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Abstract: Cohesion is the main inter-controlled factor for the stability of fine-grained sediments in
debris flow, and plays an important role in debris flow hazard early warning. At present, there
is no cohesion rapid remote sensing detection model, which seriously affects the development of
quantitative evaluation on debris flow stability. How to use remote sensing to quickly detect the
cohesion of fine-grained debris has become an important scientific issue. Therefore, strengthening the
research on the cohesion hyperspectral detection model, indicating its sensitive spectral bands, and
establishing a quantitative model between cohesion and these bands are of great significance not only
in discovering the stability mechanism, but also in quickly establishing the stability detection model
for gully sediments. Taking the Beichuan debris flow as the study area, we carried out experiments on
cohesion, cohesion influencing factors, and spectra. Firstly, six cohesion hyperspectral sensitive bands
are indicated in red, near infrared portions of the electromagnetic spectrum, including 750, 1578,
1835, 2301, 2305, and 2309 nm; secondly, these bands discover the cohesion influencing factors. Band
750 nm indicates the characteristics of cohesion, effective internal friction angle, and permeability
coefficient, while the other five bands indicate the characteristics of effective internal friction angle,
density, and moisture; finally, a hyperspectral remote sensing detection model for the fine-grained
sediments cohesion is established. With a correlation coefficient of 0.56, and p value less than 0.001,
the model indicates that cohesion has a great significant correlation with the six bands. This not
only provides sensitive bands for detecting cohesion of fine-grained sediments using remote sensing,
but also provides a scientific basis for rapid detection of the fine-grained sediments’ stability in
large areas.

Keywords: Beichuan; debris flow; stability of fine-grained sediments; cohesion; hyperspectral
detection model

1. Introduction

A debris flow is a deposit of rock, mud, debris, and water often triggered by intense
rain or rapidly melting snow events. It is characterized by strong destructive power,
and thus poses a serious threat to the safety of lives and property [1]. For example, the
catastrophic debris flow in Sichuan on 20 August 2019 not only affected 446,000 people,
with 26 dead and 19 missing, but also severely damaged roads, water conservancies, power
facilities, etc., and thus resulted in a direct economic loss of CNY 15.89 billion [2]. The
Beichuan debris flow on 24 September 2008 resulted in 42 dead or missing, and more than
4000 people trapped [3]. Therefore, rapid and accurate early warning of debris flow plays an
important role in ensuring the safety of people’s lives and property in mountainous areas.
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Particle sizes less than 2 mm are easily transported by water, especially during high-
intensity rainfall or rapid snow melt. Thus, these earth materials play an important role in
a debris flow early warning model. For example, Qiang Wu et al. studied the starting of
loose sediments in gully debris flow in 2015 [4]. Qinghua Miao et al. established a rainfall
threshold for flash flood warnings [5]. Jun Xie et al. modeled sediment movement and
channel response to rainfall in 2018 [6]. Ming Ma analyzed the stability of accumulations
with high slope in 2019 [7]. Minggao Tang et al. studied the failure mechanism of shallow
landslides in 2016 [8]. Marcel Hürlimann et al. studied debris flow monitoring and
warning in 2019 [9]. Philip Kibet et al. monitored river channel dynamics in 2019 [10].
Mohd AfiqHarun et al. analyzed a stable channel with sediment transport for rivers in
2020 [11]. All these studies indicated that fine-grained sediments play an important role in
debris flow early warning.

Debris flow early warning needs to quickly detect the stability of these fine-grained
sediments, which is mainly controlled by internal and external factors. Permeability
coefficient, cohesion, and effective internal friction angle are internally controlled factors,
while water source conditions, e.g., rainfall, runoff, etc., landform conditions, e.g., slope,
confluence area, etc., surface coverage, structure, etc. are externally controlled factors.
For example, Qinjun Wang et al. established a hyperspectral soil dispersion model in
2016 indicating that debris flow early warning needs to quickly detect the stability of
these fine-grained sediments [12]. Wei Hu et al. studied sensitivity of the initiation and
runout of flow slides in 2017 and the results indicated that the stability of flow slides was
mainly controlled by internal and external factors [13]. R.L. Fan et al. studied the evolution
of debris flow activities in 2018 and the results showed that debris flow activities were
controlled by internal and external factors [14]. Nima Khezri et al. studied the stability of
shallow circular tunnels in soil considering variations in cohesion with depth in 2015 [15].

