution, but we obtain a
map with improved spatial sampling and precision, as shown by the standard deviation
map, which, apart from boundary effects, is one °C or less.

wdi (°C), Year=2017, Month=July 25 Standard error (°C) of wdi, Year=2017, month=July
42°N
20 5
41°N 4
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3
10 °
40 N 5
5 ) 1
39 N
- . . . . . 0 - . . . . s
13 E 14 E 15 E 16 E 17 E 18 E 13E 14 E 15E 16 E 17 E 18 E

Figure 5. Level 3 map at a grid step of 0.05° for the index wdi obtained from the source data shown
in Figure 3 (panel (a)) and its standard deviation (panel (b)). The map is exemplified for July 2017.

3. Results

The rise and fall of the exceptionally hot and dry summer are well captured by the
monthly time series of wdi maps shown in Figure 6. Of particular interest for us is the
Apennine chain, which is covered by broad-leaved, deciduous forests. If we compare
Figure 5 to the land cover map shown in Figure 1, we see that the wdi closely follows the
forested area in the summer season. In July and August 2017, the index was above ~10 °C
in the regions covered by forests, which shows that the vegetation ecosystem was suffering
from a water deficit.
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Figure 6. Level 3 map at a grid step of 0.05 degrees for the index wdi for 2017.

To understand the index’s sensitivity to heat waves, we have compared the wdi
parameter over three consecutive years, 2017, 2020, and 2021, for July. We know that July
2020 has been relatively wetter than 2017 and 2021 (e.g., see https:/ /climate.copernicus.
eu/esotc/2021 (accessed on 15 August 2022)). The comparison is shown in Figure 7, and
we see that wdi is able to indicate that the year 2020 was less warm than the other two.
This situation is reflected in the soil moisture maps shown for the same target area and
year and month. When we focus on the forested area, especially in the southern part of the
map, we see that the soil moisture follows the same spatial-time evolution as wdi and, in
particular, the soil moisture is lower in 2017 and 2021 than in 2020. This is a significant result
because it shows that the wdi is capable of capturing processes at the surface—atmosphere
interface. A large wdi means a high rate of evapotranspiration; that is, trees lose water in
the atmosphere. The fact that the soil moisture is getting lower means that the vegetation
can catch less water from the surface.

wdi (°C),Year=2017, month=July wdi (°C),Year=2020, month=July wdi (°C),Year=2021, month=July

3 25 25 25
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Figure 7. Exemplifying the wdi evolution through the years. From left to right: July 2017, 2020, and 2021.


https://climate.copernicus.eu/esotc/2021
https://climate.copernicus.eu/esotc/2021

Land 2022, 11, 1366

110f18

The anti-correlation between wdi and soil moisture proves that wdi is a good metric
for monitoring water deficit during intense heatwaves. The more significant values we
saw in summer are not merely a consequence of the hotter weather, but also reflects
the decrease in water vapour exchange between the surface and the atmosphere. We
stress that, unlike other indices, wdi considers the surface-air temperature and humidity
fields simultaneously.

A further comparison with other parameters sensitive to vegetation stress is shown in
Figures 8 and 9. Concerning the 2017 heatwave, Figure 8 compares the surface soil moisture
(ssm) against wdi for the period June to August. It is seen that while wdi tends to increase
with time, ssm does the opposite. The leaf area index (LAI) is another crucial parameter
to be monitored for investigating vegetation stress. Indeed, under the action of an intense
heat wave, trees tend to lose leaves to protect from the fierce evapotranspiration. Trees use
this mechanism, e.g., in winter, when the light is not enough to sustain the photosynthesis
activity. The comparison with LAl is shown in Figure 9, and we see that consistently with
the increasing wdi behaviour, LAl is decreasing from June to July. In normal situations, the
LAL decrease is not expected in the summer when there is a more significant availability of
light to sustain photosynthesis.

wdi (°C),Year=2107, month=June ssm (relative units %), Year=2017, Month=June
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Figure 8. Comparison of ssm vs. wdi for the period of June to August in 2017. Top to bottom, June

to August.
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Figure 9. Comparison of LAI (m?/m?) vs. wdi for the period of June to August in 2017. Top to
bottom, June to August.

We have checked that the good consistency among ssm, LAI, and wdi also persists at
the local scale. In fact, for the two stations of S. Paolo Albanese and Gorgoglione, shown
in Figure 1, we have computed the monthly time series of ssm and wdi for 2017. The time
series are shown in Figure 10, and we see that starting from May until September, wdi goes
up, whereas ssm has the opposite behaviour. Again, this is an important result because it
shows that the wdi is capturing a water deficit condition for the vegetation, especially in
the area where we know there are declining trees [6,24].