Cohesion is the mutual attraction between adjacent particles, whose value mainly
reflects the strain capacity of soil to resist external stress [16], and is closely related to
factors such as effective internal friction angle, permeability coefficient, density [17], and
moisture. Various researchers have studied debris flows and factors influencing initiation
and movement: (1) Cunmei Zhou et al. studied influencing factors of shear strength pa-
rameters of compacted loess in 2018 [18]; (2) Mingkang Yan studied the effect of water
content on apparent sand cohesion in 2018 [19]; (3) Wenjing Tian et al. studied red soil
shear strength in 2018 [20]; (4) Yongshan Song et al. studied the influence of water content
on shear strength in 2019 [21]; (5) Shan Dong et al. studied the effects of water content and
compaction degree on soil mechanical characteristics in 2020 [22]; (6) Chenyu Wang et al.
studied factors affecting the cohesion of silty clay in 2020 [23]; (7) Chien-Ting Tang et al. es-
tablished model applicability for prediction of residual soil apparent cohesion in 2019 [24];
(8) Yongmin Kim et al. estimated effective cohesion using artificial neural networks in
2021 [25]; (9) Selen Deviren Saygin et al. analyzed soil cohesion by fluidized bed methodol-
ogy to assess the inherent resistance of soils against destructive forces in 2021 [26].

However, at present, there is no rapid method to detect the cohesion of debris flows
of fine-grained sediments in large areas. As remote sensing is characterized by macro-
objectives in the acquisition of material parameters, the aim of this research is to establish a
cohesion hyperspectral detection model. It not only provides a solution to acquire cohesion
quantitatively, but also provides a scientific basis for quickly discovering the sediments’
stability in large areas.

2. Materials and Methods
2.1. Study Area

With the geographical coordinates of 104◦23′–104◦31.7′ E, 31◦48.5′–31◦53.5′ N, the
study area is located in Beichuan County and covers an area of about 140 km2 (Figure 1,
with WGS-1984 coordinate system). The climate of the study area belongs to the subtrop-
ical humid monsoon climate of Sichuan Basin, with an annual average temperature of
14.4–16.1 ◦C and average rainfall of 1399.1 mm. Lithology in the study area mainly includes



Land 2022, 11, 1609 3 of 16

Cambrian sandstone, sand shale, argillaceous limestone, Silurian slate, phyllite, limestone,
Devonian and Carboniferous carbonate rocks, as well as Quaternary loose sediments widely
distributed on both sides of the river and alluvial fans. As shown in Figure 1, Jianjiang
River flows through the study area along which fine sediments are mainly deposited on
the surface of its side beach with particle size becoming larger with depth.
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Figure 1. Study area with a picture of the sampling site.

Furthermore, the study area is the severely damaged area of the Wenchuan earthquake,
which took place in 2008, with a magnitude of Ms8.0. Since then, several debris flow
disasters have happened on 20 August 2019, 11 July 2018, 28 July 2016, 6 July 2013, 17
August 2011, and 24 September 2008, resulting in a large number of houses destroyed,
farmland flooded, and nearly 10,000 people left their homes.

2.2. Methods

As shown in Figure 2, we carried out the research according to the technical flow of “(i)
research area and background data acquisition, (ii) parameter measurement experiments,
(iii) model establishment, (iv) results”.

(1) Background data acquisition
We obtained the background data, such as geology, meteorology, land use, and high-

resolution remote sensing data, such as Gaofen-2 (GF-2) remote sensing imagery. With a
spatial resolution of 0.8 m in the panchromatic band, the Gaofen-2 satellite was launched on
19 August 2014, China. From it, the distribution of fine-grained sediments is extracted, and
then the database of internally controlled factors for the stability of fine-grained sediments
is established. GF-2 is one of the China High-resolution Earth Observation System (CHEOS)
series of satellites. CHEOS was established as one of the sixteen major national science and
technology projects under the strategic guidelines for the Medium and Long Term National
Science and Technology Development Program (2006–2020). With the aim of building
up a high-resolution Earth observation system based on satellites, stratospheric airships,
and aircrafts, it will provide a global earth observation capability on hazards, agriculture,
resource and environment monitoring, etc.
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(2) Parameter measurement experiments
First, we made samples using ring knives according to the investigation standard

of landslides, collapses, and debris flows (DZ/T 02161-2014) [27] and a technical guide
for soil sampling (GB/T 36197-2018) [28]. No fine-grained sediments were present on the
surface and small branches and small stones were cleared out; then, a ring knife was put
into sediments vertically and pulled out when it was fully filled with soils; excess soils
were cut out using a dull knife along the horizontal edge of the ring knife and, finally, a
sample was made by putting the soils in the ring knife into a plastic bag.

Second, soil parameter measurement experiments were carried out according to the
soil experiment specification (SL237-1999) [29]. The parameters include cohesion, effective
internal friction angle, permeability coefficient, density, moisture, and particle size. The
main steps of the parameter measurement were the following and more detailed informa-
tion on these experiments can be found in [30]: 1© cohesion, effective internal friction angle
measurement. A model ZJ strain controlled direct shear apparatus was used to measure
cohesion and effective internal friction angle. The main steps include sample preparation,
adding shear normal stress σ of 50, 100, 200, and 300 kpa to obtain shear strength τ, then
cohesion and effective internal friction angle can be calculated by displaying the measured 4
pairs of data in the coordinate system with σ as the horizontal axis and τ as the vertical axis.
Cohesion is the intercept of the straight line, and the internal friction angle is the inclination
angle of slope; 2© permeability coefficient measurement. A TST-55 permeameter was used
to measure permeability coefficient. The main steps include sample preparation, flowing
water through the sample, and recording parameters, such as initial water head, starting
time, and the end water head, then calculating the permeability coefficient according to
Formula (1).

KT = 2.3
aL
At

lg
h1

h2
, (1)
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in which KT is the permeability coefficient at temperature T, a is the cross-sectional area
of the variable head pipe (cm2), L is the height of the sample (cm), A is the cross-sectional
area of the sample (cm2), t is the time (s), h1 is the starting water head (cm), and h2 is
the ending water head (cm); 3© density measurement. An MDJ-300A solid densitometer
was used to measure density. The main steps include sample preparation, weighing the
sample as w g, then calculating density by ρ = w/v. ρ is the density and v is the sample
volume of 600 mL; 4© moisture measurement. An electric heating constant temperature
drying oven was used to measure moisture. The main steps include sample preparation
and weighing as w1 g, drying samples for more than 8 h, weighing dried samples as w2 g,
and then calculating moisture by ω = (w1 − w2)/w2. ω is the moisture; 5© particle size
measurement. The Microtrac S3500 laser particle sizer was used to measure particle size.
The main steps include setting the sample number and parameters on the instrument,
particle size automatic measurement, saving data, and cleaning the pipeline.

Finally, a soil hyperspectral measurement experiment was carried out in the laboratory
using the American ASD portable spectrometer. The main steps include fixing the 1000 Watt
halogen lamp on a tripod with an approximately 20 cm distance to the sample, eliminating
dark current, standardizing with a whiteboard, and then measuring the soil spectra. Each
sample was measured 5 times, and the mean value was taken as the final spectrum.

(3) Model establishment
Cohesion sensitive band selection: backward elimination was applied when selecting

sensitive bands by a multi-variate regression analysis method. Backward elimination is
a variable selection procedure in which all variables are entered into the equation and
then sequentially removed. The variable that has the smallest partial correlation with the
dependent variable is considered first for removal. Once the first variable has been removed,
the variable with the smallest partial correlation is considered next. The procedure stops
when there are no variables in the equation that satisfy the removal criteria [12].

Based on cohesion and its sensitive bands, a cohesion hyperspectral detection model
is established by using the least square multi-variate statistical analysis method.

The least square multi-variate statistical analysis method is a mathematical optimiza-
tion technology. It finds the best matching function of data by minimizing the sum of
squared errors.