The most striking agreement is seen when comparing in situ observations for the
flux exchange of CO, and HO from trees to the wdi parameter. In the summers of
2020 and 2021, CO, exchange measurements were performed at the leaf scale on declin-
ing and non-declining Q. frainetto trees growing at the S. Paolo Albanese study site. In
each tree, net photosynthesis rate (An, umolCO, m~2 s~ 1), stomatal conductance (gsw,
mmolH,O m~2 s71), and intrinsic water use efficiency (WUEi, umolCO, mmol~! H,0)
were measured by using a portable Photosynthesis System LiCOR 6400xt equipped with a
6400-40 Leaf Chamber Fluorometer.
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Figure 10. Monthly time series of ssm and wdi in 2017 for the two-tower stations of Gorgoglione (left)
and S. Paolo Albanese (right). Data points are the mean values from a circle of diameter 0.1° around
the stations. The error bars represent the variability (standard deviation) of the samples.

In the summers of 2020 and 2021, the ecophysiological response of Q. frainetto trees
exhibiting decline and non-decline symptoms is shown in Figure 11. In 2020, when no
heatwave occurred, Q. frainetto ecophysiological responses were similar for declining and
non-declining trees, suggesting that there was no evident sign of water stress in the summer
of 2020. From Figure 7, we see that wdi is in fact below 10 °C in July. In contrast, in 2021, not
only is the water vapour exchange more than doubled, showing that the evapotranspiration
has increased because of the larger difference Ts — Ty, but also the declining trees behave
differently with respect to the non-declining vegetation, showing that the non-declining
trees are suffering from the water deficit much more than the healthy vegetation.
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Figure 11. Ecophysiological responses of declining (D) and non-declining (ND) Q. frainetto trees
of the San Paolo Albanese forest stand site. Panels (a—d) present the net photosynthesis curve
(An, umolCO, m~2 s~ 1), while panels (e, f) show the average values of stomatal conductance (gsw,
mmolH,O m 2 s~ 1) and intrinsic water use efficiency (WUEi, umolCO, mmol ! HyO) measured
in the summers of 2020 and 2021. PPFD represents the photosynthetic photon flux density (umol
photons m~2 s~1). The black vertical bar represents the 1st deviation standard.

It is also interesting to note that CO,, flux exchange exhibited the opposite behaviour
to HO. In the summer of 2020, when there were good climatic conditions, we observed an
exchange larger than in 2021. In 2021, the results showed that the vegetation had reduced
photosynthesis activity because of stress conditions.
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4. Discussion

In the summer of 2017, southern Europe and the Euro-Mediterranean were hit by an
exceptional heat wave [6,42]. After an outstandingly warm June in western Europe, the
heat returned to southern Italy in July. It contributed to more than 400 wildfires, which
destroyed approximately 800 km? of forest and vegetated areas. The number of fires has
been unprecedented in the last 20 years. Furthermore, early August saw a particularly
intense heat wave described as the “worst heat wave since 2003”, with the air temperature
above 40 °C in many parts of Italy [42].

In the quest for possible satellite indices to assess and possibly mitigate the effect of
long-lasting drought on vegetation, we have devised an index, wdi, which takes advantage
of the IASI capability to retrieve surface data simultaneously with atmospheric parameters.
Other methods that use satellite data exploit the visible region of the electromagnetic
spectrum (e.g., NDVI, NDM], and related indices) or the microwave band (e.g., ssm and
LAI). The normalized difference moisture index (NDMI) (e.g., [43]) is mainly intended
to detect humidity in vegetation using a combination of near-infrared (NIR) and short-
wave infrared (SWIR) spectral bands. The index NDMI and the original greenness index,
NDVI, with the same ssm, have also been used coupled to surface temperature and air
temperature (e.g., see [8,11-14,18]). Other tools have tried to couple surface temperature
and the humidity field, e.g., [6].

In contrast, our wdi exploits the thermal band of the Earth’s emission spectrum and
simultaneously uses the surface temperature, air temperature, and humidity. To our
knowledge, this combination is unique. In effect, the water deficit index we have defined
can monitor water deficit and assess vegetation stress, as the comparison with in situ
measurements has demonstrated. It can be used complementary to ssm, LAI, and the set of
NDVI-related indices to better understand the intensity and danger of heatwaves for the
vegetation. Sequences of increasing wdi can help to identify the onset of water deficit for
the vegetation, hence the increased risk of fire, especially in forests.