Its basic principles are:

f (x) = a1 ϕ1(x) + a2 ϕ2(x) + . . . + am ϕm(x),

in which ϕk(x) is a set of linearly independent functions, ak is the undetermined coefficient
(k = 1, 2, ..., m), and the fitting criterion is to minimize the sum of the square distance
between the measured value yi and the predicted value f(xi), which is also named as the
least square criterion.

Let (x, y) be a pair of observations, and x = [x1, x2, . . . , xn]T ∈ Rn, y ∈ R. They satisfy
the following functions:

y = f (x, w),

in which w = [w1, w2, . . . , wn]T is an unknown parameter. In order to find the optimal
estimate of the parameter w of f (x, w), for a series of given datasets (xi, yi), the objective
function can be solved as:

L(y, f (x, w)) = ∑n
i=1|yi − f (xi, wi)|2. (2)

Parameters wi (I = 1, 2, . . . , n) can be determined when minimizing the value of the
objective function.

(4) Results
After establishing the cohesion hyperspectral detection model, the accuracy of the

model is checked. When the accuracy does not meet the requirements, it is necessary to
analyze the causes and improve the model; otherwise, the model is finally output.
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2.3. Data Acquisition and Processing

(1) Background data
We collected geological maps, meteorological and hydrological maps, topographic

maps, traffic maps, and other maps of the study area to provide background data for
this study.

We obtained high-resolution remote sensing data, such as GF-2, to extract the debris
flow sediments and locate the sampling sites.

According to the national standard (GB/T 30319-2013) [31], a cohesion hyperspectral
remote sensing database was established to save the background data, remote sensing
images, experimental data, and results.

(2) Sample collection
As shown in Figure 1, from 19–25 March 2021, we took 200 samples using a ring knife.

Each of which had a volume of 600 mL and a weight of about 1 kg. There are 11 sampling
sites in total, and about 20 samples were taken at each site.

(3) Data acquisition
We carried out a shear strength measurement experiment on fine-grained sediments

to obtain cohesion and effective internal friction angle, as well as experiments on cohesion
influencing factors such as density, permeability coefficient, moisture, and particle size.
Based on the above data, the correlation between cohesion and its influencing factors is
established to discover the hyperspectral detection mechanism of fine-grained sediment
cohesion in the study area [30].

(a) Shear strength measurement experiment
Soil shear strength refers to the ultimate capacity of soil to resist shear stress, including

cohesion and effective internal friction angle. Effective internal friction angle is the internal
friction between soil particles, mainly including the surface friction of soil particles and the
bonding force between them. Their relationship can be expressed by

τ = σ tan ϕ + c,

in which τ is the shear stress (kPa); σ is the normal stress (kPa); ϕ is the internal friction
angle (kPa); and c is cohesion (kPa).

The main steps of measuring cohesion and effective internal friction angle can be
found in Section 2.2 (2). The results of the experiment showed that the minimum soil
cohesion was 13.95 kpa, and the maximum was 33.95 kpa, mostly concentrated within
20.35–26.75 kpa. Furthermore, the minimum effective internal friction angle was 16.16 and
the maximum was 23.68, mostly concentrated within 18.98–21.8, belonging to silty soil [32].

(b) Particle size measurement experiment
The main steps of measuring particle size can be found in Section 2.2 (2) and the results

of the experiment are shown in Figure 3. Φ calculated by –log(2,p) (p is the particle size
with the unit of mm) is the horizontal axis and the cumulative probability is the vertical
axis. From the results, we can see that the minimum particle size was 0.45 µm, and the
maximum was 87.75 µm, mostly concentrated within 10–60 µm, belonging to silt particles.
For Φ > 3, according to the classic particle size distribution curve, fine-grained sediments
in the debris flow are mostly suspended materials with good separation.
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(c) Density measurement experiment
The main steps of measuring density can be found in Section 2.2 (2) and the results

showed that the minimum and maximum density were 1.34 g/mL and 1.73 g/mL, respec-
tively, mostly concentrated within 1.34–1.54 g/mL, belonging to silt-sized particles.

(d) Permeability coefficient
The main steps of measuring permeability coefficient can be found in Section 2.2 (2)

and the results showed that the minimum was 0.47 m/d, and the maximum was 2.85 m/d,
mostly concentrated within 1.15–2.17 m/d, belonging to medium permeability.

(e) Moisture measurement experiment
The main steps of measuring moisture can be found in Section 2.2 (2) and the results

showed that the minimum moisture was 4.01%, and the maximum was 30.69%, mostly
concentrated within 4.01–12.02%.

(f) Spectral measurement experiment
The main steps of measuring spectra can be found in Section 2.2 (2) and the results

showed that there are two spectral absorptions at about 1400 nm and 1900 nm. Furthermore,
white noise in blue bands (350–450 nm) and short wave infrared bands (2350–2450 nm)
commonly existed in the spectra.

(4) Data pre-processing
(a) Abnormal data elimination
As there are some abnormal cohesions, they were eliminated according to the principle

of three times the standard deviation. After excluding abnormal samples, the number of
modeling samples is 121.

(b) Spectral de-noising
Influenced by the instrument, the measured spectrum has white noise, especially in

the blue bands and short wave infrared bands, which will seriously decrease the modeling
accuracy. According to the frequency differences between noise and signal, we use Fourier
transformation to eliminate spectral noises [33].

(c) Data standardization
Different data types often have different magnitudes due to their units. When there is a

large magnitude difference between various parameters, the direct analysis with the original
data will highlight the role of the parameters with higher values in the comprehensive
analysis and weaken the role of the parameters with lower values. Therefore, in order to
ensure the reliability of the results, it is necessary to standardize the original data to ensure
that the processed data have an average of 0 and a standard deviation of 1 [30].
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Data standardization can be expressed by

zij =
(
xij − xi

)
/si, (3)

in which zij is the standardized value of variable xij, xi is the mean value of the variable xi,
and si is the standard deviation of the variable xi.

3. Results and Analysis
3.1. Cohesion Influencing Factors

Shown in Table 1, in order to evaluate the cohesion influencing factors, the correlation
coefficients between cohesion and effective internal friction angle, permeability coefficient,
density, moisture, and particle size were calculated by SPSS v13.0 software.

Table 1. Table of correlation coefficients between cohesion and its influencing factors.

Cohesion Effective Internal
Friction Angle

Permeability
Coefficient Density Moisture Particle Size

Cohesion 1 −0.664 ** −0.557 ** 0.356 ** 0.316 ** 0.076

Effective Internal
Friction Angle −0.664 ** 1 0.323 ** −0.08 −0.127 −0.053

Permeability
Coefficient −0.557 ** 0.323 ** 1 −0.459 ** −0.428 ** 0.002

Density 0.356 ** −0.08 −0.459 ** 1 0.796 ** 0.131

Moisture 0.316 ** −0.127 −0.428 ** 0.796 ** 1 0.068

Particle Size 0.076 −0.053 0.002 0.131 0.068 1

**: Correlation is significant at the 0.01 level (2-tailed).

It can be seen from Table 1 that, except for particle size, cohesion is correlated to
effective internal friction angle, permeability coefficient, density, and moisture at the 0.01
significance level [23], whose scatter plots are shown in Figure 4. Cohesion is negatively
correlated to the former two, with correlation coefficients of −0.664 and −0.557, respec-
tively; while it is positively correlated to the latter two, with the correlation coefficients of
0.356 and 0.316, respectively.

3.2. Model

In order to discover the sensitive bands of cohesion and establish the model between
them, first, the correlation coefficient was calculated to indicate bands related to cohesion;
then, the least square multi-variate regression analysis method is used to establish a model
between cohesion and the sensitive bands [12].

(1) Selection of sensitive bands
In order to find the bands closely related to cohesion, we calculated the correlation