The wdi index is meant to identify regions where particular weather conditions can
produce water deficits. The index is not intended as an estimate or an estimator of evapo-
transpiration. This process is also affected by vegetation/crop characteristics, environmen-
tal conditions, and cultivation types. Therefore, there is too much variability, which cannot
be condensed into a single index. The wdi parameter is a bulk index, which can help to
monitor forest and wood regions suffering from long-lasting droughts because of adverse
weather conditions. It can be mapped on a regional and even global scale, allowing us
to monitor drought processes at a glance. The wdi maps could be important to monitor
and evaluate the risk of fires in the large forested area, which is otherwise inaccessible.
In addition, we have shown that in regions where the vegetal ecosystem has a particular
fragility to water deficit, the index can soon quantify the possible danger and require more
accurate in situ observations.

In this respect, wdi is most effective in the case of a heatwave. In the wintertime, for
example, large values of wdi could be linked to a dry atmosphere and low air temperature.
In effect, this is the case in January 2017 for the more southern area on the map of Figure 5,
which belongs to the high mountains of the Sila chain. Additionally, in summer, very
humid and warm conditions could lead to wdi ~ 0. For example, this is the case for the
coastal regions in July—August 2017, as seen again in the map in Figure 5. For these cases, it
is better to look separately at the maps of Ts and Tj. In this respect, we observe that the
dew point temperature has been individuated as a key parameter to compute sophisticated
indicators of health stress for human beings during heatwaves [44].

Some words of caution should also be said about the temporal sampling of wdi. The
occasional occurrence of a high wdi for one day should be of no concern. Drought is a
process that takes several days or months. The severity of the process depends on its time
continuity and persistence. Therefore, it is crucial to assess the persistence of the process,
which can be done by looking at the time series. Averaging over several days can help
to understand the persistence of the phenomenon. Another important point concerns the
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capability of the retrieval system to solve the daily cycle, which cannot be done with the
present polar satellite IASI instrument. During the night, the surface temperature could
go below the dew point temperature and cause water vapour to condense at the surface.
Therefore, it could be interesting to examine day and night separately. Hopefully, this
could be the case when the MTG-IRS (https:/ /www.eumetsat.int/ mtg-infrared-sounder
(accessed on 15 August 2022)) is put in orbit.

5. Conclusions

Exploiting the capability of the IASI instrument to perform simultaneous retrievals of
surface and thermodynamical parameters, we have developed an index called the water
deficit index, or wdi. The index is intended to be used in the case of evident droughts, as it
can assess the severe water deficit of vegetation, and in particular, forests.

The tool has been exemplified in a target area in the south of Italy, which suffered
from an intense drought and heatwave in 2017. When the heatwave is developing, we
have shown, with the help of correlative observations of surface soil moisture and the leaf
area index, that wdi can assess the severity of the water deficit. Of particular interest is the
anti-correlation with the surface soil moisture. The soil water content and the ability of
the soil to transport water to the roots govern the transpiration rate of vegetation. In cases
where the wdi becomes large, we have found that ssm gets smaller, which shows how wdi
is capable of capturing processes occurring at the surface-atmosphere interface.

The possible usage of wdi includes monitoring large forested areas for the increased
risks of wildfire and assessing mitigation measures for regions whose green ecosystems are
more fragile and in danger because of climate change.
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Abbreviations

LAI leaf area index (m2/m?)

NDMI normalized difference moisture index (dimensionless)
NDVI normalized difference vegetation index (dimensionless)
iTVDI improved temperature vegetation dryness index (dimensionless)
P pressure (hPa)

Py water vapour pressure (hPa)

Pys saturation water vapour pressure (hPa)

Q water vapour mixing ratio profile (g/kg)

Q1 water vapour mixing ratio at the surface level (g/kg)
rh = % relative humidity (dimensionless)

x1 = (Ts, Ty, Q1) vector of size n = 3

S1 covariance matrix of xq size (3 x 3)

ssm surface soil moisture (dimensionless)

T temperature profile (K)

T1 =T, air temperature at the surface level (K)

=t air temperature at the surface level (C)

Ty dew point temperature at the surface level (K)

ty dew point temperature at the surface level (C)

Ts surface temperature at the surface level (K)

ts surface temperature at the surface level (C)

TVDI temperature vegetation dryness index (dimensionless)
VDI vegetation dryness index (dimensionless)

VPD vapour pressure deficit (hPa)

wdi =T, — Ty = ts —t;  water deficit index (difference temperature, in units of K or C)

(7320 i variance of wdi (K? or C2)
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