coefficients between the cohesion and each band’s reflectance; furthermore, in order to dis-
cover the bands sensitive to cohesion influencing factors, we also calculated the correlation
coefficients between the effective internal friction angle, permeability coefficient, density,
moisture, and the band reflectance. The results are shown in Figure 5.
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From the cohesion coefficient curve in Figure 5, we can see that there are two reflectance
absorption peaks: one is at about 1400 nm, and the other is at about 1900 nm. Cohesion
sensitive bands would seem to indicate red (~700 nm) and near infrared (beyond 1000 nm)
portions of the electromagnetic spectrum: (1) reflectance from 710 to 750 nm (I) is the highest
correlated band to cohesion, when the wavelength is less than 1400 nm; (2) reflectance from
1578 to 1618 nm (II) is the second segment of highly correlated bands to cohesion when
the wavelength is from 1400 to 1800 nm; (3) reflectance from 1804-1844 nm (III) is the third
segment of highly correlated bands to cohesion, when the wavelength is from 1800 nm to
1900 nm; (4) and finally, reflectance from 2286–2363 nm (IV) is the fourth segment of highly
correlated bands to cohesion, when the wavelength is greater than 1900 nm. Therefore, we
utilize these four segments including 201 bands to select sensitive bands to cohesion. The
backward elimination method in Section 2.2 (3) was applied to select six sensitive bands,
including 750, 1578, 1835, 2301, 2305, and 2309 nm, from these four segments.

From Figure 5, we can see that correlation coefficients between the effective internal
friction angle and the band reflectance are negative and whose absolute values are higher
than those of others, such as permeability coefficient, density, and moisture in I–IV sen-
sitive bands segments, indicating its high correlation with the sensitive bands in these
four segments.

Then, from Figure 5, we can see that correlation coefficients between the permeability
coefficient and the band reflectance are negative and whose absolute values are higher than
those of density and moisture in the I segment, while they are lower in the II–IV segments,
indicating that it is sensitive to band reflectance in the I segment.

Finally, from Figure 5, we can also see that correlation coefficients between the density
and the band reflectance are negative and whose absolute values are less than those of
permeability coefficient in the I segment, while they are higher in the II–IV segments,
indicating that it is sensitive to band reflectance in the II–IV segments.

Correlation coefficients between moisture and the band reflectance have a similar ten-
dency to density, indicating that it is also sensitive to band reflectance in the II–IV segments.

(2) Multi-variate regression analysis of cohesion and sensitive bands
The least square method is used to find the best matching function of the data by

minimizing the squared summation of errors [34].
In this experiment, with cohesion as the dependent variable and the standardized

spectral reflectance of six sensitive bands as the independent variables, a cohesion hyper-
spectral detection model is established as follows by the least square multi-variate statistical
analysis method in Section 2.2 (3).

y = 22.7 + 10.36x1 − 37.32x2 + 42.57x3 − 30.34x4 + 56.15x5 − 40.42x6,

in which y is cohesion; x1 is the standardized reflectance at 750 nm; x2 is the normalized
reflectance at 1578 nm; x3 is the normalized reflectance at 1835 nm; x4 is the normalized
reflectance at 2301 nm; x5 is the normalized reflectance at 2305 nm; and x6 is the normalized
reflectance at 2309 nm.

The fitting relationship between the measured and predicted cohesion is shown in
Figure 6.

As can be seen from Figure 6, the determination coefficient (R2) of the model is 0.3142,
and whose correlation coefficient is 0.56; a t-test on each regression coefficient is shown in
Table 2. The p value of each regression coefficient is less than 0.001, indicating that there is
a significant correlation between cohesion and the six sensitive bands, and the established
model has a good prediction ability.
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Figure 6. Results of cohesion hyperspectral detection model.

Table 2. t-test on the regression coefficients of the model.

Coefficient Standard Error p-Value Lower 95% Upper 95%

Intercept 22.7045 0.3616 0.0000 21.9880 23.4210
750 nm 10.3582 2.0827 0.0000 6.2312 14.4853
1578 nm −37.3150 11.0193 0.0010 −59.1506 −15.4795
1835 nm 42.5733 11.6960 0.0004 19.3968 65.7498
2301 nm −30.3357 8.4139 0.0005 −47.0085 −13.6629
2305 nm 56.1503 11.5549 0.0000 33.2535 79.0471
2309 nm −40.4223 8.2513 0.0000 −56.7728 −24.0719

After the sensitive band selection, correlation coefficients between each parameter and
sensitive bands were calculated by the SPSS V13.0 software, as shown in Table 3.

It can be seen from Table 3 that the band at 750 nm is significantly correlated to the
effective internal friction angle at the significance level of 0.01, and correlated to cohesion
and permeability coefficient at the significance level of 0.05; bands at 1578, 1835, 2301, 2305,
and 2309 nm are significantly correlated to the effective internal friction angle, density,
and moisture at the significance level of 0.01. This is mainly because these bands can
better indicate the water content among I–IV highly correlated segments between spectra
and cohesion (Figure 5). Density in this research is closely correlated to moisture with a
correlation coefficient of 0.796 at the 0.01 significance level (Table 3). Therefore, moisture
and density are correlated to these sensitive bands. In other words, these sensitive bands
indicate cohesion influencing factors and its hyperspectral detection mechanism.
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Table 3. Correlation coefficients between parameters and sensitive bands.

Cohesion Effective Internal
Friction Angle

Permeability
Coefficient Density Moisture Particle

Size 750 nm 1578 nm 1835 nm 2301 nm 2305 nm 2309 nm

Cohesion 1 −0.664 ** −0.557 ** 0.356 ** 0.316 ** 0.076 0.222 * 0.162 0.154 0.145 0.155 0.142

Effective Internal
Friction Angle −0.664 ** 1 0.323 ** −0.08 −0.127 −0.053 −0.348 ** −0.318 ** −0.314 ** −0.311 ** −0.319 ** −0.307 **

Permeability
Coefficient −0.557 ** 0.323 ** 1 −0.459 ** −0.428 ** 0.002 −0.217 * −0.162 −0.152 −0.152 −0.157 −0.145

Density 0.356 ** −0.08 −0.459 ** 1 0.796 ** 0.131 −0.152 −0.286 ** −0.307 ** −0.302 ** −0.300 ** −0.302 **

Moisture 0.316 ** −0.127 −0.428 ** 0.796 ** 1 0.068 −0.159 −0.293 ** −0.311 ** −0.305 ** −0.303 ** −0.306 **

Particle Size 0.076 −0.053 0.002 0.131 0.068 1 −0.078 −0.091 −0.089 −0.092 −0.093 −0.090

750 nm 0.222 * −0.348 ** −0.217 * −0.152 −0.159 −0.078 1 0.965 ** 0.954 ** 0.957 ** 0.959 ** 0.958 **

1578 nm 0.162 −0.318 ** −0.162 −0.286 ** −0.293 ** −0.091 0.965 ** 1 0.998 ** 0.995 ** 0.996 ** 0.994 **

1835 nm 0.154 −0.314 ** −0.152 −0.307** −0.311 ** −0.089 0.954 ** 0.998 ** 1 0.996 ** 0.996 ** 0.996 **

2301 nm 0.145 −0.311 ** −0.152 −0.302 ** −0.305 ** −0.092 0.957 ** 0.995 ** 0.996 ** 1 0.999 ** 0.998 **

2305 nm 0.155 −0.319 ** −0.157 −0.300 ** −0.303 ** −0.093 0.959 ** 0.996 ** 0.996 ** 0.999 ** 1 0.999 **

2309 nm 0.142 −0.307 ** −0.145 −0.302 ** −0.306 ** −0.090 0.958 ** 0.994 ** 0.996 ** 0.998 ** 0.999 ** 1

*. Correlation is significant at the 0.05 level (2-tailed). **. Correlation is significant at the 0.01 level (2-tailed).
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4. Discussion

Reasons for correlations between cohesion and its influencing factors are analyzed as
follows, providing a theoretical basis for discovering the cohesion hyperspectral detection
mechanism of fine-grained sediments in Beichuan debris flow.

(1) Force between soil particles makes cohesion negatively correlated to effective
internal friction angle.

Cohesion is negatively correlated to effective internal friction angle at the significance
level of 0.01. This is mainly because effective internal friction angle depends on the friction
resistance and bonding force between soil particles. Therefore, the more edges and coarser
and denser the soil particle surface, the greater the effective internal friction angle becomes;
however, the coarser the surface is, the more edges and corners there are, resulting in a
larger distance between particles and thus weakening of the gravitational forces between
soil particles and lower cohesion.

(2) Distance between soil particles makes cohesion negatively correlated to permeabil-
ity coefficient, while positively correlated to density.

Cohesion is negatively correlated to permeability coefficient at the 0.01 significance
level. This is mainly because the permeability coefficient mainly reflects the size, number,
and connectivity of soil pores [35]. The larger the permeability coefficient is, the greater
the distance between soil particles is, and thus making the attraction between soil particles
lower and the cohesion weakened.

However, cohesion is positively correlated to density at the 0.01 significance level.
This is mainly because the greater the density is, the shorter the distance between particles
becomes, the stronger the attraction between soil particles is, and the greater the cohesion
between soil particles becomes [17].

(3) Water film makes cohesion positively correlated to moisture in unsaturated soil
samples, while negatively in saturated ones.

Cohesion is positively correlated to moisture at the 0.01 significance level. Previous
research showed that cohesion was positively correlated to moisture in unsaturated samples,
while negatively in saturated ones [19]. This is mainly because when soil is dry, cohesion is
mainly caused by the molecular gravity of soil particles themselves; when soil becomes
wet, the molecular gravity between soil particles acts through the water film between
soil particles, forming the mutual attraction among particles–water–particles due to the
clay content in soil. The silty soil particle surface is very small and, when there is a small
amount of water, the water film increases the contact area and thus increases the cohesion.
However, when the soil is saturated, with the increase in moisture, the water film distance
between soil particles becomes longer and thus decreases the cohesion [19].

5. Conclusions

In order to establish a hyperspectral remote sensing detection model for the cohesion
of fine-grained sediments in debris flow, we designed experiments to measure soil cohe-
sion and its influencing factors, including effective internal friction angle, permeability
coefficient, density, and moisture. We also carried out a soil hyperspectral measurement
experiment to select cohesion sensitive bands and establish a model between cohesion and
these bands, with conclusions as follows.

(1) Six cohesion hyperspectral sensitive bands are found to provide a scientific basis
for rapid detection of the fine-grained sediments’ stability in large areas.

Taking cohesion as the dependent variable and normalized spectral reflectance as
independent variables, a model was established by the multi-variate regression analysis
method in SPSS v13.0 software. The backward elimination method was used to select
sensitive bands. According to the coefficient of determination (R2), t-test and p values, six
sensitive bands for cohesion hyperspectral detection are found to be 750 nm, 1578 nm, 1835
nm, 2301 nm, 2305 nm, and 2309 nm.
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These bands can be used in the future to quickly acquire soil cohesion by hyperspectral
remote sensing. As cohesion is one of the internally controlled factors of soil stability, this
finding thus provides a scientific basis for rapid detection of the fine-grained sediments’
stability in large areas.

(2) A cohesion hyperspectral remote sensing detection model for fine-grained sedi-
ments in Beichuan debris flow is established to provide a scientific basis for debris flow
early warning.

Using the least square multi-variate regression analysis method, a model between
cohesion and its sensitive bands is established with a correlation coefficient of 0.56. The
results showed that there was a multi-variate linear correlation between cohesion and
sensitive bands; the t-test results of each regression coefficient showed that the p values
of each regression coefficient were less than 0.001, indicating that there was a significant
correlation between cohesion and the six sensitive bands.

Debris flow early warning needs to quickly detect the stability of these fine-grained
sediments which is one of the factors controlling disaster scales. Cohesion reflects the strain
capacity of soil to resist external stress, and is closely related to the stability. Although
cohesion varies with water content, we can quickly find its value with the model when the
fine-grained sediments on the surface are in their natural state. Then, dangerous areas can
be circled out by the early warning system according to the value of soil stability estimated
by cohesion. In other words, less stability indicates higher danger.

(3) The cohesion hyperspectral detection mechanism of fine-grained sediments in
Beichuan debris flow is discovered.

The results showed that cohesion was correlated to the effective internal friction angle,
permeability coefficient, density, and moisture at the significance level of 0.01. Cohesion
was negatively correlated to the former two factors, and positively correlated to the latter
two; the band at 750 nm indicated the characteristics of cohesion, effective internal friction
angle, and permeability coefficient, while the other five bands, 1578 nm, 1835 nm, 2301
nm, 2305 nm, and 2309 nm, indicated the characteristics of effective internal friction angle,
density, and moisture. Therefore, these hyperspectral sensitive bands indicated the cohesion
hyperspectral remote sensing detection mechanism of fine-grained sediments in Beichuan
debris flow.
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